2,075
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Nanomedical Innovation: the SEON-concept for an Improved Cancer Therapy with Magnetic Nanoparticles

, , , , , , , , , , & show all
Pages 3287-3304 | Published online: 16 Oct 2015

References

  • Ferlay J , Steliarova-FoucherE , Lortet-TieulentJet al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012 . Eur. J. Cancer49 ( 6 ), 1374 – 1403 ( 2013 ).
  • Who . Globocan 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012 . http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx .
  • Langer T , Am Zehnhoff-DinnesenA , RadtkeS , MeitertJ , ZolkO . Understanding platinum-induced ototoxicity . Trends Pharmacol. Sci.34 ( 8 ), 458 – 469 ( 2013 ).
  • Khanna R , AngerC . Patterns of patients stopping their anti-cancer drug due to its associated side effects in France, Germany, Italy, Spain and UK (EU5) . Presented at : ESMO 2014 , Madrid, Spain , 26–30 September 2014 ( Abstract 1551P ).
  • Freeman MW , ArrottA , WatsonJHL . Magnetism in medicine . J. Appl. Phys.31 ( 5 ), S404 – S405 ( 1960 ).
  • Gupta AK , GuptaM . Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications . Biomaterials26 ( 18 ), 3995 – 4021 ( 2005 ).
  • Amstad E , TextorM , ReimhultE . Stabilization and functionalization of iron oxide nanoparticles for biomedical applications . Nanoscale3 ( 7 ), 2819 – 2843 ( 2011 ).
  • Laurent S , SaeiAA , BehzadiS , PanahifarA , MahmoudiM . Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges . Expert Opin. Drug Deliv.11 ( 9 ), 1449 – 1470 ( 2014 ).
  • Alexiou C , JurgonsR , SchmidRJet al. Magnetic drug targeting: biodistribution of the magnetic carrier and the chemotherapeutic agent mitoxantrone after locoregional cancer treatment . J. Drug Target.11 ( 3 ), 139 – 149 ( 2003 ).
  • Pelgrift RY , FriedmanAJ . Nanotechnology as a therapeutic tool to combat microbial resistance . Adv. Drug Deliv. Rev.65 ( 13–14 ), 1803 – 1815 ( 2013 ).
  • Bunjes H . Lipid nanoparticles for the delivery of poorly water-soluble drugs . J. Pharm. Pharmacol.62 ( 11 ), 1637 – 1645 ( 2010 ).
  • Li R , LimS-J , ChoiH-G , LeeM-K . Solid lipid nanoparticles as drug delivery system for water-insoluble drugs . J. Pharm. Invest.40 , 63 – 73 ( 2010 ).
  • Usha YN , AngelTT , UdupaN . Nanotechnology: perspectives on solubility/bioavailability enhancement . Pharma Rev.8 ( 45 ), 59 – 66 ( 2010 ).
  • Pankhurst QA , ThanhNKT , JonesSK , DobsonJ . Progress in applications of magnetic nanoparticles in biomedicine . J. Phys. D Appl. Phys.42 ( 22 ), 224001 ( 2009 ).
  • Storm G , BelliotSO , DaemenT , LasicDD . Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system . Adv. Drug Deliv. Rev.17 ( 1 ), 31 – 48 ( 1995 ).
  • Brigger I , MorizetJ , LaudaniLet al. Negative preclinical results with stealth((R)) nanospheres-encapsulated Doxorubicin in an orthotopic murine brain tumor model . J. Control. Release100 ( 1 ), 29 – 40 ( 2004 ).
  • Bilkenroth U , TaubertH , RiemannD , RebmannU , HeynemannH , MeyeA . Detection and enrichment of disseminated renal carcinoma cells from peripheral blood by immunomagnetic cell separation . Int. J. Cancer92 ( 4 ), 577 – 582 ( 2001 ).
  • Taupitz M , WagnerS , HammB , DienemannD , LawaczeckR , WolfKJ . MR Lymphography using iron oxide particles. Detection of lymph node metastases in the VX2 rabbit tumour model . Acta Radiol.34 , 10 – 15 ( 1993 ).
  • Harisinghani MG , BarentszJ , HahnPFet al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer . N. Engl. J. Med.348 ( 25 ), 2491 – 2499 ( 2003 ).
