624
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Nanomedicine Delivery: does Protein Corona Route to the Target or off Road?

, , , &
Pages 3231-3247 | Published online: 16 Oct 2015

References

  • Rivera-Gil P , Jimenez de AberasturiD , WulfVet al. The challenge to relate the physicochemical properties of colloidal nanoparticles to their cytotoxicity . Acc. Chem. Res.46 ( 3 ), 743 – 749 ( 2013 ).
  • Pfeiffer C , RehbockC , HühnDet al. Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles . J. R. Soc. Interface11 ( 96 ), 20130931 ( 2014 ).
  • Cedervall T , LynchI , LindmanSet al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles . Proc. Natl Acad. Sci. USA104 ( 7 ), 2050 – 2055 ( 2007 ).
  • Fadeel B , FeliuN , VogtC , AbdelmonemAM , ParakWJ . Bridge over troubled waters: understanding the synthetic and biological identities of engineered nanomaterials . Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.5 ( 2 ), 111 – 129 ( 2013 ).
  • Hühn D , KantnerK , GeidelCet al. Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge . ACS Nano7 ( 4 ), 3253 – 3263 ( 2013 ).
  • Muñoz Javier A , KreftO , Piera AlberolaAet al. Combined atomic force microscopy and optical microscopy measurements as a method to investigate particle uptake by cells . Small2 ( 3 ), 394 – 400 ( 2006 ).
  • Kim J . Protein adsorption on polymer particles . J. Biomed. Mater. Res.21 ( 2 ), 4373 – 4381 ( 2002 ).
  • Cedervall T , LynchI , FoyMet al. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles . Angew. Chem. Int. Ed. Engl.46 ( 30 ), 5754 – 5756 ( 2007 ).
  • Lundqvist M , StiglerJ , EliaG , LynchI , CedervallT , DawsonKA . Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts . Proc. Natl Acad. Sci. USA105 ( 38 ), 14265 – 14270 ( 2008 ).
  • Casals E , PfallerT , DuschlA , OostinghGJ , PuntesV . Time evolution of the nanoparticle protein corona . ACS Nano4 , 3623 – 3632 ( 2010 ).
  • Tenzer S , DocterD , KuharevJet al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology . Nat. Nanotechnol.8 , 772 – 781 ( 2013 ).
  • Kreyling WG , Fertsch-GappS , SchäfflerMet al. In vitro and in vivo interactions of selected nanoparticles with rodent serum proteins and their consequences in biokinetics . Beilstein J. Nanotechnol.5 ( 1 ), 1699 – 711 ( 2014 ).
  • Kogan MJ , BastusNG , AmigoRet al. Nanoparticle-mediated local and remote manipulation of protein aggregation . Nano Lett.6 ( 1 ), 110 – 115 ( 2006 ).
  • Noh H , VoglerEA . Volumetric interpretation of protein adsorption: competition from mixtures and the Vroman effect . Biomaterials28 ( 3 ), 405 – 422 ( 2007 ).
  • Jung S , LimS , AlbertorioFet al. The Vroman effect: a molecular level description of fibrinogen displacement . Nature ( 14 ), 12782 – 12786 ( 2003 ).
  • Pino P Del , PelazB , ZhangQ , MaffreP , NienhausGU , ParakWJ . Protein corona formation around nanoparticles – from the past to the future . Mater. Horizons1 , 17 ( 2014 ).
  • Röcker C , PötzlM , ZhangF , ParakWJ , NienhausGU . A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles . Nat. Nanotechnol.4 ( 9 ), 577 – 580 ( 2009 ).
  • Jiang X , WeiseS , HafnerMet al. Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding . J. R. Soc. Interface.7 ( Suppl. 1 ), S5 – S13 ( 2010 ).
  • Mahmoudi M , AbdelmonemAM , BehzadiSet al. Temperature: the “ignored” factor at the NanoBio interface . ACS Nano7 ( 8 ), 6555 – 6562 ( 2013 ).
