584
Views
0
CrossRef citations to date
0
Altmetric
Review

Reactive Oxygen Species-Activated Nanomaterials as Theranostic Agents

, , &
Pages 2709-2723 | Published online: 02 Sep 2015

References

  • Kim BY , RutkaJT , ChanWC . Nanomedicine . N. Engl. J. Med.363 , 2434 – 2443 ( 2010 ).
  • Torchilin VP . Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery . Nat. Rev. Drug Discov.13 , 813 – 827 ( 2014 ).
  • Colavitti R , PaniG , BedogniBet al. Reactive oxygen species as downstream mediators of angiogenic signaling by vascular endothelial growth factor receptor-2/KDR . J. Biol. Chem.277 , 3101 – 3108 ( 2002 ).
  • Bienert GP , SchjoerringJK , JahnTP . Membrane transport of hydrogen peroxide . Biochim. Biophys. Acta1758 , 994 – 1003 ( 2006 ).
  • Droge W . Free radicals in the physiological control of cell function . Physiol. Rev.82 , 47 – 95 ( 2002 ).
  • Veal EA , DayAM , MorganBA . Hydrogen peroxide sensing and signaling . Mol. Cell26 , 1 – 14 ( 2007 ).
  • Bienert GP , MollerAL , KristiansenKAet al. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes . J. Biol. Chem.282 , 1183 – 1192 ( 2007 ).
  • Darley-Usmar V , WhiteR . Disruption of vascular signalling by the reaction of nitric oxide with superoxide: implications for cardiovascular disease . Exp. Physiol.82 , 305 – 316 ( 1997 ).
  • Ramachandran A , LevonenAL , BrookesPSet al. Mitochondria, nitric oxide, and cardiovascular dysfunction . Free Radic. Biol. Med.33 , 1465 – 1474 ( 2002 ).
  • Koppenol WH . The Haber-Weiss cycle-70 years later . Redox. Rep.6 , 229 – 234 ( 2001 ).
  • Gottlieb RA , BurlesonKO , KlonerRA , BabiorBM , EnglerRL . Reperfusion injury induces apoptosis in rabbit cardiomyocytes . J. Clin. Invest.94 , 1621 – 1628 ( 1994 ).
  • Logue SE , GustafssonAB , SamaliA , GottliebRA . Ischemia/reperfusion injury at the intersection with cell death . J. Mol. Cell. Cardiol.38 , 21 – 33 ( 2005 ).
  • Whelan RS , KaplinskiyV , KitsisRN . Cell death in the pathogenesis of heart disease: mechanisms and significance . Annu. Rev. Physiol.72 , 19 – 44 ( 2010 ).
  • Zweier JL . Measurement of superoxide-derived free radicals in the reperfused heart. Evidence for a free radical mechanism of reperfusion injury . J. Biol. Chem.263 , 1353 – 1357 ( 1988 ).
  • Kang PM , IzumoS . Apoptosis and heart failure: a critical review of the literature . Circ. Res.86 , 1107 – 1113 ( 2000 ).
  • Yaoita H , OgawaK , MaeharaK , MaruyamaY . Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor . Circulation97 , 276 – 281 ( 1998 ).
  • Go AS , MozaffarianD , RogerVLet al. Heart disease and stroke statistics – 2014 update: a report from the American Heart Association . Circulation129 , e28 – e292 ( 2014 ).
  • Humphries KM , SzwedaLI . Selective inactivation of alpha-ketoglutarate dehydrogenase and pyruvate dehydrogenase: reaction of lipoic acid with 4-hydroxy-2-nonenal . Biochemistry37 , 15835 – 15841 ( 1998 ).
  • Keller JN , MarkRJ , BruceAJet al. 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes . Neuroscience80 , 685 – 696 ( 1997 ).
  • Kowaltowski AJ , VercesiAE . Mitochondrial damage induced by conditions of oxidative stress . Free Radic. Biol. Med.26 , 463 – 471 ( 1999 ).
  • Kinouchi H , EpsteinCJ , MizuiTet al. Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase . Proc. Natl Acad. Sci. USA88 , 11158 – 11162 ( 1991 ).
  • Yang G , ChanPH , ChenJet al. Human copper-zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia . Stroke25 , 165 – 170 ( 1994 ).
  • Chan PH , KamiiH , YangGet al. Brain infarction is not reduced in SOD-1 transgenic mice after a permanent focal cerebral ischemia . Neuroreport5 , 293 – 296 ( 1993 ).