  • Gaglia JL , HarisinghaniM , AganjIet al. Noninvasive mapping of pancreatic inflammation in recent-onset Type-1 diabetes patients . Proc. Natl Acad. Sci. USA112 ( 7 ), 2139 – 2144 ( 2015 ).
  • Alexiou C , ArnoldW , KleinRJet al. Locoregional cancer treatment with magnetic drug targeting . Cancer Res.60 ( 23 ), 6641 – 6648 ( 2000 ).
  • Pankhurst QA , ConnollyJ , JonesSK , DobsonJ . Applications of magnetic nanoparticles in biomedicine . J. Phys. D Appl. Phys.36 ( 13 ), R167 – R181 ( 2003 ).
  • Lyer S , SchreiberE , TietzeRet al. Nanotechnology and cancer treatment: magnetic nanoparticles for a new and innovative drug delivery system . Anticancer Res.31 ( 5 ), 1991 – 1992 ( 2011 ).
  • Tietze R , LyerS , DurrSet al. Efficient drug-delivery using magnetic nanoparticles - biodistribution and therapeutic effects in tumour bearing rabbits . Nanomed. Nanotechnol.9 ( 7 ), 961 – 971 ( 2013 ).
  • Alexiou C . Target tumor therapy with “magnetic drug targeting”: therapeutic efficacy and biokinetic study of ferrofluid bound mitoxantrone . Clin. Cancer Res.7 ( 11 ), s3704 – s3705 ( 2001 ).
  • Polyak B , FriedmanG . Magnetic targeting for site-specific drug delivery: applications and clinical potential . Expert Opin. Drug Deliv.6 ( 1 ), 53 – 70 ( 2009 ).
  • Widder KJ , SenyeiAE , RanneyDF . Magnetically responsive microspheres and other carriers for the biophysical targeting of antitumor agents . Adv. Pharmacol. Chemother.16 , 213 – 271 ( 1979 ).
  • Widder KJ , MorrisRM , PooreGA , HowardDP , SenyeiAE . Selective targeting of magnetic albumin microspheres containing low-dose doxorubicin: total remission in Yoshida sarcoma-bearing rats . Eur. J. Cancer Clin. Oncol.19 ( 1 ), 135 – 139 ( 1983 ).
  • Lubbe AS , BergemannC , HuhntWet al. Preclinical experiences with magnetic drug targeting: tolerance and efficacy . Cancer Res.56 ( 20 ), 4694 – 4701 ( 1996 ).
  • Lubbe AS , BergemannC , RiessHet al. Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors . Cancer Res.56 ( 20 ), 4686 – 4693 ( 1996 ).
  • Alexiou C , ArnoldW , KleinRJet al. Locoregional cancer treatment with magnetic drug targeting . Cancer Res60 ( 23 ), 6641 – 6648 ( 2000 ).
  • Alexiou C , DiehlD , HenningerPet al. A high field gradient magnet for magnetic drug targeting . IEEE Trans. Appl. Supercond.16 ( 2 ), 1527 – 1530 ( 2006 ).
  • Agency EM . Guideline on the requirements to the chemical and pharmaceutical quality documentation concerning investigational medicinal products in clinical trials . EMEA 03/2006 (Directive CHMP/QWP/185401/2004 final) . http://ec.europa.eu/health/files/eudralex/vol-10/18540104en_en.pdf .
  • Agency EM . Directive EMEA/CHMP/79769/2006: Reflection paper on nanotechnology-based medicinal products for human use, (EMEA 06/2006) . www.ema.europa.eu/docs/en_GB/document_library/Regulatory_and_procedural_guideline/2010/01/WC500069728.pdf .
  • Agency EM . Directive EMA/484400/2014: Mandate of the EMA Innovation Task force (ITF). (08/2014) . www.ema.europa.eu/docs/en_GB/document_library/Other/2009/10/WC500004912.pdf .
  • Laurent S , ForgeD , PortMet al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications . Chem. Rev.108 ( 6 ), 2064 – 2110 ( 2008 ).
  • Yu WW , FalknerJC , YavuzCT , ColvinVL . Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts . Chem. Commun. (Camb.) ( 20 ), 2306 – 2307 ( 2004 ).
  • Xie J , WangJ , NiuGet al. Human serum albumin coated iron oxide nanoparticles for efficient cell labeling . Chem. Commun. (Camb.)46 ( 3 ), 433 – 435 ( 2010 ).