  • Pezzoli D , ZandaM , ChiesaR , CandianiG . The yin of exofacial protein sulfhydryls and the yang of intracellular glutathione in in vitro transfection with SS14 bioreducible lipoplexes . J. Control. Release165 ( 1 ), 44 – 53 ( 2013 ).
  • Caracciolo G , PozziD , CapriottiALet al. Evolution of the protein corona of lipid gene vectors as a function of plasma concentration . Langmuir27 ( 24 ), 15048 – 15053 ( 2011 ).
  • Milani S , Baldelli BombelliF , PitekAS , DawsonKA , RädlerJ . Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona . ACS Nano6 ( 3 ), 2532 – 2541 ( 2012 ).
  • Maiolo D , BergeseP , MahonE , DawsonKA , MonopoliMP . Surfactant titration of nanoparticle-protein corona . Anal. Chem.86 ( 24 ), 12055 – 12063 ( 2014 ).
  • Alvarez-Puebla RA , AgarwalA , MannaPet al. Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions . Proc. Natl Acad. Sci. USA108 ( 20 ), 8157 – 8161 ( 2011 ).
  • Alessandri I , DeperoLE . All-oxide Raman-active traps for light and matter: probing redox homeostasis model reactions in aqueous environment . Small10 ( 7 ), 1294 – 1298 ( 2014 ).
  • Treuel L , MalissekM , GebauerJS , ZellnerR . The influence of surface composition of nanoparticles on their interactions with serum albumin . Chemphyschem.11 ( 14 ), 3093 – 3099 ( 2010 ).
  • Miclăuş T , BochenkovVE , OgakiR , HowardKA , SutherlandDS . Spatial mapping and quantification of soft and hard protein coronas at silver nanocubes . Nano Lett.14 ( 4 ), 2086 – 2093 ( 2014 ).
  • Kreyling WG , AbdelmonemAM , AliZet al. In vivo integrity of polymer-coated gold nanoparticles . Nat. Nanotechnol.10 ( 7 ), 619 – 623 ( 2015 ).
  • Pelaz B , del PinoP , MaffrePet al. Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake . ACS Nano9 ( 7 ), 6996 – 7008 ( 2015 ).
  • Edwards LJ , ZarnitsynaVI , HoodJD , EvavoldBD , ZhuC . Insights into T cell recognition of antigen: significance of two-dimensional kinetic parameters . Front. Immunol.20 ( 3 ), 86 ( 2012 ).
  • Park S , Hamad-schifferliK . Enhancement of In vitro translation by gold nanoparticle-DNA conjugates . ACS Nano4 ( 5 ), 2555 – 2560 ( 2010 ).
  • Wan S , KellyPM , MahonEet al. The “sweet” side of the protein corona: effects of glycosylation on nanoparticle-cell interactions . ACS Nano9 ( 2 ), 2157 – 2166 ( 2015 ).
  • Walkey C , OlsenJ , SongFet al. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles . ACS Nano8 ( 3 ), 2439 – 2455 ( 2014 ).
  • Baldelli Bombelli F , Di SilvioD , MackieA , BajkaB , MayesA , RigbyN . High-resolution isolation of protein corona nanoparticles from complex physiological fluids . Nanoscale7 ( 28 ), 11980 – 11990 ( 2015 ).
  • Hadjidemetriou M , Al-AhmadyZ , MazzaM , CollinsRF , DawsonK , KostarelosK . In vivo biomolecule corona around blood-circulating, clinically-used and antibody-targeted lipid bilayer nanoscale vesicles . ACS Nano9 ( 8 ), 8142 – 8156 ( 2015 ).
  • Walczyk D , BombelliFB , MonopoliMP , LynchI , DawsonKA . What the cell “sees” in bionanoscience . J. Am. Chem. Soc.132 ( 16 ), 5761 – 5768 ( 2010 ).
  • Monteiro-Riviere NA , SambergME , OldenburgSJ , RiviereJE . Protein binding modulates the cellular uptake of silver nanoparticles into human cells: implications for in vitro to in vivo extrapolations?Toxicol. Lett.220 ( 3 ), 286 – 293 ( 2013 ).
