28,646
Views
0
CrossRef citations to date
0
Altmetric
Review

The Impact of Nanoparticle Protein Corona on Cytotoxicity, Immunotoxicity and Target Drug Delivery

, , , , &
Pages 81-100 | Received 31 Jul 2015, Accepted 29 Oct 2015, Published online: 11 Dec 2015

References

  • Maiorano G , SabellaS , SorceBet al. Effects of cell culture media on the dynamic formation of protein- nanoparticle complexes and influence on the cellular response . ACS Nano4 ( 12 ), 7481 – 7491 ( 2010 ).
  • Walkey CD , ChanWC . Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment . Chem. Soc. Rev.41 ( 7 ), 2780 – 2799 ( 2012 ).
  • Cedervall T , LynchI , LindmanSet al. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles . Proc. Natl Acad. Sci. USA104 ( 7 ), 2050 – 2055 ( 2007 ).
  • Wan S , KellyPM , MahonEet al. The “sweet” side of the protein corona: effects of glycosylation on nanoparticle–cell interactions . ACS Nano9 ( 2 ), 2157 – 2166 ( 2015 ).
  • Hellstrand E , LynchI , AnderssonAet al. Complete high-density lipoproteins in nanoparticle corona . FEBS J.276 ( 12 ), 3372 – 3381 ( 2009 ).
  • Diederichs JE . Plasma protein adsorption patterns on liposomes: establishment of analytical procedure . Electrophoresis17 ( 3 ), 607 – 611 ( 1996 ).
  • Lück M , PaulkeBR , SchröderW , BlunkT , MüllerR . Analysis of plasma protein adsorption on polymeric nanoparticles with different surface characteristics . J. Biomed. Mater. Res.39 ( 3 ), 478 – 485 ( 1998 ).
  • Gessner A , WaiczR , LieskeA , PaulkeB-R , MäderK , MüllerR . Nanoparticles with decreasing surface hydrophobicities: influence on plasma protein adsorption . Int. J. Pharm.196 ( 2 ), 245 – 249 ( 2000 ).
  • Monopoli MP , ÅbergC , SalvatiA , DawsonKA . Biomolecular coronas provide the biological identity of nanosized materials . Nat. Nanotechnol.7 ( 12 ), 779 – 786 ( 2012 ).
  • Lundqvist M . Nanoparticles: tracking protein corona over time . Nat. Nanotechnol.8 ( 10 ), 701 – 702 ( 2013 ).
  • Milani S , Baldelli BombelliF , PitekAS , DawsonKA , RäDlerJ . Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona . ACS Nano6 ( 3 ), 2532 – 2541 ( 2012 ).
  • Dell’orco D , LundqvistM , OslakovicC , CedervallT , LinseS . Modeling the time evolution of the nanoparticle-protein corona in a body fluid . PLoS ONE5 ( 6 ), e10949 ( 2010 ).
  • Hosseini M , JiangL , SorensenHPet al. Elucidation of the contribution of active site and exosite interactions to affinity and specificity of peptidylic serine protease inhibitors using non-natural arginine analogs . Mol. Pharmacol.80 ( 4 ), 585 – 597 ( 2011 ).
  • Lesniak A , FenaroliF , MonopoliMP , ÅbergC , DawsonKA , SalvatiA . Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells . ACS Nano6 ( 7 ), 5845 – 5857 ( 2012 ).
  • Jiang X , WeiseS , HafnerMet al. Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding . J. R. Soc. Interface7 ( Suppl. 1 ), S5 – S13 ( 2010 ).
  • Safi M , CourtoisJ , SeigneuretM , ConjeaudH , BerretJ-F . The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles . Biomaterials32 ( 35 ), 9353 – 9363 ( 2011 ).
  • Casals E , PfallerT , DuschlA , OostinghGJ , PuntesVF . Hardening of the nanoparticle–protein corona in metal (Au, Ag) and oxide (Fe3O4, CoO, and CeO2) nanoparticles . Small7 ( 24 ), 3479 – 3486 ( 2011 ).
