565
Views
0
CrossRef citations to date
0
Altmetric
Review

Targeted Radiotherapy with Gold Nanoparticles: Current Status and Future Perspectives

, , , , , , & show all
Pages 1063-1082 | Published online: 30 Jun 2014

References

  • Detappe A , TsiamasP, NgwaW, ZygmanskiP, MakrigiorgosM, BerbecoR. The effect of flattening filter free delivery on endothelial dose enhancement with gold nanoparticles. Med. Phys.40 (3), 031706 (2013).
  • Tsiamas P , LiuB, CifterFet al. Impact of beam quality on megavoltage radiotherapy treatment techniques utilizing gold nanoparticles for dose enhancement. Phys. Med. Biol.58 (3), 451–464 (2013).
  • Berbeco RI , KorideckH, NgwaWet al. DNA damage enhancement from gold nanoparticles for clinical MV photon beams. Radiat. Res.178 (6),  604–608  (2012).  
  • Ngwa W , KorideckH, KassisAIet al. In vitro radiosensitization by gold nanoparticles during continuous low-dose-rate gamma irradiation with I-125 brachytherapy seeds. Nanomedicine9 (1), 25–27 (2013).
  • Chang JY , ZhangX, WangXet al. Significant reduction of normal tissue dose by proton radiotherapy compared with three-dimensional conformal or intensity-modulated radiation therapy in stage I or stage III non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys.65 (4), 1087–1096 (2006).
  • Begg AC , StewartFA, VensC. Strategies to improve radiotherapy with targeted drugs. Nat. Rev. Cancer11 (4), 239–253 (2011).
  • Barnett GC , WestCM, DunningAMet al. Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat. Rev. Cancer9 (2), 134–142 (2009).
  • Nguyen PL , D’AmicoAV, LeeAK, SuhWW. Patient selection, cancer control, and complications after salvage local therapy for postradiation prostate-specific antigen failure: a systematic review of the literature. Cancer110 (7), 1417–1428 (2007).
  • Agarwal PK , SadetskyN, KonetyBR, ResnickMI, CarrollPR. Treatment failure after primary and salvage therapy for prostate cancer: likelihood, patterns of care, and outcomes. Cancer112 (2), 307–314 (2008).
  • Westphalen AC , CoakleyFV, Roach   M   3rd, McCullochCE, KurhanewiczJ. Locally recurrent prostate cancer after external beam radiation therapy: diagnostic performance of 1.5-T endorectal MR imaging and MR spectroscopic imaging for detection. Radiology256 (2), 485–492 (2010).
  • Stephenson AJ , EasthamJA. Role of salvage radical prostatectomy for recurrent prostate cancer after radiation therapy. J. Clin. Oncol.23 (32), 8198–8203 (2005).
  • Zelefsky MJ , YamadaY, FuksZet al. Long-term results of conformal radiotherapy for prostate cancer: impact of dose escalation on biochemical tumor control and distant metastases-free survival outcomes. Int. J. Radiat. Oncol. Biol. Phys.71 (4), 1028–1033 (2008).
  • Pollack A , HanlonAL, HorwitzEM, FeigenbergSJ, UzzoRG, HanksGE. Prostate cancer radiotherapy dose response: an update of the fox chase experience. J. Urol.171 (3), 1132–1136 (2004).
  • Al-Mamgani A , Van PuttenWL, HeemsbergenWDet al. Update of Dutch multicenter dose-escalation trial of radiotherapy for localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys.72 (4), 980–988 (2008).
  • Al-Mamgani A , Van PuttenWL, Van Der WielenGJ, LevendagPC, IncrocciL. Dose escalation and quality of life in patients with localized prostate cancer treated with radiotherapy: long-term results of the Dutch randomized dose-escalation trial (CKTO 96–10 trial). Int. J. Radiat. Oncol. Biol. Phys.79 (4), 1004–1012 (2010).
  • Bachand F , MartinAG, BeaulieuL, HarelF, VigneaultE. An eight-year experience of HDR brachytherapy boost for localized prostate cancer: biopsy and PSA outcome. Int. J. Radiat. Oncol. Biol. Phys.73 (3), 679–684 (2009).