  • Domej W , OettlK , RennerW . Oxidative stress and free radicals in COPD – implications and relevance for treatment . Int. J. Chron. Obstruct. Pulmon. Dis.9 , 1207 – 1224 ( 2014 ).
  • MacNee W . Oxidants and COPD . Curr. Drug Targets Inflamm. Allergy4 , 627 – 641 ( 2005 ).
  • Rahman I , MacNeeW . Antioxidant pharmacological therapies for COPD . Curr. Opin. Pharmacol.12 , 256 – 265 ( 2012 ).
  • Seimetz M , ParajuliN , PichlAet al. Inducible NOS inhibition reverses tobacco-smoke-induced emphysema and pulmonary hypertension in mice . Cell147 , 293 – 305 ( 2011 ).
  • Biswas S , HwangJW , KirkhamPA , RahmanI . Pharmacological and dietary antioxidant therapies for chronic obstructive pulmonary disease . Curr. Med. Chem.20 , 1496 – 1530 ( 2013 ).
  • Yao H , ArunachalamG , HwangJWet al. Extracellular superoxide dismutase protects against pulmonary emphysema by attenuating oxidative fragmentation of ECM . Proc. Natl Acad. Sci. USA107 , 15571 – 15576 ( 2010 ).
  • Cecchi C , FiorilloC , SorbiSet al. Oxidative stress and reduced antioxidant defenses in peripheral cells from familial Alzheimer’s patients . Free Radic. Biol. Med.33 , 1372 – 1379 ( 2002 ).
  • Nunomura A , ChibaS , LippaCFet al. Neuronal RNA oxidation is a prominent feature of familial Alzheimer’s disease . Neurobiol. Dis.17 , 108 – 113 ( 2004 ).
  • Marcus DL , StrafaciJA , FreedmanML . Differential neuronal expression of manganese superoxide dismutase in Alzheimer’s disease . Med. Sci. Monit.12 , BR8 – BR14 ( 2006 ).
  • De Leo ME , BorrelloS , PassantinoMet al. Oxidative stress and overexpression of manganese superoxide dismutase in patients with Alzheimer’s disease . Neurosci. Lett.250 , 173 – 176 ( 1998 ).
  • Blalock EM , GeddesJW , ChenKCet al. Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses . Proc. Natl Acad. Sci. USA101 , 2173 – 2178 ( 2004 ).
  • Li R , LindholmK , YangLBet al. Amyloid beta peptide load is correlated with increased beta-secretase activity in sporadic Alzheimer’s disease patients . Proc. Natl Acad. Sci. USA101 , 3632 – 3637 ( 2004 ).
  • Tamagno E , BardiniP , ObbiliAet al. Oxidative stress increases expression and activity of BACE in NT2 neurons . Neurobiol. Dis.10 , 279 – 288 ( 2002 ).
  • Maurer I , ZierzS , MollerHJ . A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients . Neurobiol. Aging21 , 455 – 462 ( 2000 ).
  • Dong J , AtwoodCS , AndersonVEet al. Metal binding and oxidation of amyloid-beta within isolated senile plaque cores: Raman microscopic evidence . Biochemistry42 , 2768 – 2773 ( 2003 ).
  • Kamat PK , KalaniA , KylesP , TyagiSC , TyagiN . Autophagy of mitochondria: a promising therapeutic target for neurodegenerative disease . Cell. Biochem. Biophys.70 , 707 – 719 ( 2014 ).
  • Valko M , LeibfritzD , MoncolJet al. Free radicals and antioxidants in normal physiological functions and human disease . Int. J. Biochem. Cell Biol.39 , 44 – 84 ( 2007 ).
  • Martindale JL , HolbrookNJ . Cellular response to oxidative stress: signaling for suicide and survival . J. Cell. Physiol.192 , 1 – 15 ( 2002 ).
  • Ranjan P , AnathyV , BurchPMet al. Redox-dependent expression of cyclin D1 and cell proliferation by Nox1 in mouse lung epithelial cells . Antioxid. Redox Signal.8 , 1447 – 1459 ( 2006 ).
  • Sosa V , MolineT , SomozaRet al. Oxidative stress and cancer: an overview . Ageing Res. Rev.12 , 376 – 390 ( 2013 ).
  • Leslie NR , BennettD , LindsayYEet al. Redox regulation of PI 3-kinase signalling via inactivation of PTEN . EMBO J.22 , 5501 – 5510 ( 2003 ).
  • Ma N , LiY , XuH , WangZ , ZhangX . Dual redox responsive assemblies formed from diselenide block copolymers . J. Am. Chem. Soc.132 , 442 – 443 ( 2010 ).