  • Kah JCY , ChenJ , ZubietaA , Hamad-SchifferliK . Exploiting the protein corona around gold nanorods for loading and triggered release . ACS Nano6 ( 8 ), 6730 – 6740 ( 2012 ).
  • Walkey CD , OlsenJB , SongFet al. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles . ACS Nano8 ( 3 ), 2439 – 2455 ( 2014 ).
  • Caracciolo G , CallipoL , De SanctisSC , CavaliereC , PozziD , LaganàA . Surface adsorption of protein corona controls the cell internalization mechanism of DC-Chol–DOPE/DNA lipoplexes in serum . Biochim. Biophys. Acta1798 ( 3 ), 536 – 543 ( 2010 ).
  • Caracciolo G , PozziD , CapriottiALet al. Evolution of the protein corona of lipid gene vectors as a function of plasma concentration . Langmuir27 ( 24 ), 15048 – 15053 ( 2011 ).
  • Pozzi D , ColapicchioniVGet al. Effect of polyethyleneglycol (PEG) chain length on the bio–nano-interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells . Nanoscale6 ( 5 ), 2782 – 2792 ( 2014 ).
  • Dos Santos N , AllenC , DoppenA-Met al. Influence of poly (ethylene glycol) grafting density and polymer length on liposomes: relating plasma circulation lifetimes to protein binding . Biochim. Biophys. Acta1768 ( 6 ), 1367 – 1377 ( 2007 ).
  • Monopoli MP , WalczykD , CampbellAet al. Physical- chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles . J. Am. Chem. Soc.133 ( 8 ), 2525 – 2534 ( 2011 ).
  • Anderson NL , PolanskiM , PieperRet al. The human plasma proteome . Mol. Cell. Proteomics3 ( 4 ), 311 – 326 ( 2004 ).
  • Zhang H , BurnumKE , LunaMLet al. Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size . Proteomics11 ( 23 ), 4569 – 4577 ( 2011 ).
  • Dobrovolskaia MA , PatriAK , ZhengJet al. Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles . Nanomed. Nanotechnol. Biol. Med.5 ( 2 ), 106 – 117 ( 2009 ).
  • Tenzer S , DocterD , RosfaSet al. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis . ACS Nano5 ( 9 ), 7155 – 7167 ( 2011 ).
  • Ge C , DuJ , ZhaoLet al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity . Proc. Natl Acad. Sci. USA108 ( 41 ), 16968 – 16973 ( 2011 ).
  • Martel J , YoungD , YoungAet al. Comprehensive proteomic analysis of mineral nanoparticles derived from human body fluids and analyzed by liquid chromatography–tandem mass spectrometry . Anal. Biochem.418 ( 1 ), 111 – 125 ( 2011 ).
  • Casals E , PfallerT , DuschlA , OostinghGJ , PuntesV . Time evolution of the nanoparticle protein corona . ACS Nano4 ( 7 ), 3623 – 3632 ( 2010 ).
  • Vroman L , AdamsAL . Identification of rapid changes at plasma–solid interfaces . J. Biomed. Mater. Res.3 ( 1 ), 43 – 67 ( 1969 ).
  • Vroman L . Effect of adsorbed proteins on the wettability of hydrophilic and hydrophobic solids . Nature196 , 476 – 477 ( 1962 ).
  • Nel AE , MädlerL , VelegolDet al. Understanding biophysicochemical interactions at the nano–bio interface . Nat. Mater.8 ( 7 ), 543 – 557 ( 2009 ).
  • Cedervall T , LynchI , FoyMet al. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles . Angew. Chem. Int. Ed. Engl.46 ( 30 ), 5754 – 5756 ( 2007 ).
  • Tenzer S , DocterD , KuharevJet al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology . Nat. Nanotechnol.8 ( 10 ), 772 – 781 ( 2013 ).
  • Docter D , WestmeierD , MarkiewiczM , StolteS , KnauerS , StauberR . The nanoparticle biomolecule corona: lessons learned–challenge accepted?Chem. Soc. Rev.44 ( 17 ), 6094 – 6121 ( 2015 ).
  • Lundqvist M , StiglerJ , EliaG , LynchI , CedervallT , DawsonKA . Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts . Proc. Natl Acad. Sci. USA105 ( 38 ), 14265 – 14270 ( 2008 ).