  • Gonzales M , MitsumoriLM , KushleikaJV , RosenfeldME , KrishnanKM . Cytotoxicity of iron oxide nanoparticles made from the thermal decomposition of organometallics and aqueous phase transfer with Pluronic F127 . Contrast Media Mol. Imaging5 ( 5 ), 286 – 293 ( 2010 ).
  • Albanese A , TangPS , ChanWC . The effect of nanoparticle size, shape, and surface chemistry on biological systems . Annu. Rev. Biomed. Eng.14 , 1 – 16 ( 2012 ).
  • Mahmoudi M , Saeedi-EslamiSN , ShokrgozarMAet al. Cell “vision”: complementary factor of protein corona in nanotoxicology . Nanoscale4 ( 17 ), 5461 – 5468 ( 2012 ).
  • Gebauer JS , MalissekM , SimonSet al. Impact of the nanoparticle-protein corona on colloidal stability and protein structure . Langmuir28 ( 25 ), 9673 – 9679 ( 2012 ).
  • Unterweger H , TietzeR , JankoCet al. Development and characterization of magnetic iron oxide nanoparticles with a cisplatin-bearing polymer coating for targeted drug delivery . Int. J. Nanomedicine9 , 3659 – 3676 ( 2014 ).
  • Kamat M , El-BoubbouK , ZhuDCet al. Hyaluronic Acid Immobilized Magnetic Nanoparticles for Active Targeting and Imaging of Macrophages . Bioconj. Chem.21 ( 11 ), 2128 – 2135 ( 2010 ).
  • Zaloga J , JankoC , NowakJet al. Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility . Int. J. Nanomedicine9 , 4847 – 4866 ( 2014 ).
  • Bica D , VekasL , AvdeevMVet al. Sterically stabilized water based magnetic fluids: synthesis, structure and properties . J. Magn. Magn. Mater.311 ( 1 ), 17 – 21 ( 2007 ).
  • Laurent S , DutzS , HafeliUO , MahmoudiM . Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles . Adv. Colloid Interface Sci.166 ( 1–2 ), 8 – 23 ( 2011 ).
  • Colvin VL . The potential environmental impact of engineered nanomaterials . Nat. Biotechnol.21 ( 10 ), 1166 – 1170 ( 2003 ).
  • Banerjee R , KatsenovichY , LagosL , MciintoshM , ZhangX , LiCZ . Nanomedicine: magnetic nanoparticles and their biomedical applications . Curr. Med. Chem.17 ( 27 ), 3120 – 3141 ( 2010 ).
  • Reddy LH , AriasJL , NicolasJ , CouvreurP . Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications . Chem. Rev.112 ( 11 ), 5818 – 5878 ( 2012 ).
  • Tombácz E , TóthIY , NesztorDet al. Adsorption of organic acids on magnetite nanoparticles, pH-dependent colloidal stability and salt tolerance . Colloids Surf. Physicochem. Eng. Aspects435 ( 0 ), 91 – 96 ( 2013 ).
  • Angelova A , AngelovB , GaramusVM , CouvreurP , LesieurS . Small-angle x-ray scattering investigations of biomolecular confinement, loading, and release from liquid-crystalline nanochannel assemblies . J. Phys. Chem. Lett.3 ( 3 ), 445 – 457 ( 2012 ).
  • Nowak J , WiekhorstF , TrahmsL , OdenbachS . The influence of hydrodynamic diameter and core composition on the magnetoviscous effect of biocompatible ferrofluids . J. Phys. Condes. Matter26 ( 17 ), 7 ( 2014 ).
  • Eberbeck D , LangeA , HentschelM . Identification of aggregates of magnetic nanoparticles in ferrofluids at low concentrations . J. Appl. Crystallogr.36 , 1069 – 1074 ( 2003 ).
  • Jurgons R , SeligerC , HilpertA , TrahmsL , OdenbachS , AlexiouC . Drug loaded magnetic nanoparticles for cancer therapy . J. Phys. Condens. Matter18 ( 38 ), S2893 – S2902 ( 2006 ).
  • Wiekhorst F , SeligerC , JurgonsRet al. Quantification of magnetic nanoparticles by magnetorelaxometry and comparison to histology after magnetic drug targeting . J. Nanosci. Nanotechnol.6 ( 9–10 ), 3222 – 3225 ( 2006 ).