  • Nutting CM , CorbishleyCM, Sanchez-NietoB, CosgroveVP, WebbS, DearnaleyDP. Potential improvements in the therapeutic ratio of prostate cancer irradiation: dose escalation of pathologically identified tumour nodules using intensity modulated radiotherapy. Br. J. Radiol.75 (890), 151–161 (2002).
  • Galvin JM , De NeveW. Intensity modulating and other radiation therapy devices for dose painting. J. Clin. Oncol.25 (8), 924–930 (2007).
  • Kuban DA , LevyLB, CheungMRet al. Long-term failure patterns and survival in a randomized dose-escalation trial for prostate cancer. Who dies of disease?   Int. J. Radiat. Oncol. Biol. Phys.79 (5), 1310–1317 (2011).
  • Heier JS , BoyerDS, CiullaTAet al. Ranibizumab combined with verteporfin photodynamic therapy in neovascular age-related macular degeneration: year 1 results of the FOCUS study. Arch. Ophthalmol.124 (11), 1532–1542 (2006).
  • Peeters ST , HeemsbergenWD, Van PuttenWLet al. Acute and late complications after radiotherapy for prostate cancer: results of a multicenter randomized trial comparing 68 Gy to 78 Gy. Int. J. Radiat. Oncol. Biol. Phys.61 (4), 1019–1034 (2005).
  • Litzenberg DW , BalterJM, HadleySWet al. Influence of intrafraction motion on margins for prostate radiotherapy. Int. J. Radiat. Oncol. Biol. Phys.65 (2), 548–553 (2006).
  • Li HS , ChettyIJ, EnkeCAet al. Dosimetric consequences of intrafraction prostate motion. Int. J. Radiat. Oncol. Biol. Phys.71 (3), 801–812 (2008).
  • Sovik A , MalinenE, OlsenDR. Strategies for biologic image-guided dose escalation: a review. Int. J. Radiat. Oncol. Biol. Phys.73 (3), 650–658 (2009).
  • Burri RJ , StoneNN, UngerP, StockRG. Long-term outcome and toxicity of salvage brachytherapy for local failure after initial radiotherapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys.77 (5), 1338–1344 (2010).
  • Allen GW , HowardAR, JarrardDF, RitterMA. Management of prostate cancer recurrences after radiation therapy-brachytherapy as a salvage option. Cancer110 (7), 1405–1416 (2007).
  • Ng CK , ToumaNJ, ChalasaniV, MoussaM, DowneyDB, ChinJL. The pattern of prostate cancer local recurrence after radiation and salvage cryoablation. Can. Urol. Assoc. J.5 (6), E125–128 (2011).
  • Nguyen PL , ChenRC, ClarkJAet al. Patient-reported quality of life after salvage brachytherapy for radio-recurrent prostate cancer: a prospective Phase II study. Brachytherapy8 (4), 345–352 (2009).
  • Beyer DC . Salvage brachytherapy after external-beam irradiation for prostate cancer. Oncology18 (2), 151–158 (2004).
  • Beyer DC . Brachytherapy for recurrent prostate cancer after radiation therapy. Semin. Radiat. Oncol.13 (2), 158–165 (2003).
  • Trock BJ , HanM, FreedlandSJet al. Prostate cancer-specific survival following salvage radiotherapy vs observation in men with biochemical recurrence after radical prostatectomy. JAMA299 (23), 2760–2769 (2008).
  • Zelefsky MJ , FuksZ, WolfeTet al. Locally advanced prostatic cancer: long-term toxicity outcome after three-dimensional conformal radiation therapy – a dose-escalation study. Radiology209 (1), 169–174 (1998).
  • Keall PJ , MagerasGS, BalterJMet al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med. Phys.33 (10), 3874–3900 (2006).
  • Herold DM , DasIJ, StobbeCC, IyerRV, ChapmanJD. Gold microspheres: a selective technique for producing biologically effective dose enhancement. Int. J. Radiat. Biol.76 (10), 1357–1364 (2000).
  • Hainfeld JF , SlatkinDN, SmilowitzHM.  The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol.49 (18),  N309–N315  (2004).  
  • Cheung JY , TangFH. The calculation of dose enhancement close to platinum implants for skull radiography. Health Phys.93 (4), 267–272 (2007).
  • Lasagna-Reeves C , Gonzalez-RomeroD, BarriaMAet al. Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem. Biophys. Res. Commun.393 (4), 649–655 (2010).