  • Nel AE , MädlerL , VelegolDet al. Understanding biophysicochemical interactions at the nano-bio interface . Nat. Mater.8 ( 7 ), 543 – 557 ( 2009 ).
  • Lazarovits J , ChenYY , SykesEA , ChanWCW . Nanoparticle-blood interactions: the implications on solid tumour targeting . Chem. Commun. (Camb).51 ( 14 ), 2756 – 2767 ( 2015 ).
  • O’Connell DJ , BombelliFB , PitekAS , MonopoliMP , CahillDJ , DawsonKA . Characterization of the bionano interface and mapping extrinsic interactions of the corona of nanomaterials . Nanoscale7 ( 37 ), 15268 – 15276 ( 2015 ).
  • Riboldi E , DanieleR , ParolaCet al. Human C-type lectin domain family 4, member C (CLEC4C/BDCA-2/CD303) is a receptor for asialo-galactosyl-oligosaccharides . J. Biol. Chem.286 ( 41 ), 35329 – 35333 ( 2011 ).
  • Lundqvist M , StiglerJ , CedervallTet al. The evolution of the protein corona around nanoparticles: a test study . ACS Nano5 ( 9 ), 7503 – 7509 ( 2011 ).
  • Bertoli F , DaviesG-L , MonopoliMPet al. Magnetic nanoparticles to recover cellular organelles and study the time resolved nanoparticle-cell interactome throughout uptake . Small10 ( 16 ), 3307 – 3315 ( 2014 ).
  • Monopoli MP , ÅbergC , SalvatiA , DawsonKA . Biomolecular coronas provide the biological identity of nanosized materials . Nat. Nanotechnol.7 ( 12 ), 779 – 786 ( 2012 ).
  • Chanda N , KattumuriV , ShuklaRet al. Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity . Proc. Natl Acad. Sci. USA107 ( 19 ), 8760 – 8765 ( 2010 ).
  • Sykes EA , DaiQ , TsoiKM , HwangDM , ChanWCW . Nanoparticle exposure in animals can be visualized in the skin and analysed via skin biopsy . Nat. Commun.5 , 3796 ( 2014 ).
  • Banerjee I , PanguleRC , KaneRS . Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms . Adv. Mater.23 ( 6 ), 690 – 718 ( 2011 ).
  • Maeda H . Macromolecular therapeutics in cancer treatment: the EPR effect and beyond . J. Control. Release164 ( 2 ), 138 – 144 ( 2012 ).
  • Michor F , LiphardtJ , FerrariM , WidomJ . What does physics have to do with cancer?Nat. Rev. Cancer11 ( 9 ), 657 – 670 ( 2011 ).
  • Sugahara KN , TeesaluT , KarmaliPPet al. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs . Science328 ( 5981 ), 1031 – 1035 ( 2010 ).
  • Kunjachan S , PolaR , GremseFet al. Passive vs. active tumor targeting using RGD- and NGR-modified polymeric nanomedicines . Nano Lett. ( 14 ), 972 – 981 ( 2014 ).
  • Albanese A , WalkeyCD , OlsenJB , GuoH , EmiliA , ChanWCW . Secreted biomolecules alter the biological identity and cellular interactions of nanoparticles . ACS Nano8 ( 6 ), 5515 – 5526 ( 2014 ).
  • Salvati A , PitekAS , MonopoliMPet al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface . Nat. Nanotechnol.8 ( 2 ), 137 – 143 ( 2013 ).
  • Hajipour MJ , LaurentS , AghaieA , RezaeeF , MahmoudiM . Personalized protein coronas: a “key” factor at the nanobiointerface . Biomater. Sci.2 ( 9 ), 1210 ( 2014 ).
  • Arvizo RR , GiriK , MoyanoDet al. Identifying new therapeutic targets via modulation of protein corona formation by engineered nanoparticles . PLoS ONE7 ( 3 ), e33650 ( 2012 ).
  • Maiolo D , PaoliniL , Di NotoGet al. Colorimetric nanoplasmonic assay to determine purity and titrate extracellular vesicles . Anal. Chem.87 ( 8 ), 4168 – 4176 ( 2015 ).