  • Deng ZJ , MortimerG , SchillerT , MusumeciA , MartinD , MinchinRF . Differential plasma protein binding to metal oxide nanoparticles . Nanotechnology20 ( 45 ), 455101 ( 2009 ).
  • Qiu Y , LiuY , WangLet al. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods . Biomaterials31 ( 30 ), 7606 – 7619 ( 2010 ).
  • Capriotti AL , CaraccioloG , CavaliereCet al. Do plasma proteins distinguish between liposomes of varying charge density? J. Proteomics 75 ( 6 ), 1924 – 1932 ( 2012 ).
  • Pozzi D , CaraccioloG , CapriottiALet al. Surface chemistry and serum type both determine the nanoparticle–protein corona . J. Proteomics119 , 209 – 217 ( 2015 ).
  • Mahmoudi M , AbdelmonemAM , BehzadiSet al. Temperature: the “ignored” factor at the nanobio interface . ACS Nano7 ( 8 ), 6555 – 6562 ( 2013 ).
  • Hajipour MJ , LaurentS , AghaieA , RezaeeF , MahmoudiM . Personalized protein coronas: a “key” factor at the nanobiointerface . Biomater. Sci.2 ( 9 ), 1210 – 1221 ( 2014 ).
  • Foroozandeh P , AzizAA . Merging worlds of nanomaterials and biological environment: factors governing protein corona formation on nanoparticles and its biological consequences . Nanoscale Res. Lett.10 ( 1 ), 1 – 12 ( 2015 ).
  • Aggarwal P , HallJB , MclelandCB , DobrovolskaiaMA , McneilSE . Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy . Adv. Drug Del. Rev.61 ( 6 ), 428 – 437 ( 2009 ).
  • Webster TJ . Interview: Nanomedicine: past, present and future . Nanomedicine8 ( 4 ), 525 – 529 ( 2013 ).
  • Landgraf L , ChristnerC , StorckWet al. A plasma protein corona enhances the biocompatibility of Au@ Fe3O4 Janus particles . Biomaterials68 , 77 – 88 ( 2015 ).
  • Sobczynski DJ , CharoenpholP , HeslingaMJet al. Plasma protein corona modulates the vascular wall interaction of drug carriers in a material and donor specific manner . PLoS ONE9 ( 9 ), e107408 ( 2014 ).
  • Hajipour MJ , RahebJ , AkhavanOet al. Personalized disease-specific protein corona influences the therapeutic impact of graphene oxide . Nanoscale7 ( 19 ), 8978 – 8994 ( 2015 ).
  • Wolfram J , YangY , ShenJet al. The nano-plasma interface: implications of the protein corona . Colloids Surf. B Biointerfaces124 , 17 – 24 ( 2014 ).
  • Docter D , StriethS , WestmeierDet al. No king without a crown-impact of the nanomaterial-protein corona on nanobiomedicine . Nanomedicine10 ( 3 ), 503 – 519 ( 2015 ).
  • Choi HS , AshitateY , LeeJHet al. Rapid translocation of nanoparticles from the lung airspaces to the body . Nat. Biotechnol.28 ( 12 ), 1300 – 1303 ( 2010 ).
  • Kumar A , ForbesB , MudwayI , BicerEM , DaileyLA . What are the biological and therapeutic implications of biomolecule corona formation on the surface of inhaled nanomedicines?Nanomedicine (Lond.)10 ( 3 ), 343 ( 2015 ).
  • Ruge CA , SchaeferUF , HerrmannJet al. The interplay of lung surfactant proteins and lipids assimilates the macrophage clearance of nanoparticles . PLoS ONE7 ( 7 ), e40775 ( 2012 ).
  • Ruge CA , KirchJ , CañadasOet al. Uptake of nanoparticles by alveolar macrophages is triggered by surfactant protein A . Nanomed. Nanotechnol. Biol. Med.7 ( 6 ), 690 – 693 ( 2011 ).
