261
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Nanoparticles as Drug Carriers: Current Issues with in Vitro Testing

&
Pages 3213-3230 | Published online: 09 Nov 2015

References

  • Chakraborty C , PalS , DossC GP , WenZH , LinCS . Nanoparticles as “smart” pharmaceutical delivery . Front. Biosci.18 , 1030 – 1050 ( 2013 ).
  • De Jong WH , BormPJ . Drug delivery and nanoparticles: applications and hazards . Int. J. Nanomedicine3 ( 2 ), 133 – 149 ( 2008 ).
  • Li P , DYN , ZhangJP , WangAQ , WeiQ . Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine . Int. J. Biomed. Sci.4 ( 3 ), 221 – 228 ( 2008 ).
  • Panyam J , LabhasetwarV . Biodegradable nanoparticles for drug and gene delivery to cells and tissue . Adv. Drug Deliv. Rev.55 ( 3 ), 329 – 347 ( 2003 ).
  • Weissig V , PettingerTK , MurdockN . Nanopharmaceuticals (part 1): products on the market . Int. J. Nanomedicine9 , 4357 – 4373 ( 2014 ).
  • Morigi V , TocchioA , PellegriniCB , SakamotoJH , ArnoneM , TasciottiE . Nanotechnology in medicine: from inception to market domination . J. Drug. Deliv.2012 , 389485 ( 2012 ).
  • Duval MN , WyattAM . FDA regulation of nanotechnology . www.bdlaw.com/assets/attachments/323.pdf .
  • Etheridge ML , CampbellSA , ErdmanAG , HaynesCL , WolfSM , McCulloughJ . The big picture on nanomedicine: the state of investigational and approved nanomedicine products . Nanomedicine9 , 1 – 14 ( 2013 ).
  • Bawa R . Regulating nanomedicine – can the FDA handle it?Curr. Drug Deliv.8 , 227 – 234 ( 2011 ).
  • Kaur IP , KakkarV , DeolPK , YadavM , SinghM , SharmaI . Issues and concerns in nanotech product development and its commercialization . J. Control. Release10 ( 193 ), 51 – 62 ( 2014 ).
  • Bawarski WE , ChidlowskyE , BharaliD , MousaSA . Emerging nanopharmaceuticals . Nanomed. Nanotechnol.4 , 273 – 282 ( 2008 ).
  • Kong B , GrahamLM , SangBL . Experimental considerations on the toxicity of nanoparticles . Nanomedicine6 ( 5 ), 924 – 941 ( 2011 ).
  • Shang L , NeuhausK , NiehausGU . Engineered nanoparticles interacting with cells: size matters . J. Nanobiotechnol.12 ( 5 ( 2014 ).
  • Mohanraj V , ChenY . Nanoparticles-a review . Trop. J. Pharm. Res.5 ( 1 ), 561 – 573 ( 2006 ).
  • Englert BC . Nanomaterials and the environment: uses, methods and measurement . J. Environ. Monit.9 , 1154 – 1161 ( 2007 ).
  • Linsinger T , RoebbenG , GillilandD , CalzolaiL , GibsonN , KleinC . Requirements on measurements for the implementation of the European Commission definition of the term “nanomaterials”. Joint Research Center Reference Reports . European Commission . https://ec.europa.eu/jrc/sites/default/files/irmm_nanomaterials_%28online%29.pdf .
  • Verma A , StellacciF . Effect of surface properties on nanoparticle–cell interactions . Small6 ( 1 ), 112 – 21 ( 2010 ).
  • Kato H , NakamuraA , TakahashiK , ShinichiK . Accurate size and size-distribution determination of polystyrene latex nanoparticles in aqueous medium using dynamic light scattering and asymmetrical flow field flow fractionation with multi-angle light scattering . Nanomaterials2 , 15 – 20 ( 2012 ).
  • Gaumet M , VargasA , GurnyR , FlorenceD . Nanoparticles for drug delivery: The need for precision in reporting particle size parameters . Eur. J. Pharm. Biopharm.69 , 1 – 9 ( 2008 ).