  • Cifuentes-Rius A , de PuigH , KahJCY , BorrosS , Hamad-SchifferliK . Optimizing the properties of the protein corona surrounding nanoparticles for tuning payload release . ACS Nano11 , 10066 – 10074 ( 2013 ).
  • Maiolo D , BergeseP , MahonE , DawsonKA , MonopoliMP . Surfactant titration of nanoparticle – protein corona . Anal. Chem.86 , 12055 – 12063 ( 2014 ).
  • Hoshino Y , NakamotoM , MiuraY . Control of protein-binding kinetics on synthetic polymer nanoparticles by tuning flexibility and inducing conformation changes of polymer chains . J. Am. Chem. Soc.134 ( 37 ), 15209 – 15212 ( 2012 ).
  • Liu H , MoynihanKD , ZhengYet al. Structure-based programming of lymph-node targeting in molecular vaccines . Nature507 ( 7493 ), 519 – 522 ( 2014 ).
  • Prapainop K , WitterDP , WentworthP . A chemical approach for cell-specific targeting of nanomaterials: small-molecule-initiated misfolding of nanoparticle corona proteins . J. Am. Chem. Soc.134 ( 9 ), 4100 – 4103 ( 2012 ).
  • Zhang Z , WangC , ZhaY , HuW , GaoZ . Corona-directed nucleic acid delivery into hepatic stellate cells for liver fibrosis therapy . ACS Nano9 ( 3 ), 2405 – 2419 ( 2015 ).
  • Ho YT , PoinardB , YeoELL , KahJCY . An instantaneous colorimetric protein assay based on spontaneous formation of a protein corona on gold nanoparticles . Analyst140 ( 4 ), 1026 – 1036 ( 2014 ).
  • You C-C , MirandaOR , GiderBet al. Detection and identification of proteins using nanoparticle-fluorescent polymer “chemical nose” sensors . Nat. Nanotechnol.2 ( 5 ), 318 – 323 ( 2007 ).
  • Kreyling WG , HirnS , MöllerWet al. Air-blood barrier translocation of tracheally instilled gold nanoparticles inversely depends on particle size . ACS Nano8 ( 1 ), 222 – 233 ( 2014 ).
  • Kunjachan S , PolaR , GremseFet al. Passive versus active tumor targeting using RGD- and NGR-modified polymeric nanomedicines . Nano Lett.14 ( 2 ), 972 – 981 ( 2014 ).
  • Deng ZJ , LiangM , MonteiroM , TothI , MinchinRF . Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation . Nat. Nanotechnol.6 ( 1 ), 39 – 44 ( 2011 ).
  • Yan Y , GauseKT , KamphuisMMJet al. Differential roles of the protein corona in the cellular uptake of nanoporous polymer particles by monocyte and macrophage cell lines . ACS Nano7 ( 12 ), 10960 – 10970 ( 2013 ).
  • Hamad I , Al-hanbaliЌO , HunterAC , RuttKJ , AndresenTL , MoghimiSM . Switching of complement activation pathways at the nanosphere serum interface: implications for stealth nanoparticle engineering . ACS Nano4 ( 11 ), 6629 – 6638 ( 2010 ).
  • Dobrovolskaia MA , NeunBW , ManSet al. Protein corona composition does not accurately predict hematocompatibility of colloidal gold nanoparticles . Nanomedicine10 ( 7 ), 1453 – 1463 ( 2014 ).
  • Choi HS , LiuW , MisraPet al. Renal clearance of quantum dots . Nat. Biotechnol.25 ( 10 ), 1165 – 1170 ( 2007 ).
  • Oh N , ParkJ-H . Surface chemistry of gold nanoparticles mediates their exocytosis in macrophages . ACS Nano8 ( 6 ), 6232 – 6241 ( 2014 ).
  • Schäffler M , SousaF , WenkAet al. Blood protein coating of gold nanoparticles as potential tool for organ targeting . Biomaterials.35 ( 10 ), 3455 – 3466 ( 2014 ).