  • Gorrini C , HarrisIS , MakTW . Modulation of oxidative stress as an anticancer strategy . Nat. Rev. Drug Discov.12 , 931 – 947 ( 2013 ).
  • van der Loo B , LabuggerR , SkepperJNet al. Enhanced peroxynitrite formation is associated with vascular aging . J. Exp. Med.192 , 1731 – 1744 ( 2000 ).
  • Fukai T , FolzRJ , LandmesserU , HarrisonDG . Extracellular superoxide dismutase and cardiovascular disease . Cardiovasc. Res.55 , 239 – 249 ( 2002 ).
  • Cai H . Hydrogen peroxide regulation of endothelial function: origins, mechanisms, and consequences . Cardiovasc. Res.68 , 26 – 36 ( 2005 ).
  • Nicholls SJ , HazenSL . Myeloperoxidase and cardiovascular disease . Arterioscler. Thromb. Vasc. Biol.25 , 1102 – 1111 ( 2005 ).
  • Kirstein M , AstonC , HintzR , VlassaraH . Receptor-specific induction of insulin-like growth factor I in human monocytes by advanced glycosylation end product-modified proteins . J. Clin. Invest.90 , 439 – 446 ( 1992 ).
  • Heinecke JW . Oxidative stress: new approaches to diagnosis and prognosis in atherosclerosis . Am. J. Cardiol.91 , A12 – A16 ( 2003 ).
  • Podrez EA , Abu-SoudHM , HazenSL . Myeloperoxidase-generated oxidants and atherosclerosis . Free Radic. Biol. Med.28 , 1717 – 1725 ( 2000 ).
  • Brownlee M . Biochemistry and molecular cell biology of diabetic complications . Nature414 , 813 – 820 ( 2001 ).
  • Cardillo C , CampiaU , BryantMB , PanzaJA . Increased activity of endogenous endothelin in patients with Type II diabetes mellitus . Circulation106 , 1783 – 1787 ( 2002 ).
  • Mather KJ , MirzamohammadiB , LteifA , SteinbergHO , BaronAD . Endothelin contributes to basal vascular tone and endothelial dysfunction in human obesity and Type 2 diabetes . Diabetes51 , 3517 – 3523 ( 2002 ).
  • Markewitz BA , MichaelJR , KohanDE . Endothelin-1 inhibits the expression of inducible nitric oxide synthase . Am. J. Physiol.272 , L1078 – L1083 ( 1997 ).
  • Mather KJ , LteifA , SteinbergHO , BaronAD . Interactions between endothelin and nitric oxide in the regulation of vascular tone in obesity and diabetes . Diabetes53 , 2060 – 2066 ( 2004 ).
  • Zeiher AM , GoebelH , SchachingerV , IhlingC . Tissue endothelin-1 immunoreactivity in the active coronary atherosclerotic plaque. A clue to the mechanism of increased vasoreactivity of the culprit lesion in unstable angina . Circulation91 , 941 – 947 ( 1995 ).
  • Kim KS , KhangG , LeeD . Application of nanomedicine in cardiovascular diseases and stroke . Curr. Pharm. Des.17 , 1825 – 1833 ( 2011 ).
  • McCarthy JR . Nanomedicine and cardiovascular disease . Curr. Cardiovasc. Imaging Rep.3 , 42 – 49 ( 2010 ).
  • Choi HS , IpeBI , MisraPet al. Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots . Nano Lett.9 , 2354 – 2359 ( 2009 ).
  • Colson YL , GrinstaffMW . Biologically responsive polymeric nanoparticles for drug delivery . Adv. Mater.24 , 3878 – 3886 ( 2012 ).
  • Korin N , KanapathipillaiM , MatthewsBDet al. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels . Science337 , 738 – 742 ( 2012 ).
  • Meng F , ZhongZ , FeijenJ . Stimuli-responsive polymersomes for programmed drug delivery . Biomacromolecules10 , 197 – 209 ( 2009 ).
  • Cook NR , AlbertCM , GazianoJMet al. A randomized factorial trial of vitamins C and E and beta carotene in the secondary prevention of cardiovascular events in women: results from the Women’s Antioxidant Cardiovascular Study . Arch. Intern. Med.167 , 1610 – 1618 ( 2007 ).
  • Vivekananthan DP , PennMS , SappSK , HsuA , TopolEJ . Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials . Lancet361 , 2017 – 2023 ( 2003 ).
  • Derfus AM , ChanWCW , BhatiaSN . Probing the cytotoxicity of semiconductor quantum dots . Nano Lett.4 , 11 – 18 ( 2004 ).
