750
Views
0
CrossRef citations to date
0
Altmetric
Review

Fluorescent Nanothermometers for Intracellular Thermal Sensing

, , , , &
Pages 1047-1062 | Published online: 30 Jun 2014

References

  • Hildebrandt B , WustP, AhlersOet al. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol.43 (1), 33–56 (2002).
  • Kuruganti PT , QiH. Asymmetry analysis in breast cancer detection using thermal infrared images. Presented at: Proceedings of the Second Joint EMBS/BMES Conference.Houston, TX, USA, 23–26 October 2002.
  • Jaque D , VetroneF. Luminescence nanothermometry. Nanoscale4 (15), 4301–4326 (2012).
  • Resch-Genger U , GrabolleM, Cavaliere-JaricotS, NitschkeR, NannT. Quantum dots versus organic dyes as fluorescent labels. Nature Methods5 (9), 763–775 (2008).
  • Jing-Liang L , MinG. Gold-nanoparticle-enhanced cancer photothermal therapy. IEEE J. Sel. Top. Quantum Electron.16 (4), 989–996 (2010).
  • Huang XH , NeretinaS, El-SayedMA. Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv. Mater.21 (48), 4880–4910 (2009).
  • Zhang Y , YuJ, BirchDJ, ChenY. Gold nanorods for fluorescence lifetime imaging in biology. J. Biomed. Opt.15 (2), 020504 (2010).
  • Tong L , WeiQ, WeiA, ChengJX. Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem. Photobiol.85 (1), 21–32 (2009).
  • Murphy CJ , GoleAM, StoneJWet al. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc. Chem. Res.41 (12), 1721–1730 (2008).
  • Maestro LM , Haro-GonzalezP, CoelloJG, JaqueD. Absorption efficiency of gold nanorods determined by quantum dot fluorescence thermometry. App. Phys. Lett.100 (20), 201110 (2012).
  • Valerio Voliani GS , NifosíRiccardo, RicciFernanda, LuinStefano, BeltramF. Smart delivery and controlled drug release with gold nanoparticles: new frontiers in nanomedicine. Recent Patents Nanomed.2 (1), 11 (2012).
  • Huang XH , JainPK, El-SayedIH, El-SayedMA. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci.23 (3), 217–228 (2008).
  • Khlebtsov BN , PanfilovaEV, TerentyukGS, MaksimovaIL, IvanovAV, KhlebtsovNG. Plasmonic nanopowders for photothermal therapy of tumors. Langmuir28 (24), 8994–9002 (2012).
  • Goodrich GP , BaoL, Gill-SharpK, SangKL, WangJ. Photothermal therapy in a murine colon cancer model using near-infrared absorbing gold nanorods. J. Biomed. Opt.15 (1), 018001 (2010).
  • Zharov VP , MercerKE, GalitovskayaEN, SmeltzerMS. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys. J.90 (2), 619–627 (2006).
  • Terentyuk GS , IvanovAV, PolyanskayaNIet al. Photothermal effects induced by laser heating of gold nanorods in suspensions and inoculated tumours during in vivo experiments. Quantum Electron.42 (5), 380 (2012).
  • Shang L , StockmarF, AzadfarN, NienhausGU.  Intracellular thermometry by using fluorescent gold nanoclusters. Angew. Chemie Inter. Ed.52 (42),  11154–11157  (2013).
  • Maestro LM , Martin RodriguezE, Sanz RodriguezF, Iglesias-De La CruzMC, JuarranzA. CdSe quantum dots for two-photon fluorescence thermal imaging. Nano Lett.10 (12), 5109–5115 (2010).
  • Maestro LM , JacintoC, SilvaURet al. CdTe quantum dots as nanothermometers: towards highly sensitive thermal imaging. Small7 (13), 1774–1778 (2011).
  • Sudarsan AP , UgazVM. Multivortex micromixing. Proc. Natl Acad. Sci. USA103 (19), 7228–7233 (2006).