  • Mukherjee P , BhattacharyaR, WangPet al. Antiangiogenic properties of gold nanoparticles. Clin. Cancer Res.11 (9), 3530–3534 (2005).
  • Shukla R , BansalV, ChaudharyM, BasuA, BhondeRR, SastryM. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir21 (23), 10644–10654 (2005).
  • Connor EE , MwamukaJ, GoleA, MurphyCJ, WyattMD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small1 (3), 325–327 (2005).
  • Hainfeld JF , SlatkinDN, FocellaTM, SmilowitzHM. Gold nanoparticles: a new x-ray contrast agent. Br. J. Radiol.79 (939), 248–253 (2006).
  • Jain S , HirstDG, O'SullivanJM. Gold nanoparticles as novel agents for cancer therapy. The Br. J. Radiol.85 (1010), 101–113 (2012).
  • Hainfeld JF , SmilowitzHM, O'ConnorMJ, DilmanianFA, SlatkinDN. Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine (Lond)8 (10), 1601–1609 (2013).
  • Kumar R , KorideckH, NgwaW, BerbecoRI, MakrigiorgosGM, SridharS. Third generation gold nanoplatform optimized for radiation therapy. Transl. Cancer Res.2 (4), (2013).
  • Hainfeld JF , DilmanianFA, SlatkinDN, SmilowitzHM. Radiotherapy enhancement with gold nanoparticles. J. Pharm. Pharmacol.60 (8), 977–985 (2008).
  • Hainfeld JF , DilmanianFA, ZhongZ, SlatkinDN, Kalef-EzraJA, SmilowitzHM. Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys. Med. Biol.55 (11), 3045–3059 (2010).
  • Cho SH , JonesBL, KrishnanS. The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/x-ray sources. Phys. Med. Biol.54 (16), 4889–4905 (2009).
  • Roeske JC , NunezL, HoggarthM, LabayE, WeichselbaumRR. Characterization of the theorectical radiation dose enhancement from nanoparticles. Technol. Cancer Res. Treat.6 (5), 395–401 (2007).
  • Zhang SX , GaoJ, BuchholzTAet al. Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: a Monte Carlo simulation study. Biomed. Microdevice11, 925–933 (2009).
  • Jones BL , KrishnanS, ChoSH. Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo Calculations. Med. Phys.37 (7), 3809–3816 (2010).
  • Matsumura Y , MaedaH. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res.46 (12 Pt 1), 6387–6392 (1986).
  • Perrault SD , WalkeyC, JenningsT, FischerHC, ChanWC. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett.9 (5), 1909–1915 (2009).
  • Decuzzi P , PasqualiniR, ArapW, FerrariM. Intravascular delivery of particulate systems: does geometry really matter?   Pharm. Res.26 (1), 235–243 (2009).
  • Decuzzi P , FerrariM. The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials27 (30), 5307–5314 (2006).
  • Chithrani DB , JelvehS, JalaliFet al. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat. Res.173 (6), 719–728 (2010).
  • Zhang XD , WuD, ShenXet al. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials33 (27), 6408–6419 (2012).
  • Champion JA , KatareYK, MitragotriS. Making polymeric micro- and nanoparticles of complex shapes. Proc. Natl Acad. Sci. USA104 (29), 11901–11904 (2007).
  • Geng Y , DalhaimerP, CaiSet al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol.2 (4), 249–255 (2007).
  • Nishiyama N . Nanomedicine: nanocarriers shape up for long life. Nat. Nanotechnol.2 (4), 203–204 (2007).
  • Champion JA , KatareYK, MitragotriS. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J. Control. release121 (1–2), 3–9 (2007).
  • Tan J , ShahS, ThomasA, Ou-YangHD, LiuY. The influence of size, shape and vessel geometry on nanoparticle distribution. Microfluid. Nanofluidics14 (1–2), 77–87 (2013).
  • Wong C , StylianopoulosT, CuiJet al. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl Acad. Sci. USA108 (6), 2426–2431 (2011).
  • Huang K , MaH, LiuJet al. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano.6 (5), 4483–4493 (2012).
  • Chithrani BD , GhazaniAA, ChanWC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett.6 (4), 662–668 (2006).
  • Chithrani DB . Intracellular uptake, transport, and processing of gold nanostructures. Mol. Membr. Biol.27 (7), 299–311 (2010).