  • Klang V , ValentaC , MatskoNB . Electron microscopy of pharmaceutical systems . Micron44 , 45 – 74 ( 2013 ).
  • Boyd RD , CuenatA . New analysis procedure for fast and reliable size measurement of nanoparticles from atomic force microscopy images . J. Nanopart. Res.13 ( 1 ), 105 – 113 ( 2011 ).
  • Finsy R , De JaegerN , SneyersR , GeladeE . Particle sizing by photon correlation spectroscopy . Part. Part. Syst. Charact.9 , 125 – 127 ( 1992 ).
  • Kirillov SA . Surface area and pore volume of a system of particles as a function of their size and packing . Micropor. Mesopor. Mater.122 , 234 – 239 ( 2009 ).
  • Yang S-C , PaikS-Y-R , RyuJet al. Dynamic light scattering-based method to determine primary particle size of iron oxide nanoparticles in simulated gastrointestinal fluid . Food Chem.161 , 185 – 191 ( 2014 ).
  • Tscharnuter W . Photon correlation spectroscopy in particle sizing . In : Encyclopedia Of Analytical Chemistry . MeyersRA ( Ed. ). John Wiley & Sons Ltd , Chichester, UK , 5469 – 5485 ( 2000 ).
  • Borkovec M . Measuring particle size by light scattering . In : Handbook of Applied Surface and Colloid Chemistry . HolmbergK ( Ed. ). John Wiley & Sons Ltd , West Sussex, UK , 357 – 370 ( 2002 ).
  • Michen B , GeersC , VanheckeDet al. Avoiding drying-artifacts in transmission electron microscopy: Characterizing the size and colloidal state of nanoparticles . Sci. Rep.5 ( 9793 ), doi:10.1038/srep09793 ( 2015 ).
  • Merkus HG . Microscopy and image analysis . In : Particle Size Measurements: Fundamentals, Practice, Quality . Springer Science & Business Media , The Netherlands,195 – 217 ( 2009 ).
  • Maas SLN , de VirjJ , van der VilstEet al. Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics . J. Control. Release200 , 87 – 89 ( 2015 ).
  • La Rocca A , Di LibertoG , ShaylerPJ , ParmenterCDJ , FayMW . Application of nanoparticle tracking analysis platform for the measurement of soot-in-oil agglomerates from automotive engines . Tribol. Int.70 , 142 – 147 ( 2014 ).
  • Filipe V , HaweA , JiskootW . Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates . Pharm. Res.27 ( 5 ), 796 – 820 ( 2010 ).
  • Dragovic RA , GardinerC , BrooksASet al. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis . Nanomed. Nanotechnol.7 , 780 – 788 ( 2011 ).
  • Hole P , SillenceK , HennellCet al. Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA) . J. Nanopart. Res.15 ( 2101 ), doi:10.1007/s11051-013-2101-8 ( 2013 ).
  • Rauscher H , RoebbenG , AmentaVet al. Towards a review of the EC recommendation for a definition of the term “nanomaterial”. Part 1: completion of information concerning the experience with the definition . Joint Research Center Scientific and Policy Reports. European Commission . https://ec.europa.eu/jrc/sites/default/files/lbna26567enn.pdf .
  • Jiang J , OberdörsterG , BiswasP . Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies . J. Nanopart. Res.11 , 77 – 89 ( 2009 ).
  • Pearson RM , JuettnerVV , HongS . Biomolecular corona on nanoparticles: a survey of recent literature and its implications in targeted drug delivery . Front. Chem.2 , 108 ( 2014 ).
  • Kreyling WG , Fertsch-GappS , SchäfflerMet al. In vitro and in vivo interactions of selected nanoparticles with rodent serum proteins and their consequences in biokinetics . Beilstein J. Nanotechnol.5 , 1699 – 1711 ( 2014 ).
  • Rausch K , ReuterA , FischerK , SchmidtM . Evaluation of nanoparticle aggregation in human blood serum . Biomacromolecules11 , 2836 – 2839 ( 2010 ).