  • Wiekhorst F , LieblM , SteinhoffU , TrahmsL , LyerS , DuerrS , AlexiouC . Magnetorelacometry for in-vivo quantification of magnetic nanoparticle distributions after magnetic drug tarbeting in a rabbit carcinoma model . Presented at : 2nd International Workshop on Magnetic Particle Imaging IWMPI 2012 . Lübeck , Germany , 15–16 March 2012 .
  • Richter H , KetteringM , WiekhorstF , SteinhoffU , HilgerI , TrahmsL . Magnetorelaxometry for localization and quantification of magnetic nanoparticles for thermal ablation studies . Phys. Med. Biol.55 ( 3 ), 623 – 633 ( 2010 ).
  • European Comission . Comission directive 2003/63/EC of the European Pariament and of the Concil on the Community code relating to medicinal products for human use . http://ec.europa.eu/health/documents/eudralex/vol-1/index_en.htmThe respecitve pdf .
  • Zaloga J , JankoC , AgarwalRet al. Different storage conditions influence biocompatibility and physicochemical properties of iron oxide nanoparticles . Int. J. Mol. Sci.16 ( 5 ), 9368 – 9384 ( 2015 ).
  • Cherry EM , MaximPG , EatonJK . Particle size, magnetic field, and blood velocity effects on particle retention in magnetic drug targeting . Med. Phys.37 ( 1 ), 175 – 182 ( 2010 ).
  • Cherry EM , EatonJK . A comprehensive model of magnetic particle motion during magnetic drug targeting . Int. J. Multiphase Flow59 , 173 – 185 ( 2014 ).
  • David AE , ColeAJ , ChertokB , ParkYS , YangVC . A combined theoretical and in vitro modeling approach for predicting the magnetic capture and retention of magnetic nanoparticles in vivo . J. Control. Release152 ( 1 ), 67 – 75 ( 2011 ).
  • Heidsieck A , VosenS , ZimmermannK , WenzelD , GleichB . Analysis of Trajectories for Targeting of Magnetic Nanoparticles in Blood Vessels . Mol. Pharm.9 ( 7 ), 2029 – 2038 ( 2012 ).
  • Gitter K , OdenbachS . Quantitative targeting maps based on experimental investigations for a branched tube model in magnetic drug targeting . J. Magn. Magn. Mater.323 ( 23 ), 3038 – 3042 ( 2011 ).
  • Seliger C , JurgonsR , WiekhorstFet al. In vitro investigation of the behaviour of magnetic particles by a circulating artery model . J. Magn. Magn. Mater.311 ( 1 ), 358 – 362 ( 2007 ).
  • Lyer S TR , JurgonsR , RichterH , WiekhorstF , SchwarzK , TrahmsL , AlexiouC . Distribution of magnetic nanoparticles after magnetic drug targetin in an ex vivo bovine artery model . Presented at : World Congress 2009 . Munich , 7–12 September 2009 .
  • Richter H , WiekhorstF , SchwarzKet al. Magnetorelaxometric quantification of magnetic nanoparticles in an artery model after ex vivo magnetic drug targeting . Phys. Med. Biol.54 ( 18 ), N417 – N424 ( 2009 ).
  • Tietze R , RahnH , LyerSet al. Visualization of superparamagnetic nanoparticles in vascular tissue using X mu CT and histology . Histochem. Cell Biol.135 ( 2 ), 153 – 158 ( 2011 ).
  • Cicha I , BeronovK , RamirezELet al. Shear stress preconditioning modulates endothelial susceptibility to circulating TNF-alpha and monocytic cell recruitment in a simplified model of arterial bifurcations . Atherosclerosis207 ( 1 ), 93 – 102 ( 2009 ).
  • Matuszak J , ZalogaJ , FriedrichRPet al. Endothelial biocompatibility and accumulation of SPION under flow conditions . J. Magn. Magn. Mater.380 , 20 – 26 ( 2015 ).
  • Haynes CL . The emerging field of nanotoxicology . Anal. Bioanal. Chem.398 ( 2 ), 587 – 588 ( 2010 ).
  • Paasonen L , LaaksonenT , JohansC , YliperttulaM , KontturiK , UrttiA . Gold nanoparticles enable selective light-induced contents release from liposomes . J. Control. Release122 ( 1 ), 86 – 93 ( 2007 ).