  • Chithrani BD , ChanWC. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett.7 (6), 1542–1550 (2007).
  • Caldorera-Moore M , GuimardN, ShiL, RoyK. Designer nanoparticles: incorporating size, shape and triggered release into nanoscale drug carriers. Expert Opin. Drug Deliv.7 (4), 479–495 (2010).
  • Chithrani DB . Nanoparticles for improved therapeutics and imaging in cancer therapy. Recent Pat. Nanotechnol.4 (3), 171–180 (2010).
  • Hauck TS , GhazaniAA, ChanWC. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small4 (1), 153–159 (2008).
  • Zhang G , YangZ, LuWet al. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials30 (10), 1928–1936 (2009).
  • Choi CH , AlabiCA, WebsterP, DavisME. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc. Natl Acad. Sci. USA107 (3), 1235–1240 (2010).
  • Yao L , DanielsJ, MoshnikovaAet al. pHLIP peptide targets nanogold particles to tumors. Proc. Natl Acad. Sci. USA110 (2), 465–470 (2013).
  • Weissleder R , KellyK, SunEY, ShtatlandT, JosephsonL. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat. Biotechnol.23 (11), 1418–1423 (2005).
  • Kang B , MackeyMA, El-SayedMA. Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J. Am. Chem. Soc.132 (5), 1517–1519 (2010).
  • Sokolov K , FollenM, AaronJet al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res.63 (9), 1999–2004 (2003).
  • Brown SD , NativoP, SmithJet al. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J. Am. Chem. Soc132 (13), 4678 (2010).
  • Dabbas S , KaushikRR, DandamudiS, KuestersM, CampbellRB. Importance of the lipoosomal cationic lipid content and type in tumor vascular targeting: physicochemical characterization and in vitro studies using human promary and transformed endothelial cells. Endothelium15, 189–201 (2008).
  • Cai W , ShinDW, ChenKet al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett.6 (4), 669–676 (2006).
  • Diagaradjane P , Orenstein-CardonaJM, Colon-CasasnovasNEet al. Imaging epidermal growth factor receptor expression in vivo: pharmacokinetic and biodistribution characterization of a bioconjugated quantum dot nanoprobe. Clin. Cancer Res.14 (3), 731–741 (2008).
  • McCarthy JR , WeisslederR. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Deliv. Rev.60 (11), 1241–1251 (2008).
  • Qian X , PengXH, AnsariDOet al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol.26 (1), 83–90 (2008).
  • Cheng Z , Al ZakiA, HuiJZ, MuzykantovVR, TsourkasA. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science338 (6109), 903–910 (2012).
  • Grieneisen ML , ZhangM. Nanoscience and nanotechnology: evolving definitions and growing footprint on the scientific landscape. Small7 (20), 2836–2839 (2011).
  • Tripathi RM , ShrivastavA, ShrivastavBR. Biogenic gold nanoparticles: as a potential candidate for brain tumor directed drug delivery. Artif. Cells Nanomed. Biotechnol. (2014).
  • Pandey S , MewadaA, ThakurM, ShahR, OzaG, SharonM. Biogenic gold nanoparticles as fotillas to fire berberine hydrochloride using folic acid as molecular road map. Mater. Sci. Eng. C Mater. Biol. Appl.33 (7), 3716–3722 (2013).
  • Lee SM , KimHJ, KimSYet al. Drug-loaded gold plasmonic nanoparticles for treatment of multidrug resistance in cancer. Biomaterials35 (7), 2272–2282 (2014).
  • Cheng Y , DoaneTL, ChuangCH, ZiadyA, BurdaC.  Near infrared light-triggered drug generation and release from gold nanoparticle carriers for photodynamic therapy. Small10 (9), 1799–1804  (2014).
  • Jain RK , StylianopoulosT. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol.7 (11), 653–664 (2010).
  • Jain RK . Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science307 (5706), 58–62 (2005).
  • Winkler F , KozinSV, TongRTet al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell6 (6), 553–563 (2004).
  • Magzoub M , JinS, VerkmanAS. Enhanced macromolecule diffusion deep in tumors after enzymatic digestion of extracellular matrix collagen and its associated proteoglycan decorin. FASEB J.22 (1), 276–284 (2008).