  • Poland CA , DuffinR , KinlochIet al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study . Nat. Nanotechnol.3 , 423 – 428 ( 2008 ).
  • Johannsen M , GneveckowU , TaymoorianKet al. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective Phase I trial . Int. J. Hyperthermia23 , 315 – 323 ( 2007 ).
  • Joshi-Barr S , de Gracia LuxC , MahmoudE , AlmutairiA . Exploiting oxidative microenvironments in the body as triggers for drug delivery systems . Antioxid. Redox Signal.21 , 730 – 754 ( 2014 ).
  • Gupta MK , MeyerTA , NelsonCE , DuvallCL . Poly(PS-b-DMA) micelles for reactive oxygen species triggered drug release . J. Control. Release162 , 591 – 598 ( 2012 ).
  • Reddy ST , RehorA , SchmoekelHG , HubbellJA , SwartzMA . In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles . J. Control. Release112 , 26 – 34 ( 2006 ).
  • Hirosue S , KourtisIC , van der VliesAJ , HubbellJA , SwartzMA . Antigen delivery to dendritic cells by poly(propylene sulfide) nanoparticles with disulfide conjugated peptides: Cross-presentation and T cell activation . Vaccine28 , 7897 – 7906 ( 2010 ).
  • Hu P , TirelliN . Scavenging ROS: superoxide dismutase/catalase mimetics by the use of an oxidation-sensitive nanocarrier/enzyme conjugate . Bioconjug. Chem.23 , 438 – 449 ( 2012 ).
  • Vo CD , CadmanCJ , DonnoR , GoosJA , TirelliN . Combination of episulfide ring-opening polymerization with ATRP for the preparation of amphiphilic block copolymers . Macromol. Rapid Commun.34 , 156 – 162 ( 2013 ).
  • Liu J , PangY , ChenJet al. Hyperbranched polydiselenide as a self assembling broad spectrum anticancer agent . Biomaterials33 , 7765 – 7774 ( 2012 ).
  • Ma N , XuH , AnLet al. Radiation-sensitive diselenide block co-polymer micellar aggregates: toward the combination of radiotherapy and chemotherapy . Langmuir27 , 5874 – 5878 ( 2011 ).
  • Mugesh G , SinghHB . Synthetic organoselenium compounds as antioxidants: glutathione peroxidase activity . Chem. Soc. Rev.29 , 347 – 357 ( 2000 ).
  • Ginsberg MD . Neuroprotection for ischemic stroke: past, present and future . Neuropharmacology55 , 363 – 389 ( 2008 ).
  • Shim MS , XiaY . A reactive oxygen species (ROS)-responsive polymer for safe, efficient, and targeted gene delivery in cancer cells . Angew. Chem. Int. Ed. Engl.52 , 6926 – 6929 ( 2013 ).
  • Wilson DS , DalmassoG , WangLet al. Orally delivered thioketal nanoparticles loaded with TNF-alpha-siRNA target inflammation and inhibit gene expression in the intestines . Nat. Mater.9 , 923 – 928 ( 2010 ).
  • Jourden JL , DanielKB , CohenSM . Investigation of self-immolative linkers in the design of hydrogen peroxide activated metalloprotein inhibitors . Chem. Commun. (Camb.)47 , 7968 – 7970 ( 2011 ).
  • Bull SD , DavidsonMG , van den ElsenJMet al. Exploiting the reversible covalent bonding of boronic acids: recognition, sensing, and assembly . Acc. Chem. Res.46 , 312 – 326 ( 2013 ).
  • de Gracia Lux C , Joshi-BarrS , NguyenTet al. Biocompatible polymeric nanoparticles degrade and release cargo in response to biologically relevant levels of hydrogen peroxide . J. Am. Chem. Soc.134 , 15758 – 15764 ( 2012 ).
  • Broaders KE , GrandheS , FrechetJM . A biocompatible oxidation-triggered carrier polymer with potential in therapeutics . J. Am. Chem. Soc.133 , 756 – 758 ( 2011 ).
  • Song CC , JiR , DuFS , LiangDH , LiZC . Oxidation-accelerated hydrolysis of the ortho ester-containing acid-labile polymers . ACS Macro Lett.2 , 273 – 277 ( 2013 ).
  • Winterbourn CC . The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells . Biochim. Biophys. Acta1840 , 730 – 738 ( 2014 ).
  • Zielonka J , SikoraA , HardyMet al. Boronate probes as diagnostic tools for real time monitoring of peroxynitrite and hydroperoxides . Chem. Res. Toxicol.25 , 1793 – 1799 ( 2012 ).