  • Rodriguez PL , HaradaT , ChristianDA , PantanoDA , TsaiRK , DischerDE . Minimal “self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles . Science339 ( 6122 ), 971 – 975 ( 2013 ).
  • Kasper J , HermannsMI , BantzCet al. Inflammatory and cytotoxic responses of an alveolar-capillary coculture model to silica nanoparticles: comparison with conventional monocultures . Part. Fibre Toxicol.8 ( 1 ), 6 ( 2011 ).
  • Alhasan AH , PatelPC , ChoiCHJ , MirkinCA . Exosome encased spherical nucleic acid gold nanoparticle conjugates as potent microRNA regulation agents . Small10 ( 1 ), 186 – 192 ( 2014 ).
  • Alvarez-Erviti L , SeowY , YinH , BettsC , LakhalS , WoodMJA . Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes . Nat. Biotechnol.29 ( 4 ), 341 – 345 ( 2011 ).
  • Parodi A , QuattrocchiN , van de VenALet al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions . Nat. Nanotechnol.8 ( 1 ), 61 – 68 ( 2013 ).
  • Larson TA , JoshiPP , SokolovK . Preventing protein adsorption and macrophage uptake of gold nanoparticles via a hydrophobic shield . ACS Nano6 ( 10 ), 9182 – 9190 ( 2012 ).
  • Moghimi SM , HunterAC , MurrayJC . Long-circulating and target-specific nanoparticles: theory to practice . Pharmacol. Rev.53 ( 2 ), 283 – 318 ( 2001 ).
  • Moyano D , SahaK , PrakashG , YanB . Fabrication of corona-free nanoparticles with tunable hydrophobicity . ACS Nano ( 7 ), 6748 – 6755 ( 2014 ).
  • Jia G , CaoZ , XueH , XuY , JiangS . Novel zwitterionic-polymer-coated silica nanoparticles . Langmuir25 ( 10 ), 3196 – 3199 ( 2009 ).
  • Murthy AK , StoverRJ , HardinWGet al. Charged gold nanoparticles with essentially zero serum protein adsorption in undiluted fetal bovine serum . J. Am. Chem. Soc.135 ( 21 ), 7799 – 7802 ( 2013 ).
  • Zarschler K , PrapainopK , MahonEet al. Diagnostic nanoparticle targeting of the EGF-receptor in complex biological conditions using single-domain antibodies . Nanoscale11 ( 6 ), 6046 – 6056 ( 2014 ).
  • Dai Q , YanY , AngC-Set al. Monoclonal antibody-functionalized multilayered particles: targeting cancer cells in the presence of protein coronas . ACS Nano9 ( 3 ), 2876 – 2885 ( 2015 ).
  • Sadauskas E , WallinH , StoltenbergMet al. Kupffer cells are central in the removal of nanoparticles from the organism . Part. Fibre Toxicol.4 ( 1 ), 10 ( 2007 ).
  • Geng Y , DalhaimerP , CaiSet al. Shape effects of filaments versus spherical particles in flow and drug delivery . Nat. Nanotechnol.2 ( 4 ), 249 – 255 ( 2007 ).
  • Lipka J , Semmler-BehnkeM , SperlingRAet al. Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection . Biomaterials31 ( 25 ), 6574 – 6581 ( 2010 ).
  • Murthy AK , StoverRJ , HardinWGet al. Charged gold nanoparticles with essentially zero serum protein adsorption in undiluted fetal bovine serum . J. Am. Chem. Soc.135 ( 21 ), 7799 – 7802 ( 2013 ).
  • Yang W , ZhangL , WangS , WhiteAD , JiangS . Functionalizable and ultra stable nanoparticles coated with zwitterionic poly(carboxybetaine) in undiluted blood serum . Biomaterials30 ( 29 ), 5617 – 5621 ( 2009 ).
  • García KP , ZarschlerK , BarbaroLet al. Zwitterionic-coated “stealth” nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system . Small10 ( 13 ), 2516 – 2529 ( 2014 ).
  • Welsher K , McManusSA , HsiaC-H , YinS , YangH . Discovery of protein- and DNA-imperceptible nanoparticle hard coating using gel-based reaction tuning . J. Am. Chem. Soc.137 ( 2 ), 580 – 583 ( 2015 ).