  • Netti PA , BerkDA, SwartzMA, GrodzinskyAJ, JainRK. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res.60 (9), 2497–2503 (2000).
  • Prabhakar U , MaedaH, JainRKet al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res.73 (8), 2412–2417 (2013).
  • Begum M , AbbuluK, SudhakarM. Flurbiprofen-loaded stealth liposomes: studies on the development, characterization, pharmacokinetics, and biodistribution. J. Young Pharm.4 (4), 209–219 (2012).
  • Harrington KJ , MohammadtaghiS, UsterPSet al. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin. Cancer Res.7 (2), 243–254 (2001).
  • Zhang SX , GaoJ, BuchholzTAet al. Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: a Monte Carlo simulation study. Biomed. Microdevice11, 925–933 (2009).
  • Ngwa W , MakrigiorgosGM, BerbecoRI. Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement. Phys. Med. Biol.55 (21), 6533–6548 (2010).
  • Ngwa W , MakrigiorgosGM, BerbecoRI. Gold nanoparticle-aided brachytherapy with vascular dose painting: estimation of dose enhancement to the tumor endothelial cell nucleus. Med. Phys.39 (1), 392–398 (2012).
  • Berbeco RI , NgwaW, MakrigiorgosGM. Localized dose enhancement to tumor blood vessel endothelial cells via megavoltage x-rays and targeted gold nanoparticles: new potential for external beam radiotherapy. Int. J. Radiat. Oncol. Biol. Phys.81 (1), 270–276 (2011).
  • Ngwa W , MakrigiorgosGM, BerbecoRI.  Gold nanoparticle enhancement of stereotactic radiosurgery for neovascular age-related macular degeneration. Phys. Med. Biol.57 (20),  6371–6380  (2012).  
  • Lechtman E , ChattopadhyayN, CaiZ, MashoufS, ReillyR, PignolJP. Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location. Phys. Med. Biol.56 (15), 4631–4647 (2011).
  • Leung MK , ChowJC, ChithraniBD, LeeMJ, OmsB, JaffrayDA. Irradiation of gold nanoparticles by x-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Med. Phys.38 (2), 624–631 (2011).
  • Zygmanski P , LiuB, TsiamasPet al. Dependence of Monte Carlo microdosimetric computations on the simulation geometry of gold nanoparticles. Phys. Med. Biol.58 (22), 7961–7977 (2013).
  • Rahman WN , BisharaN, AckerlyTet al. Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomedicine5 (2), 136–142 (2009).
  • Kong T , ZengJ, WangXet al. Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles. Small4 (9), 1537–1543 (2008).
  • Jain S , CoulterJA, HounsellARet al. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int. J. Radiat. Oncol. Biol. Phys.79 (2), 531–539 (2011).
  • Liu CJ , WangCH, ChenSTet al. Enhancement of cell radiation sensitivity by pegylated gold nanoparticles. Phys. Med. Biol.55 (4), 931–945 (2010).
  • Roa W , ZhangX, GuoLet al. Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle. Nanotechnology20 (37), 375101 (2009).
  • Butterworth KT , McMahonSJ, TaggartLE, PriseMK. Radiosensitization by gold nanoparticles: effective at megavoltage energies and potential role of oxidative stress. Transl. Cancer Res.2 (4), 269–279 (2013).
  • Butterworth KT , CoulterJA, JainSet al. Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy. Nanotechnology21 (29), 295101 (2010).
  • Misawa M , TakahashiJ. Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV Irradiations. Nanomedicine7 (5), 604–614 (2011).
  • Pan Y , LeifertA, RuauDet al. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small5 (18), 2067–2076 (2009).
  • Chompoosor A , SahaK, GhoshPSet al. The role of surface functionality on acute cytotoxicity, ROS generation and DNA damage by cationic gold nanoparticles. Small6 (20), 2246–2249 (2010).
  • Al Zaki A , JohD, ChengZ Gold-loaded polymeric micelles for computed tomography-guided radiation therapy treatment and radiosensitization ACS Nano 8 1 104–1122014
  • Bobyk L , EdouardM, DemanPet al. Photoactivation of gold nanoparticles for glioma treatment. Nanomedicine9 (7), 1089–1097 (2013).
  • Joh DY , SunL, StanglMet al. Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization. PLoS ONE8 (4), e62425 (2013).