  • Issman L , BrennerB , TalmonY , AharonA . Cryogenic transmission electron microscopy nanostructural study of shed microparticles . PLoS ONE8 ( 12 ), e83680 ( 2013 ).
  • Hondow N , BrydsonR , WangPet al. Quantitative characterization of nanoparticle agglomeration within biological media . J. Nanopart. Res.14 ( 977 ), doi: 10.1007/s11051-012-0977-3 ( 2012 ).
  • Filipe V , PooleR , KutscherM , ForierK , BraeckmansK , JiskootW . Fluorescence single particle tracking for the characterization of submicron protein aggregates in biological fluids and complex formulations . Pharm. Res.28 , 1112 – 1120 ( 2011 ).
  • Rauscher H , AnsellJ , ArakiDet al. Characterization of nanomaterials II – insolubility, biopersistence and size measurement in complex media . International Cooperation on Cosmetics Regulation ( 2012 ). http://ec.europa.eu/consumers/sectors/cosmetics/files/pdf/iccr_2012_outcome_en.pdf .
  • Orts-Gil G , NatteK , ThiermannRet al. On the role of surface composition and curvature on biointerface formation and colloidal stability of nanoparticles in a protein-rich model system . Colloids Surf. B Biointerfaces108 , 110 – 119 ( 2013 ).
  • Zhang Y , YangM , PortneyNGet al. Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells . Biomed. Microdevices10 , 321 – 328 ( 2008 ).
  • He C , HuY , YinL , TangC , YinC . Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles . Biomaterials31 ( 13 ), 3657 – 3666 ( 2009 ).
  • Yue Z-G , WeiW , LevP-P , YueH , WangL-Y , SuZ-G . Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles . Biomacromolecules12 , 2440 – 2446 ( 2011 ).
  • Desai N . Challenges in development of nanoparticle-based therapeutics . AAPS J.14 ( 2 ), 282 – 295 ( 2012 ).
  • Clogston JD . Measuring zeta potential of nanoparticles . National Cancer Institute-Frederick . http://ncl.cancer.gov/NCL_Method_PCC-2.pdf .
  • Weatherall E , GlossopB . Individual nanoparticle zeta potential measurements using tunable resistive pulse sensing . IEEE Xplore , Wellington, Newzealand , 885 – 889 ( 2013 ). http://seat.massey.ac.nz/conferences/icst2013/proceedings/papers%5C1569824139.pdf .
  • Xu R . Progress in nanoparticles characterization: sizing and zeta potential measurement . Particuology6 , 112 – 115 ( 2008 ).
  • Clogston JD , PatriAK . Zeta potential measurement. Characterization of the nanoparticles intended for drug delivery . Methods Mol. Biol.697 , 63 – 70 ( 2011 ).
  • Tantra R , SchulzeP , QuinceyP . Effect of nanoparticle concentration on zeta-potential measurement results and reproducibility . Pareticuology8 , 279 – 285 ( 2010 ).
  • Miller JF , SchätzelK , VincentB . The determination of very small electrophoretic mobilities in polar and nonpolar colloidal dispersions using phase analysis light scattering . J. Colloid Interf. Sci.143 , 532 – 554 ( 1991 ).
  • Gazori T , KhoshayandMR , AziziE , YazdizadehP , NomaniA , HaririanE . Evaluation of Alginate/Chitosan nanoparticles as antisense delivery vector: formulation, optimization and in vitro characterization . Carbohydr. Polym.77 ( 3 ), 599 – 606 ( 2009 ).
  • Lundqvist M , StiglerJ , EliaG , CadervallT , DaesonKA . Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts . Proc. Natl Acad. Sci. USA105 ( 38 ), 14265 – 14270 ( 2008 ).
  • Powers KW , BrownSC , KrishnaVB , WasdoSC , MoudgilBM . Roberts . Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation . Toxicol. Sci.90 ( 2 ), 296 – 303 ( 2006 ).