  • Lee D , KhajaS , Velasquez-CastanoJCet al. In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles . Nat. Mater.6 , 765 – 769 ( 2007 ).
  • Lee D , ErigalaVR , DasariMet al. Detection of hydrogen peroxide with chemiluminescent micelles . Int. J. Nanomedicine3 , 471 – 476 ( 2008 ).
  • Lee D , BaeS , HongDet al. H2O2-responsive molecularly engineered polymer nanoparticles as ischemia/reperfusion-targeted nanotherapeutic agents . Sci. Rep.3 , 2233 ( 2013 ).
  • Lee D , BaeS , KeQet al. Hydrogen peroxide-responsive copolyoxalate nanoparticles for detection and therapy of ischemia-reperfusion injury . J. Control. Release172 , 1102 – 1110 ( 2013 ).
  • Kundu K , KnightSF , WillettNet al. Hydrocyanines: a class of fluorescent sensors that can image reactive oxygen species in cell culture, tissue, and in vivo . Angew. Chem. Int. Ed. Engl.48 , 299 – 303 ( 2009 ).
  • Kundu K , KnightSF , LeeS , TaylorWR , MurthyN . A significant improvement of the efficacy of radical oxidant probes by the kinetic isotope effect . Angew. Chem. Int. Ed. Engl.49 , 6134 – 6138 ( 2010 ).
  • Wu EC , ParkJH , ParkJet al. Oxidation-triggered release of fluorescent molecules or drugs from mesoporous Si microparticles . ACS Nano2 , 2401 – 2409 ( 2008 ).
  • Zhang H , DunphyDR , JiangXet al. Processing pathway dependence of amorphous silica nanoparticle toxicity: colloidal vs pyrolytic . J. Am. Chem. Soc.134 , 15790 – 15804 ( 2012 ).
  • Zhao Q , WangC , LiuYet al. PEGylated mesoporous silica as a redox-responsive drug delivery system for loading thiol-containing drugs . Int. J. Pharm.477 , 613 – 622 ( 2014 ).
  • Yu SS , KoblinRL , ZachmanALet al. Physiologically relevant oxidative degradation of oligo(proline) cross-linked polymeric scaffolds . Biomacromolecules12 , 4357 – 4366 ( 2011 ).
  • Manke A , WangL , RojanasakulY . Mechanisms of nanoparticle-induced oxidative stress and toxicity . Biomed. Res. Int.2013 , 942916 ( 2013 ).
  • Kiessling F , MertensME , GrimmJ , LammersT . Nanoparticles for imaging: top or flop?Radiology273 , 10 – 28 ( 2014 ).
  • Valko M , RhodesCJ , MoncolJ , IzakovicM , MazurM . Free radicals, metals and antioxidants in oxidative stress-induced cancer . Chem. Biol. Interact.160 , 1 – 40 ( 2006 ).
  • Manna P , GhoshM , GhoshJ , DasJ , SilPC . Contribution of nano-copper particles to in vivo liver dysfunction and cellular damage: role of IkappaBalpha/NF-kappaB, MAPKs and mitochondrial signal . Nanotoxicology6 , 1 – 21 ( 2012 ).
  • Naqvi S , SamimM , AbdinMet al. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress . Int. J. Nanomedicine5 , 983 – 989 ( 2010 ).
  • Shi Y , WangF , HeJ , YadavS , WangH . Titanium dioxide nanoparticles cause apoptosis in BEAS-2B cells through the caspase 8/t-Bid-independent mitochondrial pathway . Toxicol. Lett.196 , 21 – 27 ( 2010 ).
  • Zhang XQ , YinLH , TangM , PuYP . ZnO, TiO(2), SiO(2) and Al(2)O(3) nanoparticles-induced toxic effects on human fetal lung fibroblasts . Biomed. Environ. Sci.24 , 661 – 669 ( 2011 ).
  • Li JJ , HartonoD , OngCN , BayBH , YungLY . Autophagy and oxidative stress associated with gold nanoparticles . Biomaterials31 , 5996 – 6003 ( 2010 ).
  • AshaRani PV , Low Kah MunG , HandeMP , ValiyaveettilS . Cytotoxicity and genotoxicity of silver nanoparticles in human cells . ACS Nano3 , 279 – 290 ( 2009 ).
  • Hsin YH , ChenCF , HuangSet al. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells . Toxicol. Lett.179 , 130 – 139 ( 2008 ).
  • Papageorgiou I , BrownC , SchinsRet al. The effect of nano- and micron-sized particles of cobalt-chromium alloy on human fibroblasts in vitro . Biomaterials28 , 2946 – 2958 ( 2007 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.