  • Chapman RG , OstuniE , TakayamaS , HolmlinRE , YanL , WhitesidesGM . Surveying for surfaces that resist the adsorption of proteins . J. Am. Chem. Soc.122 ( 34 ), 8303 – 8304 ( 2000 ).
  • Sugahara KN , TeesaluT , KarmaliPPet al. Tissue-penetrating delivery of compounds and nanoparticles into tumors . Cancer Cell16 ( 6 ), 510 – 520 ( 2009 ).
  • Kelly PM , ÅbergC , PoloEet al. Mapping protein binding sites on the biomolecular corona of nanoparticles . Nat. Nanotechnol.10 ( 5 ), 472 – 479 ( 2015 ).
  • Kamaly N , XiaoZ , ValenciaPM , Radovic-MorenoAF , FarokhzadOC . Targeted polymeric therapeutic nanoparticles: design, development and clinical translation . Chem. Soc. Rev.41 ( 7 ), 2971 – 3010 ( 2012 ).
  • Bind Therapeutics - BIND Biosciences presents clinical data on BIND-014 promising anti-tumor effects in patients with advanced or metastatic cancers . http://bindtherapeutics.com/newsevents/releases/2012%200404%20BIND-014%20Present.html .
  • Cheng CJ , TietjenGT , Saucier-SawyerJK , SaltzmanWM . A holistic approach to targeting disease with polymeric nanoparticles . Nat. Rev. Drug Discov.14 ( 4 ), 239 – 247 ( 2015 ).
  • Montis C , MaioloD , AlessandriI , BergeseP , BertiD . Interaction of nanoparticles with lipid membranes: a multiscale perspective . Nanoscale6 ( 12 ), 6452 – 6457 ( 2014 ).
  • De Puig H , FedericiS , BaxamusaSH , BergeseP , Hamad-SchifferliK . Quantifying the nanomachinery of the nanoparticle-biomolecule interface . Small7 ( 17 ), 2477 – 2484 ( 2011 ).
  • Peracchia MT , HarnischS , Pinto-AlphandaryHet al. Visualization of in vitro protein-rejecting properties of PEGylated stealth® polycyanoacrylate nanoparticles . Biomaterials20 ( 14 ), 1269 – 1275 ( 1999 ).
  • Albanese A , LamAK , SykesEA , RocheleauJV , ChanWCW . Tumour-on-a-chip provides an optical window into nanoparticle tissue transport . Nat. Commun.4 , 2718 ( 2013 ).
  • Deng ZJ , LiangM , TothI , MonteiroM , MinchinRF . Plasma protein binding of positively and negatively charged polymer-coated gold nanoparticles elicits different biological responses . Nanotoxicology7 ( 3 ), 314 – 322 ( 2013 ).
  • Dobrovolskaia MA , NeunBW , ManSet al. Protein corona composition does not accurately predict hematocompatibility of colloidal gold nanoparticles . Nanomedicine10 ( 7 ), 1453 – 1463 ( 2014 ).
  • Pitek AS , O’ConnellD , MahonE , MonopoliMP , Baldelli BombelliF , DawsonKA . Transferrin coated nanoparticles: study of the bionano interface in human plasma . PLoS ONE7 ( 7 ), e40685 ( 2012 ).
  • Kah JCY , ChenJ , ZubietaA , Hamad-SchifferliK . Exploiting the protein corona around gold nanorods for loading and triggered release . ACS Nano6 ( 8 ), 6730 – 6740 ( 2012 ).
  • Hamad-Schifferli K . How can we exploit the protein corona?Nanomedicine8 , 1 – 3 ( 2013 ).
  • Maiolo D , MitolaS , LealiDet al. Role of nanomechanics in canonical and noncanonical pro-angiogenic ligand/VEGF receptor-2 activation . J. Am. Chem. Soc.134 ( 35 ), 14573 – 14579 ( 2012 ).