  • Wickstrom SA , LangeA , HessMWet al. Integrin-linked kinase controls microtubule dynamics required for plasma membrane targeting of caveolae . Dev. Cell19 ( 4 ), 574 – 588 ( 2010 ).
  • Andes D , DiekemaDJ , PfallerMA , BohrmullerJ , MarchilloK , LepakA . In vivo comparison of the pharmacodynamic targets for echinocandin drugs against Candida species . Antimicrob. Agents Chemother.54 ( 6 ), 2497 – 2506 ( 2010 ).
  • Hristozov DR , GottardoS , CrittoA , MarcominiA . Risk assessment of engineered nanomaterials: a review of available data and approaches from a regulatory perspective . Nanotoxicology6 , 880 – 898 ( 2012 ).
  • Hirsch C , RoessleinM , KrugHF , WickP . Nanomaterial cell interactions: are current in vitro tests reliable?Nanomedicine (Lond.)6 ( 5 ), 837 – 847 ( 2011 ).
  • Davoren M , HerzogE , CaseyAet al. In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells . Toxicol. In Vitro21 ( 3 ), 438 – 448 ( 2007 ).
  • Monteiro-Riviere NA , InmanAO , ZhangLW . Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line . Toxicol. Appl. Pharmacol.234 ( 2 ), 222 – 235 ( 2009 ).
  • Hoskins C , CuschieriA , WangL . The cytotoxicity of polycationic iron oxide nanoparticles: common endpoint assays and alternative approaches for improved understanding of cellular response mechanism . J. Nanobiotechnol.10 , 15 ( 2012 ).
  • Garcia SN , GutierrezL , McnultyA . Real-time cellular analysis as a novel approach for in vitro cytotoxicity testing of medical device extracts . J. Biomed. Mater. Res. A101 ( 7 ), 2097 – 2106 ( 2013 ).
  • Durr S , JankoC , LyerSet al. Magnetic nanoparticles for cancer therapy . Nanotechnol. Rev.2 ( 4 ), 395 – 409 ( 2013 ).
  • Durr S , LyerS , MannJet al. Real-time cell analysis of human cancer cell lines after chemotherapy with functionalized magnetic nanoparticles . Anticancer Res.32 ( 5 ), 1983 – 1989 ( 2012 ).
  • Janko C , DurrS , MunozLEet al. Magnetic drug targeting reduces the chemotherapeutic burden on circulating leukocytes . Int. J. Mol. Sci.14 ( 4 ), 7341 – 7355 ( 2013 ).
  • Friedrich RJ C , PöttlerM , TripalP , ZalogaJ , NowakJ , OdenbachS , LieblM , TrahmsL , StapfM , HilgerI , LyerS , AlexiouC . Flow cytometry for intracellular SPION quantification: specificity and sensitivity in comparison with spectroscopic methods . Int. J. Nanomedicine10 , 4185 – 4201 ( 2015 ).
  • Hoehn M , KustermannE , BlunkJet al. Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat . Proc. Natl Acad. Sci. USA99 ( 25 ), 16267 – 16272 ( 2002 ).
  • Foroutan F , JokerstJV , GambhirSS , VermeshO , KimHW , KnowlesJC . Sol-gel synthesis and electrospraying of biodegradable (P2O5)55-(CaO)30-(Na2O)15 glass nanospheres as a transient contrast agent for ultrasound stem cell imaging . ACS Nano9 ( 2 ), 1868 – 1877 ( 2015 ).
  • Morimoto Y , OkumuraM , SugibayashiK , KatoY . Biomedical applications of magnetic fluids II. 1) preparation and magnetic guidance of magnetic albumin microsphere for site specific drug delivery in vivo . J. Pharmacobiodyn.4 ( 8 ), 624 – 631 ( 1981 ).
  • Osato T , ItoY . In vitro cultivation and immunofluorescent studies of transplantable carcinomas Vx2 and Vx7. Persistence of a Shope virus-related antigenic substance in the cells of both tumors . J. Exp. Med.126 ( 5 ), 881 – 886 ( 1967 ).
  • Shope RE , HurstEW . Infectious papillomatosis of rabbits: with a note on the histopathology . J. Exp. Med.58 ( 5 ), 607 – 624 ( 1933 ).