  • Mura S , HillaireauH , Le DroumaguetBet al. Influence of surface charge on the potential toxicity of PLGA nanoparticles toward Calu-3 cells . Int. J. Nanomedicine6 , 2591 – 2605 ( 2011 ).
  • Kaszuba M , CorbettJ , WatsonFM , JonesA . High-concentration zeta potential measurements using light-scattering . Phil. Trans. R. Soc.368 , 4439 – 4451 ( 2010 ).
  • Wells MA , AbidA , KennedyIM , BarakatAI . Serum proteins prevent aggregation of Fe2O3 and ZnO nanoparticles . Nanotoxicology6 , 837 – 846 ( 2012 ).
  • Fritz G , SchädlerV , WillenbacherN , WagnerNJ . Electrosteric stabilization of colloidal dispersions . Langmuir18 , 6381 – 6390 ( 2002 ).
  • Judefeind A , de VilliersMM . Drug loading into and in vitro release from nanosized drug delivery systems . In : Nanotechnology In Drug Delivery . VilliersM , AramwitP , KwonGS ( Eds ). Springer Science & Business Media , NY, USA , 129 – 156 ( 2008 ).
  • Song X , ZhaoY , HouS , XuF , ZhaoR , HeJet al. Dual agents loaded PLGA nanoparticles: systematic study of particle size and drug entrapment efficiency . Eur. J. Pharm. Biopharm.69 , 445 – 453 ( 2008 ).
  • Singh MS , LamprechtA . Cargoing P-gp inhibitors via nanoparticle sensitizes tumor cells against doxorubicin . Int. J. Pharm.478 , 745 – 52 ( 2015 ).
  • Bilati U , AllemannE , DoelkerE . Poly(D,L-lactide-co-glycolide) protein-loaded nanoparticles prepared by the double emulsion method—processing and formulation issues for enhanced entrapment efficiency . J. Microencapsul.22 ( 2 ), 205 – 214 ( 2005 ).
  • Schuh A , TonayAN , KöhlerK , SchuchmannHP . Influence of the second emulsification step during production of w/o/w multiple emulsions: comparison of different methods to determine encapsulation efficiency in w/o/w emulsions . Can. J. Chem. Eng.92 ( 2 ), 203 – 209 ( 2014 ).
  • Xu X , FuY , HuH , DuanY , ZhangZ . Quantitative determination of insulin entrapment efficiency in triblock copolymeric nanoparticles by high-performance liquid chromatography . J. Pharm. Biomed. Anal.41 , 266 – 273 ( 2006 ).
  • Mason TG , WilkingJN , MelesonK , ChangCB , GravesSM . Nanoemulsions: formation, structure, and physical properties . J. Physics18 , 635 – 666 ( 2006 ).
  • Rachmawati H , HaryadiBM . The influence of polymer structure on the physical characteristic of intraoral film containing BSA-loaded nanoemulsion . Nanomed. Nanotechnol.5 ( 1 ), 187 – 193 ( 2014 ).
  • Zhao H , LuH , GongT , ZhangZ . Nanoemulsion loaded with lycobetaine–oleic acid ionic complex: physicochemical characteristics, in vitro, in vivo evaluation, and antitumor activity . Int. J. Nanomedicine13 ( 8 ), 1959 – 1973 ( 2013 ).
  • Yue P-F , LuX-Y , ZhangZ-Zet al. The study on the entrapment efficiency and in vitro release of puerarin submicron emulsion . AAPS Pharm. Sci. Tech.10 ( 2 ), 376 – 383 ( 2009 ).
  • Mahmood T , AkhtarN , ManickamS . Interfacial film stabilized W/O/W nano multiple emulsions loaded with green tea and lotus extracts: systematic characterization of physicochemical properties and shelf-storage stability . J. Nanobiotechnol.12 , 20 – 28 ( 2014 ).
  • Kowalczyk B , LagziI , GrzybowskiB . Nanoseparations: strategies for size and/or shape-selective purification of nanoparticles . Curr. Opin. Colloid Interface Sci.16 , 135 – 148 ( 2011 ).