  • Brun E , SancheL, Sicard-RoselliC. Parameters governing gold nanoparticle x-ray radiosensitization of DNA in solution. Colloids Surf. B Biointerfaces72 (1), 128–134 (2009).
  • Ngwa W , BerbecoRI, MakrigiorgosGM. Gold nanoparticle-aided brachytherapy with vascular dose painting: Estimation of dose enhancement to the tumor endothelial cell nucleus. Med. Phys.39 (1), 392–398 (2012).
  • Makrigiorgos GM , AdelsteinSJ, KassisAI. Cellular radiation dosimetry and its implications for estimation of radiation risks. Illustrative results with technetium 99m-labeled microspheres and macroaggregates. JAMA264 (5), 592–595 (1990).
  • Makrigiorgos GM , ItoS, Baranowska-KortylewiczJet al. Inhomogeneous deposition of radiopharmaceuticals at the cellular level: experimental evidence and dosimetric implications. J. Nucl. Med31 (8), 1358–1363 (1990).
  • Denekamp J . Endothelial cell proliferation as a novel approach to targeting tumour therapy. Br. J. Cancer45 (1), 136–139 (1982).
  • Denekamp J . Vascular endothelium as the vulnerable element in tumours. Acta Radiol. Oncol.23 (4), 217–225 (1984).
  • Gridelli C , RossiA, MaionePet al. Vascular disrupting agents: a novel mechanism of action in the battle against non-small cell lung cancer. Oncologist14 (6), 612–620 (2009).
  • Garcia-Barros M , ParisF, Cordon-CardoCet al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science300 (5622), 1155–1159 (2003).
  • Boerman OC , SharkeyRM, BlumenthalRD, AninipotRL, GoldenbergDM. The presence of a concomitant bulky tumor can decrease the uptake and therapeutic efficacy of radiolabeled antibodies in small tumors. Int. J. Cancer51 (3), 470–475 (1992).
  • Siemann DW , ShiW. Targeting the tumor blood vessel network to enhance the efficacy of radiation therapy. Semin. Radiat. Oncol.13 (1), 53–61 (2003).
  • Cooney MM , Van HeeckerenW, BhaktaS, OrtizJ, RemickSC. Drug insight: vascular disrupting agents and angiogenesis – novel approaches for drug delivery. Nat. Clin. Pract. Oncol.3 (12), 682–692 (2006).
  • Skliarenko JV , LuntSJ, GordonML, VitkinA, MilosevicM, HillRP. Effects of the vascular disrupting agent ZD6126 on interstitial fluid pressure and cell survival in tumors. Cancer Res.66 (4), 2074–2080 (2006).
  • Van Heeckeren WJ , BhaktaS, OrtizJ Promise of new vascular-disrupting agents balanced with cardiac toxicity: is it time for oncologists to get to know their cardiologists J. Clin. Oncol. 24 10 1485–14882006
  • Cormack RA , SridharS, SuhWW, D’amicoAV, MakrigiorgosGM. Biological in situ dose painting for image-guided radiation therapy using drug-loaded implantable devices. Int. J. Radiat. Oncol. Biol. Phys.76 (2), 615–623 (2010).
  • Nagesha DK , TadaDB, StambaughCKet al. Radiosensitizer-eluting nanocoatings on gold fiducials for biological in-situ image-guided radio therapy (BIS-IGRT). Phys. Med. Biol.55 (20), 6039–6052 (2010).
  • Dong Y , ChinSF, BlancoEet al. Intratumoral delivery of beta-lapachone via polymer implants for prostate cancer therapy. Clin. Cancer Res.15 (1), 131–139 (2009).
  • Qian F , SzymanskiA, GaoJ. Fabrication and characterization of controlled release poly(D,L-lactide-co-glycolide) millirods. J. Biomed. Mater. Res.55 (4), 512–522 (2001).
  • Takeda A , BaffiJZ, KleinmanMEet al. CCR3 is a target for age-related macular degeneration diagnosis and therapy. Nature460 (7252), 225–230 (2009).
  • Resnikoff S , PascoliniD, Etya’aleDet al. Global data on visual impairment in the year 2002. Bull. World Health Organ.82 (11), 844–851 (2004).
  • The Global Economic Cost of Visual Impairment. AMD Alliance International . London, UK (2010).