  • Zheng LF , LiYJ , WangHet al. Combination of vascular endothelial growth factor antisense oligonucleotide therapy and radiotherapy increases the curative effects against maxillofacial VX2 tumors in rabbits . Eur. J. Radiol.78 ( 2 ), 272 – 276 ( 2011 ).
  • Mast TD , BarthePG , MakinIRSet al. Treatment of rabbit liver cancer in vivo using miniaturized image-ablate ultrasound arrays . Ultrasound Med. Biol.37 ( 10 ), 1609 – 1621 ( 2011 ).
  • Bruners P , BraunschweigT , HodeniusMet al. Thermoablation of malignant kidney tumors using magnetic nanoparticles: an in vivo feasibility study in a rabbit model . Cardiovasc. Intervent. Radiol.33 ( 1 ), 127 – 134 ( 2010 ).
  • Lyer S , TietzeR , JurgonsRet al. Visualisation of tumour regression after local chemotherapy with magnetic nanoparticles – a pilot study . Anticancer Res.30 ( 5 ), 1553 – 1557 ( 2010 ).
  • Alexiou C , ArnoldW , HulinPet al. Magnetic mitoxantrone nanoparticle detection by histology, x-ray and MRI after magnetic tumor targeting . J. Magn. Magn. Mater.225 ( 1–2 ), 187 – 193 ( 2001 ).
  • Alexiou C , JurgonsR , SchmidRet al. [Magnetic Drug Targeting – a new approach in locoregional tumor therapy with chemotherapeutic agents. Experimental animal studies] . HNO53 ( 7 ), 618 – 622 ( 2005 ).
  • Alexiou C , JurgonsR , SchmidRet al. In vitro and in vivo investigations of targeted chemotherapy with magnetic nanoparticles . J. Magn. Magn. Mater.293 ( 1 ), 389 – 393 ( 2005 ).
  • Alexiou C , JurgonsR , SeligerC , IroH . Medical applications of magnetic nanoparticles . J. Nanosci. Nanotechnol.6 ( 9–10 ), 2762 – 2768 ( 2006 ).
  • Alexiou C , JurgonsR , SeligerC , BrunkeO , IroH , OdenbachS . Delivery of superparamagnetic nanoparticles for local chemotherapy after intraarterial infusion and magnetic drug targeting . Anticancer Res.27 ( 4A ), 2019 – 2022 ( 2007 ).
  • Rahn H , AlexiouC , TrahmsL , OdenbachS . 3-Dimensional quantitative detection of nanoparticle content in biological tissue samples after local cancer treatment . J. Magn. Magn. Mater.360 , 92 – 97 ( 2014 ).
  • Rahn H , Gomez-MorillaI , JurgonsR , AlexiouC , OdenbachS . Microcomputed tomography analysis of ferrofluids used for cancer treatment . J. Phys. Condens. Matter20 ( 20 ), 204152 ( 2008 ).
  • Tietze R , SchreiberE , LyerS , AlexiouC . Mitoxantrone loaded superparamagnetic nanoparticles for drug targeting: a versatile and sensitive method for quantification of drug enrichment in rabbit tissues using HPLC-UV . J. Biomed. Biotechnol.2010 , 597304 ( 2010 ).
  • Cicha I , Garlichs ChristophD , AlexiouC . Cardiovascular therapy through nanotechnology – how far are we still from bedside?Eur. J. Nanomed.6 ( 2 ), 63 ( 2014 ).
  • Durr S , BohrC , PottlerMet al. Magnetic Tissue engineering for voice rehabilitation – first steps in a promising field . Anticancer Res.34 ( 11 ), 6806 – 6806 ( 2014 ).
  • Lyer S , JankoC , TietzeRet al. Hyperthermia in targeted tumour therapy using magnetic nanoparticles – first results . Anticancer Res.34 ( 11 ), 6835 – 6836 ( 2014 ).
  • Durr S , SchmidtW , JankoCet al. A novel magnetic field device for inducing hyperthermia using magnetic nanoparticles . Biomed. Tech (Berl.) doi:10.1515/bmt-2013-4129 ( 2013 ) ( Epub ahead of print ).
  • Unterweger H , TietzeR , TaccardiNet al. Boron containing magnetic nanoparticles for neutron capture therapy - an innovative approach for specifically targeting tumors . Anticancer Res.34 ( 11 ), 6848 – 6849 ( 2014 ).