  • Scott K , HughesR . Introduction to industrial membrane processes . In : Industrial Membrane Separation Technolog . ScottK , HughesR ( Eds ). Blackie Academic and Professional , London, UK , 1 – 7 ( 1996 ).
  • Rohani MM , ZeydneyAL . Effect of surface charge distribution on protein transport through semipermeable ultrafiltration membranes . J. Membr. Sci.337 ( 1–2 ), 324 – 331 ( 2009 ).
  • Burns DB , ZydneyAL . Contributions to electrostatic interactions on protein transport in membrane systems . AlChe J.47 ( 5 ), 1101 – 1114 ( 2001 ).
  • Mehta amit , ZydneyAL . Effect of membrane charge on flow and protein transport during ultrafiltration . Biotechnol. Prog.22 , 484 – 492 ( 2006 ).
  • Francis D , MouftahS , SteffenR , BedueauA , PllequerY , LamprechtA . Ion milling coupled field emission scanning electron microscopy reveals current misunderstanding of morphology of polymeric nanoparticles . Eur. J. Pharm. Biopharm.89 , 56 – 61 ( 2015 ).
  • D’Souza SS , DeLucaPP . Methods to assess in vitro injectable polymeric particulate systems . Pharm. Res.23 ( 3 ), 460 – 474 ( 2006 ).
  • Washington C . Drug release from microdisperse systems: a critical review . Int. J. Pharm.58 , 1 – 12 ( 1990 ).
  • Abdel-Mottaleb MMA , LamprechtA . Standardized in vitro drug release test for colloidal drug carriers using modified USP dissolution apparatus I . Drug. Dev. Ind. Pharm.37 ( 2 ), 178 – 184 ( 2011 ).
  • Washington C . Evaluation of non-sink dialysis method for the measurement of drug release from colloids: effects of drug partitioning . Int. J. Pharm.56 ( 1 ), 71 – 74 ( 1989 ).
  • Chidambaram N , BurgessD . A novel in vitro release method for submicron-sized dispersed systems . AAPS Pharm. Sci.1 ( 3 ), E11 ( 1999 ).
  • Xu X , KhanMA , BurgessDJ . A two-stage reverse dialysis in vitro dissolution testing method for passive targeted liposomes . Int. J. Pharm.426 ( 1–2 ), 211 – 218 ( 2012 ).
  • Chidambaram N , BurgessDJ . Effect of nonionic surfactant on transport of surface-active and non-surface active model drugs and emulsion stability in triphasic systems . AAPS Pharmsci.2 ( 3 ), E30 ( 2000 ).
  • Xu P , GullottiE , TongLet al. Intracellular drug delivery by poly(lactic-co-glycolic acid) nanoparticles, revisited . Mol. Pharm.6 ( 1 ), 190 – 201 ( 2009 ).
  • Wallace SJ , LiJ , NationRL , BoydBJ . Drug release from nanomedicines: selection of the appropriate encapsulation and release methodology . Drug Deliv. Transl. Res.2 ( 4 ), 284 – 292 ( 2012 ).
  • Charalampopoulos N , AvgoustakisK , KontoyannisCG . Differential pulse polarography: a suitable technique for monitoring drug release from polymeric nanoparticle dispersions . Anal. Chim. Acta491 ( 1 ), 57 – 62 ( 2003 ).
  • Kumeria T , GulatiK , SantosA , LosicD . Real-time and in situ drug release monitoring from nanoporous implants under dynamic flow conditions by reflectometric interference spectroscopy . ACS Appl. Mater. Inter.5 , 5436 – 5442 ( 2013 ).
  • Sievens-Figuroa L , PandyaN , BhakayAet al. Using USP I and USP IV for discriminating dissolution rates of nano- and microparticle-loaded pharmaceutical strip-films . AAPS Pharm. Sci. Tech.13 ( 4 ), 1473 – 1482 ( 2012 ).