  • Axer-Siegel R , EhrlichR, YassurYet al. Photodynamic therapy for age-related macular degeneration in a clinical setting: visual results and angiographic patterns. Am. J. Ophthalmol.137 (2), 258–264 (2004).
  • Yip PP , WooCF, TangHH, HoCK. Triple therapy for neovascular age-related macular degeneration using single-session photodynamic therapy combined with intravitreal bevacizumab and triamcinolone. Br. J. Ophthalmol.93 (6), 754–758 (2009).
  • Rosenfeld PJ , BrownDM, HeierJSet al. Ranibizumab for neovascular age-related macular degeneration. N. Engl. J. Med.355 (14), 1419–1431 (2006).
  • Ng EW , AdamisAP. Targeting angiogenesis, the underlying disorder in neovascular age-related macular degeneration. Can. J. Ophthalmol.40 (3), 352–368 (2005).
  • Brown DM , MichelsM, KaiserPK, HeierJS, SyJP, IanchulevT. Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: two-year results of the ANCHOR study. Ophthalmology116 (1), 57–65   e55 (2009).
  • Bressler NM . Antiangiogenic approaches to age-related macular degeneration today. Ophthalmology116 (10 Suppl.), S15–S23 (2009).
  • Salehi-Had H , RohMI, GianiAet al. Utilizing targeted gene therapy with nanoparticles binding alpha v beta 3 for imaging and treating choroidal neovascularization. PLoS ONE6 (4), e18864 (2011).
  • Petrarca R , JacksonTL. Radiation therapy for neovascular age-related macular degeneration. Clin. Ophthalmol.5, 57–63 (2011).
  • Hanlon J , LeeC, ChellEet al. Kilovoltage stereotactic radiosurgery for age-related macular degeneration: assessment of optic nerve dose and patient effective dose. Med. Phys.36 (8), 3671–3681 (2009).
  • Moshfeghi DM , KaiserPK, GertnerM. Stereotactic low-voltage x-ray irradiation for age-related macular degeneration. Br. J. Ophthalmol.95 (2), 185–188 (2011).
  • Fine SL , MaguireMG. It is not time to abandon radiotherapy for neovascular age-related macular degeneration. Arch. Ophthalmol.119 (2), 275–276 (2001).
  • Bonnaud S , NiaudetC, PottierGet al. Sphingosine-1-phosphate protects proliferating endothelial cells from ceramide-induced apoptosis but not from DNA damage-induced mitotic death. Cancer Res.67 (4), 1803–1811 (2007).
  • Hanlon J , FirpoM, ChellE, MoshfeghiDM, BolchWE. Stereotactic radiosurgery for AMD: a Monte Carlo-based assessment of patient-specific tissue doses. Invest. Ophthalmol. Vis. Sci.52 (5), 2334–2342 (2011).
  • Taddei PJ , ChellE, HansenS, GertnerM, NewhauserWD. Assessment of targeting accuracy of a low-energy stereotactic radiosurgery treatment for age-related macular degeneration. Phys. Med. Biol.55 (23), 7037–7054 (2010).
  • Canton VM , Quiroz-MercadoH, Velez-MontoyaRet al. 16-Gy low-voltage x-ray irradiation with ranibizumab therapy for AMD: 6-month safety and functional outcomes. Ophthalmic Surg. Lasers Imaging42 (6), 468–473 (2011).
  • Moshfeghi AA , CantonVM, Quiroz-MercadoHet al. 16-Gy low-voltage x-ray irradiation followed by as-needed ranibizumab therapy for AMD: 6-month outcomes of a “radiation-first” strategy. Ophthalmic Surg. Lasers Imaging42 (6), 460–467 (2011).
  • Canton VM , Quiroz-MercadoH, Velez-MontoyaRet al. 24-Gy low-voltage x-ray irradiation with ranibizumab therapy for neovascular AMD: 6-month safety and functional outcomes. Ophthalmic Surg. Lasers Imaging43 (1), 20–24 (2012).
  • Gokeri G , KocarC, TombakogluM. Monte Carlo simulation of microbeam radiation therapy with an interlaced irradiation geometry and an Au contrast agent in a realistic head phantom. Phys. Med. Biol.55 (24), 7469–7487 (2010).
  • Van Den Heuvel F , LocquetJP, NuytsS. Beam energy considerations for gold nano-particle enhanced radiation treatment. Phys. Med. Biol.55 (16), 4509–4520 (2010).