  • Yu WW , ChangE, DrezekR, ColvinVL. Water-soluble quantum dots for biomedical applications. Biochem. Biophys. Res. Commun.348 (3), 781–786 (2006).
  • Yong KT , LawWC, HuRet al. Nanotoxicity assessment of quantum dots: from cellular to primate studies. Chem. Soc. Rev.42 (3), 1236–1250 (2013).
  • Walling MA , NovakJA, ShepardJR. Quantum dots for live cell and in vivo imaging. Int. J. Mol. Sci.10 (2), 441–491 (2009).
  • Tholouli E , SweeneyE, BarrowE, ClayV, HoylandJA, ByersRJ. Quantum dots light up pathology. J. Pathol.216 (3), 275–285 (2008).
  • Nie SM , XingY, KimGJ, SimonsJW. Nanotechnology applications in cancer. Ann. Rev. Biomed. Eng.9, 257–288 (2007).
  • Maestro LM , JacintoC, RochaUet al. Optimum quantum dot size for highly efficient fluorescence bioimaging. J. App. Phys.111 (2), 023513 (2012).
  • Donega CD , BodeM, MeijerinkA. Size- and temperature-dependence of exciton lifetimes in CdSe quantum dots. Phys. Rev. B74 (8), 085320 (2006).
  • Li S , ZhangK, YangJM, LinLW, YangH. Single quantum dots as local temperature markers. Nano Lett.7 (10), 3102–3105 (2007).
  • Han B , HansonWL, BensalahK, TuncelA, SternJM, CadedduJA. Development of quantum dot-mediated fluorescence thermometry for thermal therapies. Ann. Biomed. Eng.37 (6), 1230–1239 (2009).
  • Liu JW , ZhangY, GeCW, JinYL, HuSL, GuN. Temperature-dependent photoluminescence of highly luminescent water-soluble CdTe quantum dots. Chin. Chem. Lett.20 (8), 977–980 (2009).
  • Brites CD , LimaPP, SilvaNJet al. Thermometry at the nanoscale. Nanoscale4 (16), 4799–4829 (2012).
  • Biju V , MakitaY, SonodaA, YokoyamaH, BabaY, IshikawaM. Temperature-sensitive photoluminescence of CdSe quantum dot clusters. J. Phys. Chem. B109 (29), 13899–13905 (2005).
  • Jaque D , MaestroLM, EscuderoEet al. Fluorescent nano-particles for multi-photon thermal sensing. J. Luminesc.133, 249–253 (2013).
  • Haro-González P , Martínez-MaestroL, MartínI, García-SoléJ, JaqueD. High-sensitivity fluorescence lifetime thermal sensing based on CdTe quantum dots. Small8 (17), 2652–2658 (2012).
  • Dai QQ , ZhangY, WangYNet al. Size-dependent temperature effects on PbSe nanocrystals. Langmuir26 (13), 11435–11440 (2010).
  • He Y , ZhongY, SuYet al. Water-dispersed near-infrared-emitting quantum dots of ultrasmall sizes for in vitro and in vivo imaging. Angew. Chemie Int. Ed.50 (25), 5695–5698 (2011).
  • Zhao D , HeZ, ChanW, ChoiMM. Synthesis and characterization of high-quality water-soluble near-infrared-emitting CdTe/CdS quantum dots capped by N-acetyl-L-cysteine via hydrothermal method. J. Phys. Chem. C113 (4), 1293–1300 (2008).
  • Yang JM , YangH, LinL. Quantum dot nano thermometers reveal heterogeneous local thermogenesis in living cells. ACS Nano5 (6), 5067–5071 (2011).
  • Maestro LM , Haro-GonzálezP, Iglesias-De La CruzMCet al. Fluorescent nanothermometers provide controlled plasmonic-mediated intracellular hyperthermia. Nanomedicine (Lond.)8 (3),  379–388  (2013).
  • Albers AE , ChanEM, McBridePM, Ajo-FranklinCM, CohenBE, HelmsBA. Dual-emitting quantum dot/quantum rod-based nanothermometers with enhanced response and sensitivity in live cells. J. Am. Chem. Soc.134 (23), 9565–9568 (2012).