  • Zambito Y , PedreschiE , Di ColoG . Is dialysis a reliable method for studying drug release from nanoparticulate systems? A case study . Int. J. Pharm.434 , 28 – 34 ( 2012 ).
  • Modi S , AndersonBD . Determination of drug release kinetics from the nanoparticles: overcoming the pitfalls of the dynamic dialysis method . Mol. Pharm.10 , 3076 – 3089 ( 2013 ).
  • Moreno-Bautista G , TamKC . Evaluation of dialysis membrane process for quantifying the in vitro drug-release from colloidal drug carriers . Colloid. Surf. A389 , 299 – 303 ( 2011 ).
  • Levy MY , BenitaS . Drug release from submicronized o/w emulsion: a new in vitro kinetic evaluation model . Int. J. Pharm.66 , 29 – 37 ( 1990 ).
  • Gao Y , ZuoJ , Bou-CharcraNet al. In vitro release kinetics of antituberculosis drugs from nanoparticles assessed using a modified dissolution apparatus . Biomed. Res. Int.2013 , 136590 ( 2013 ).
  • Allemann E , LerouxJ-C , GurnyR , DoelkerE . In vitro extended-release properties of drug-loaded poly(DL-lactic acid) nanoparticles produced by salting out method . Pharm. Res.10 ( 12 ), 1732 – 1737 ( 1993 ).
  • Lamprecht A , SaulinierP , BouryF , PassiraniC , ProustJ-E , BenoitJe-P . A quantitative method for the determination of amphiphilic drug release kinetics from nanoparticles using langmuir balance . Anal. Chem.74 , 3416 – 3420 ( 2002 ).
  • Jegat C , TaverdetJL . Stirring speed influence study on the microencapsulation process and on the drug release from mirocapsules . Polym. Bull.44 , 345 – 351 ( 2000 ).
  • Budhian A , SiegelSJ , WineyKI . Controlling the in vitro release profiles for a system of halopridol-loaded PLGA . Int. J. Pharm.346 ( 1–2 ), 151 – 159 ( 2008 ).
  • Barzegar-Jalali M , AdibkiaK , ValizadehHet al. Kinetic analysis of drug release from nanoparticles . J. Pharm. Pharmac. Sci.11 ( 1 ), 167 – 177 ( 2008 ).
  • Omidrad R , Hosseinipour RajabaliF , Vasheghani FrahaniB . Preparation and in vitro drug delivery response of doxorubicin- loaded poly(acrylic acid)-coated magnetite nanoparticles . J. Serb. Chem. Soc.78 ( 10 ), 1609 – 1616 ( 2013 ).
  • Zeng L , AnL , WuX . Modeling of drug-carrier interaction in the drug release from nanocarriers . J. Drug. Deliv.2011 , 370308 ( 2011 ).
  • Zeng L , WuX . Modeling the sustained release of lipophilic drugs from the molecules . App. Phys. Lett.97 , 073701 ( 2010 ).
  • Murthy RSR . In vitro evaluation of NPDDS . In : Drug Delivery Nanoparticles Formulation And Characterization . PathakY , ThassuD ( Eds ). Informa Healthcare , NY, USA , 156 – 165 ( 2009 ).
  • Chakraborty S , PandyaK , AggarwalD . Establishing prospective IVIVC for generic pharmaceuticals: methodologies assessment . TODDJ.5 , 1 – 7 ( 2014 ).
  • Food and Drug Administration . Guidance for industry extended release oral dosage forms: development, evaluation, and application of in vitro/in vivo correlations . 1 – 21 ( 1997 ). www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm070239.pdf .
  • Sakore S , ChakrobortyB . In vitro–in vivo correlation (IVIVC): a strategic tool in drug development . J. Bioequiv.S3 , doi:10.4172/jbb.S3-001 ( 2011 ).
  • Emami J . In vitroc–in vivo correlation: from theory to applications . J. Pharm. Pahrmaceut. Sci.9 ( 2 ), 169 – 189 ( 2006 ).