  • Garnica-Garza HM . Contrast-enhanced radiotherapy: feasibility and characteristics of the physical absorbed dose distribution for deep-seated tumors. Phys. Med. Biol.54 (18), 5411–5425 (2009).
  • Singh SR , GrossniklausHE, KangSJ, EdelhauserHF, AmbatiBK, KompellaUB. Intravenous transferrin, RGD peptide and dual-targeted nanoparticles enhance anti-VEGF intraceptor gene delivery to laser-induced CNV. Gene Ther.16 (5), 645–659 (2009).
  • Iezzi R , GuruBR, GlybinaIV, MishraMK, KennedyA, KannanRM. Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration. Biomaterials33 (3), 979–988 (2012).
  • Kim JH , KimKW, KimMH, YuYS. Intravenously administered gold nanoparticles pass through the blood–retinal barrier depending on the particle size, and induce no retinal toxicity. Nanotechnology20 (50), 505101 (2009).
  • Farjo KM , MaJX. The potential of nanomedicine therapies to treat neovascular disease in the retina. J. Angiogenes Res.2, 21 (2010).
  • Korideck H , NgwaW, MakrigiorgosGM, BerbecoRI. The quantification of gold nanoparticles as contrast agents for small animal volumetric studies. Int. J. Radiat. Oncol. Biol. Phys.81 (2 Suppl.),  S887–S888  (2011).
  • Reuveni T , MotieiM, RommanZ, PopovtzerA, PopovtzerR. Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int. J. Nanomedicine6, 2859–2864 (2011).
  • Popovtzer R , AgrawalA, KotovNAet al. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett.8 (12), 4593–4596 (2008).
  • Mason RP , ZhaoD, LiuL, TrawickML, PinneyKG. A perspective on vascular disrupting agents that interact with tubulin: preclinical tumor imaging and biological assessment. Integr. Biol. (Camb.)3 (4), 375–387 (2011).
  • Ricketts K , GuazzoniC, CastoldiA, GibsonAP, RoyleGJ. An x-ray fluorescence imaging system for gold nanoparticle detection. Phys. Med. Biol.58 (21), 7841–7855 (2013).
  • Chang MY , ShiauAL, ChenYH, ChangCJ, ChenHH, WuCL. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice. Cancer Sci.99 (7), 1479–1484 (2008).
  • Zheng Y , HuntingDJ, AyotteP, SancheL. Radiosensitization of DNA by gold nanoparticles irradiated with high-energy electrons. Radiat. Res.169 (1), 19–27 (2008).
  • Polf JC , BronkLF, DriessenWH, ArapW, PasqualiniR, GillinM. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles. Applied Phys. Lett.98 (19), 193702 (2011).
  • Kim JK , SeoSJ, KimHTet al. Enhanced proton treatment in mouse tumors through proton irradiated nanoradiator effects on metallic nanoparticles. Phys. Med. Biol.57 (24), 8309–8323 (2012).
  • Hebert EM , DebouttierePJ, LepageM, SancheL, HuntingDJ. Preferential tumour accumulation of gold nanoparticles, visualised by magnetic resonance imaging: radiosensitisation studies in vivo and in vitro. Int. J. Radiat. Biol.86 (8), 692–700 (2010).
  • Hainfeld JF , O'ConnorMJ, LinP, QianL, SlatkinDN, SmilowitzHM. Infrared-transparent gold nanoparticles converted by tumors to infrared absorbers cure tumors in mice by photothermal therapy. PLoS ONE9 (2), e88414 (2014).
  • Hossain M , SuM. Nanoparticle location and material dependent dose enhancement in x-ray radiation therapy. J. Phys. Chem.116 (43), 23047–23052 (2012).
  • Bahreyni Toossi MT , GhorbaniM, MehrpouyanM, AkbariF, Sobhkhiz SabetL, Soleimani MeigooniA. A Monte Carlo study on tissue dose enhancement in brachytherapy: a comparison between gadolinium and gold nanoparticles. Australas. Phys. Eng. Sci. Med.35 (2), 177–185 (2012).
  • Bernier J , HallEJ, GiacciaA. Radiation oncology: a century of achievements. Nat. Rev. Cancer4 (9), 737–747 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.