  • Bayles AR , ChahalHS, ChahalDS, GoldbeckCP, CohenBE, HelmsBA. Rapid cytosolic delivery of luminescent nanocrystals in live cells with endosome-disrupting polymer colloids. Nano Lett.10 (10), 4086–4092 (2010).
  • Gota C , OkabeK, FunatsuT, HaradaY, UchiyamaS. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry. J. Am. Chem. Soc.131 (8), 2766–2767 (2009).
  • Qiao J , QiL, ShenYet al. Thermal responsive fluorescent block copolymer for intracellular temperature sensing. J. Mater. Chem.22 (23), 11543–11549 (2012).
  • Okabe K , InadaN, GotaC, HaradaY, FunatsuT, UchiyamaS.  Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun.3, 705  (2012).
  • Bettencourt-Dias M , GloverDM. Centrosome biogenesis and function: centrosomics brings new understanding. Nat. Rev. Mol. Cell Biol.8 (6), 451–463 (2007).
  • Wiese S , GronemeyerT, OfmanRet al. Proteomics characterization of mouse kidney peroxisomes by tandem mass spectrometry and protein correlation profiling. Mol. Cell. Proteom.6 (12), 2045–2057 (2007).
  • Takei Y , AraiS, MurataAet al. A nanoparticle-based ratiometric and self-calibrated fluorescent thermometer for single living cells. ACS Nano8 (1), 198–206 (2013).
  • Tsuji T , YoshidaS, YoshidaA, UchiyamaS. Cationic fluorescent polymeric thermometers with the ability to enter yeast and mammalian cells for practical intracellular temperature measurements. Anal. Chem.85 (20), 9815–9823 (2013).
  • Day RN , DavidsonMW. The fluorescent protein palette: tools for cellular imaging. Chem. Soc. Rev.38 (10), 2887–2921 (2009).
  • Tsien RY . The green fluorescent protein. Ann. Rev. Biochem.67 (1), 509–544 (1998).
  • Frommer WB , DavidsonMW, CampbellRE. Genetically encoded biosensors based on engineered fluorescent proteins. Chem. Soc. Rev.38 (10), 2833–2841 (2009).
  • Zimmer M . GFP: from jellyfish to the Nobel prize and beyond. Chem. Soc. Rev.38 (10), 2823–2832 (2009).
  • Imamura H , NhatKPH, TogawaHet al. Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc. Natl Acad. Sci.106 (37), 15651–15656 (2009).
  • Donner JS , ThompsonSA, KreuzerMP, BaffouG, QuidantR.  Mapping intracellular temperature using green fluorescent protein. Nano Lett.12 (4),  2107–2111  (2012).
  • Valeur B. Molecular Fluorescence: Principles and Applications. Wiley, NY, USA (2007).
  • Luby-Phelps K . Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int. Rev. Cytol.192, 189–221 (2000).
  • Kiyonaka S , KajimotoT, SakaguchiRet al. Genetically encoded fluorescent thermosensors visualize subcellular thermoregulation in living cells. Nat. Methods10 (12),  1232–1238  (2013).
  • Ke G , WangC, GeY, ZhengN, ZhuZ, YangCJ. l-DNA molecular beacon: a safe, stable, and accurate intracellular nano-thermometer for temperature sensing in living cells. J. Am. Chem. Soc.134 (46), 18908–18911 (2012).
  • Kucsko G , MaurerPC, YaoNY, KuboM, NohHJ.  Nanometre-scale thermometry in a living cell. Nature500 (7460),  54–58  (2013).
  • Sonnefraud Y , CucheA, FaklarisO, BoudouJ-P, SauvageT. Diamond nanocrystals hosting single nitrogen-vacancy color centers sorted by photon-correlation near-field microscopy. Optics Lett.33 (6), 611–613 (2008).
  • Imbusch BHaGF . Optical Spectroscopy of Inorganic Solids.Oxford Science, NY, USA (1989).