  • Maiolo D , FedericiS , RavelliL , DeperoLE , Hamad-SchifferliK , BergeseP . Nanomechanics of surface DNA switches probed by captive contact angle . J. Colloid Interface Sci.402 , 334 – 339 ( 2013 ).
  • Kah JCY , ChenJ , ZubietaA , Hamad-SchifferliK . Exploiting the protein corona around gold nanorods for loading and triggered release . ACS Nano6 ( 8 ), 6730 – 6740 ( 2012 ).
  • Yoshioka Y , KosakaN , KonishiYet al. Ultra-sensitive liquid biopsy of circulating extracellular vesicles using ExoScreen . Nat. Commun.5 , 3591 ( 2014 ).
  • Clayton A , MitchellJP , CourtJ , MasonMD , TabiZ . Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2 . Cancer Res.67 ( 15 ), 7458 – 7466 ( 2007 ).
  • Hoshino Y , KodamaT , OkahataY , SheaKJ . Peptide imprinted polymer nanoparticles: a plastic antibody . J. Am. Chem. Soc.130 ( 46 ), 15242 – 15243 ( 2008 ).
  • Olivero G , MaioloD , LealiDet al. Nanoliter contact angle probes tumor angiogenic ligand-receptor protein interactions . Biosens. Bioelectron.26 ( 4 ), 1571 – 1575 ( 2010 ).
  • Caracciolo G . Liposome-protein corona in a physiological environment: challenges and opportunities for targeted delivery of nanomedicines . Nanomedicine11 ( 3 ), 543 – 557 ( 2015 ).
  • Caracciolo G , CardarelliF , PozziDet al. Selective targeting capability acquired with a protein corona adsorbed on the surface of 1,2-dioleoyl-3-trimethylammonium propane/DNA nanoparticles . ACS Appl. Mater. Interfaces5 ( 24 ), 13171 – 13179 ( 2013 ).
  • Liu J , HuangY , KumarAet al. pH-sensitive nano-systems for drug delivery in cancer therapy . Biotechnol. Adv.32 ( 4 ), 693 – 710 ( 2014 ).
  • Srinivasarao M , GallifordCV , LowPS . Principles in the design of ligand-targeted cancer therapeutics and imaging agents . Nat. Rev. Drug Discov.14 ( 3 ), 203 – 219 ( 2015 ).
  • Chanana M , Rivera GilP , Correa-DuarteMA , Liz-MarzánLM , ParakWJ . Physicochemical properties of protein-coated gold nanoparticles in biological fluids and cells before and after proteolytic digestion . Angew. Chem. Int. Ed. Engl.52 ( 15 ), 4179 – 4183 ( 2013 ).
  • Groves JT . Molecular organization and signal transduction at intermembrane junctions . Angew. Chem. Int. Ed. Engl.44 ( 23 ), 3524 – 3538 ( 2005 ).
  • Riehemann K , SchneiderSW , LugerTA , GodinB , FerrariM , FuchsH . Nanomedicine – challenge and perspectives . Angew. Chem. Int. Ed. Engl.48 ( 5 ), 872 – 897 ( 2009 ).
  • Wang BL , GhaderiA , ZhouHet al. Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption . Nat. Biotechnol.32 ( 5 ), 473 – 478 ( 2014 ).
  • Chiappini C , De RosaE , MartinezJOet al. Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization . Nat. Mater.14 ( 5 ), 532 – 539 ( 2015 ).
  • Rivera Gil P , OberdörsterG , ElderA , PuntesV , ParakWJ . Correlating physico-chemical with toxicological properties of nanoparticles: the present and the future . ACS Nano4 ( 10 ), 5227 – 5231 ( 2010 ).
  • Tay CY , SetyawatiMI , XieJ , ParakWJ , LeongDT . Back to basics: exploiting the innate physico-chemical characteristics of nanomaterials for biomedical applications . Adv. Funct. Mater.24 ( 38 ), 5936 – 5955 ( 2014 ).
  • Arvizo RR , BhattacharyyaS , KudgusRA , GiriK , BhattacharyaR , MukherjeeP . Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future . Chem. Soc. Rev.41 ( 7 ), 2943 – 2970 ( 2012 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.