  • Hühn E , BuchholzH-G , ShazlyGet al. Predicting the in vivo release from a liposomal formulation by IVIVC and non-invasive positron emission tomography imaging . Eur. J. Pharm. Sci.41 , 71 – 77 ( 2010 ).
  • Booysen L , Semete-MakokotlelaB , KalomboLet al. In vitro characterization of PLGA nanoparticles encapsulating rifampicin and isoniazid – towards IVIVC . Presented at : CSIR 3rd Biennial Conference 2010. Science Real and Relevant . Pretoria, South Africa , 1 ( 2010 ).
  • Cao X , DengW-W , FuMet al. In vitro release and in vitro–in vivo correlation for silybin meglumine incorporated into hollow-type mesoporous silica nanoparticles . Int. J. Nanomedicine7 , 753 – 762 ( 2012 ).
  • Kumar R , NagarwalRC , DhanawatM , PanditJK . In vitro and in vivo study of indomethacin loaded gelatin nanoparticles . J. Biomed. Nanotechnol.7 ( 3 ), 325 – 333 ( 2011 ).
  • Singh G , PaiRS . In vitro/in vivo characterization of trans-resveratrol-loadednanoparticulate drug delivery system fororal administration . J. Pharm. Pharmacol.66 , 1062 – 1076 ( 2014 ).
  • Pillay V , ChoonaraY , KumarP , NdesendoVM , du ToitLC . Legislative measures for in vitro–in vivo correlations . In : Patenting Nanomedicines: Legal Aspects, Intellectual Property And Grant Opportunities . SoutoEB ( Ed. ). Springer Science & Business Media , Heidelberg, Germany , 49 – 93 ( 2012 ).
  • Joris F , ManshianBB , PeynshaertK , De SmedtSC , BraeckmansK , SoenenSJ . Assessing nanoparticle toxicity in cell-based assays: influence of cell culture parameters and optimized models for bridging the in vitro–in vivo gap . Cehm. Soc. Rev.42 , 8339 – 8359 ( 2013 ).
  • Hussain SM , Braydich-StolleLK , SchrandAMet al. Toxicity evaluation on for safe use of nanomaterials:recent achievements and technical challenges . Adv. Mater.21 , 1549 – 1559 ( 2009 ).
  • Hartung T . Food for thought … on alternative methods for nanoparticle safety testing . ALTEX27 , 87 – 95 ( 2010 ).
  • Teegaurden JG , HinderliterPM , OrrG , ThrallBD , PoundsJG . Pharmacokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments . Toxicol. Sci.95 ( 2 ), 300 – 312 ( 2007 ).
  • Ong KJ , MacCormackTJ , ClarkRJet al. Widespread nanoparticle-assay interference: implications for nanotoxicity testing . PLoS ONE9 ( 3 ), e90650 .
  • MacCormack TJ , ClarkRJ , DangMKM , MaG , VeinotJGC , GossGG . Inhibition of enzyme activity by nanomaterials: potential mechanisms and implications for nanotoxicity testing . Nanotoxocology6 ( 5 ), 514 – 525 ( 2012 ).
  • Date AA , PatilRR , PanicucciR , SoutoE , LeeRW . Translating nanotechnology from bench to pharmaceutical market: barriers, success, and promises . J. Drug Deliv.2012 , 678910 ( 2012 ).
  • Crist RM , GrossmanJH , PatriAKet al. Common pitfalls in nanotechnology: lessons learned from NCI’s Nanotechnology Characterization Laboratory . Integr. Biol.5 , 66 – 73 ( 2013 ).
  • D’Souza S . A review of in vitro drug release test methods for nano-sized dosage forms . Adv. Pharm.2014 , 304757 ( 2014 ).
  • Center for Drug Evaluation and Research Nanotechnology Programs . U.S. Food and Drug Administration . www.fda.gov/ScienceResearch/SpecialTopics/Nanotechnology/ucm309677.htm .
  • Nanothechnology Characterization Laboratory . National Cancer Institute. U.S. National Institutes of Health . http://ncl.cancer.gov/about_mission.asp .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.