  • García Solé J , BausáLE, JaqueD. An Introduction to the Optical Spectroscopy of Inorganic Solids.John Wiley & Sons, Chichester, UK (2005).
  • König K . Multiphoton microscopy in life sciences. J. Microscopy200 (2), 83–104 (2000).
  • Gnach A , BednarkiewiczA. Lanthanide-doped up-converting nanoparticles: merits and challenges. Nano Today7 (6), 532–563 (2012).
  • Boyer J-C , VetroneF, CucciaLA, CapobiancoJA. Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J. Am. Chem. Soc.128 (23), 7444–7445 (2006).
  • Pichaandi J , BoyerJ-C, DelaneyKR, VeggelFCJMV. Two-photon upconversion laser (scaning and wide-fiel) microscopy using Ln3+ -doped NaYF4 upconverting nanocrystals: a critical evaluation of their perfomance and potential bioimaging. J. Phys. Chem. C115, 19054–19064 (2011).
  • Maestro LM , RodriguezEM, VetroneFet al. Nanoparticles for highly efficient multiphoton fluorescence bioimaging. Optics Express18 (23), 23544–23553 (2010).
  • Brites CD , LimaPP, SilvaNJet al. A luminescent molecular thermometer for long-term absolute temperature measurements at the nanoscale. Adv. Mater.22 (40), 4499–4504 (2010).
  • Wawrzynczyk D , BednarkiewiczA, NykM, StrekW, SamocM. Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors. Nanoscale4 (22), 6959–6961 (2012).
  • Suzuki M , TseebV, OyamaK, IshiwataSI. Microscopic detection of thermogenesis in a single hela cell associated with the increase in Ca2+ concentration induced by ionomycin. Biophys. J.92 (6), L46–L48 (2007).
  • Vetrone F , NaccacheR, ZamarronAet al. Temperature sensing using fluorescent nanothermometers. ACS Nano4 (6), 3254–3258 (2010).
  • Fischer LH , HarmsGS, WolfbeisOS. Upconverting nanoparticles for nanoscale thermometry. Angew. Chemie Int. Ed.50 (20), 4546–4551 (2011).
  • Haase M , SchäferH. Upconverting nanoparticles. Angew. Chemie Int. Ed.50 (26), 5808–5829 (2011).
  • Vetrone F , NaccacheR, Juarranz De La FuenteAet al. Intracellular imaging of HeLa cells by non-functionalized NaYF4: Er3+, Yb3+ upconverting nanoparticles. Nanoscale2 (4),  495–498  (2010).
  • Albers AE , ChanEM, McBridePM, Ajo-FranklinCM, CohenBE, HelmsBA. Dual-emitting quantum dot/quantum rod-based nanothermometers with enhanced response and sensitivity in live cells. J. Am. Chem. Soc.134 (23), 9565–9568 (2012).
  • Debasu ML , AnaniasD, Pastoriza-SantosI, Liz-MarzanLM, RochaJ, CarlosLD. All-in-one optical heater-thermometer nanoplatform operative from 300 to 2000 k based on Er(3+) emission and blackbody radiation. Adv. Mater.25 (35), 4868–4874 (2013).
  • Rocha U , Upendra KumarK, JacintoCet al. Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents. App. Phys. Lett.10 (6), 1141–1154 (2014).
  • Anderson RR , ParrishJA. The optics of human skin. J. Invest. Dermatol.77 (1), 13–19 (1981).
  • Welsher K , SherlockSP, DaiH. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc. Natl Acad. Sci. USA108 (22), 8943–8948 (2011).
  • Quek C-H , LeongKW. Near-infrared fluorescent nanoprobes for in vivo optical imaging. Nanomaterials2, 92–112 (2012).
  • Frangioni JV . In vivo near-infrared fuorescence imaging. Curr. Opin. Chem. Biol.7, 626–634 (2003).
  • Donner JS , ThompsonSA, Alonso-OrtegaCet al. Imaging of plasmonic heating in a living organism. ACS Nano7 (10), 8666–8672 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.