  • Schulze C , SchaeferUF , RugeCA , WohllebenW , LehrC-M . Interaction of metal oxide nanoparticles with lung surfactant protein A . Eur. J. Pharm. Biopharm.77 ( 3 ), 376 – 383 ( 2011 ).
  • Lee J-A , KimM-K , KimH-Met al. The fate of calcium carbonate nanoparticles administered by oral route: absorption and their interaction with biological matrices . Int. J. Nanomedicine10 , 2273 ( 2015 ).
  • Sund J , AleniusH , VippolaM , SavolainenK , PuustinenA . Proteomic characterization of engineered nanomaterial–protein interactions in relation to surface reactivity . ACS Nano5 ( 6 ), 4300 – 4309 ( 2011 ).
  • Capriotti AL , CarusoGet al. Analysis of plasma protein adsorption onto DC-Chol-DOPE cationic liposomes by HPLC-CHIP coupled to a Q-TOF mass spectrometer . Anal. Bioanal. Chem.398 ( 7–8 ), 2895 – 2903 ( 2010 ).
  • Gossmann R , FahrländerE , HummelM , MulacD , BrockmeyerJ , LangerK . Comparative examination of adsorption of serum proteins on HSA-and PLGA-based nanoparticles using SDS–PAGE and LC–MS . Eur. J. Pharm. Biopharm.93 , 80 – 87 ( 2015 ).
  • Sakulkhu U , MauriziL , MahmoudiMet al. Ex situ evaluation of the composition of protein corona of intravenously injected superparamagnetic nanoparticles in rats . Nanoscale6 ( 19 ), 11439 – 11450 ( 2014 ).
  • Sakulkhu U , MahmoudiM , MauriziL , SalaklangJ , HofmannH . Protein corona composition of superparamagnetic iron oxide nanoparticles with various physico-chemical properties and coatings . Sci. Rep.4 , 5020 ( 2014 ).
  • Capriotti AL , CarusoGet al. Label-free quantitative analysis for studying the interactions between nanoparticles and plasma proteins . Anal. Bioanal. Chem.405 ( 2–3 ), 635 – 645 ( 2013 ).
  • Johnstone SA , MasinD , MayerL , BallyMB . Surface-associated serum proteins inhibit the uptake of phosphatidylserine and poly (ethylene glycol) liposomes by mouse macrophages . Biochim. Biophys. Acta1513 ( 1 ), 25 – 37 ( 2001 ).
  • Hadjidemetriou M , Al-AhmadyZ , MazzaM , CollinsRF , DawsonK , KostarelosK . In vivo biomolecule corona around blood-circulating, clinically used and antibody-targeted lipid bilayer nanoscale vesicles . ACS Nano9 ( 8 ), 8142 – 8156 ( 2015 ).
  • Salvatore F , CorboC , GemeiM , Del VecchioL . Oncoproteomic approaches to cancer marker discovery: the case of colorectal cancer . Biomark. Cancer53 – 71 ( 2015 ).
  • Webb-Robertson B-JM , WibergHK , MatzkeMMet al. Review, evaluation, and discussion of the challenges of missing value imputation for mass spectrometry-based label-free global proteomics . J. Proteome Res.14 ( 5 ), 1993 – 2001 ( 2015 ).
  • Shannahan JH , LaiX , KePC , PodilaR , BrownJM , WitzmannFA . Silver nanoparticle protein corona composition in cell culture media . PLoS ONE8 ( 9 ), e74001 ( 2013 ).
  • Shannahan JH , BrownJM , ChenRet al. Comparison of nanotube–protein corona composition in cell culture media . Small9 ( 12 ), 2171 – 2181 ( 2013 ).
  • Ritz S , SchöTtlerS , KotmanNet al. Protein corona of nanoparticles: distinct proteins regulate the cellular uptake . Biomacromolecules16 ( 4 ), 1311 – 1321 ( 2015 ).
  • Fleischer CC , PayneCK . Secondary structure of corona proteins determines the cell surface receptors used by nanoparticles . J. Phys. Chem. B118 ( 49 ), 14017 – 14026 ( 2014 ).
  • Sánchez-Moreno P , BuzónP , BoulaizHet al. Balancing the effect of corona on therapeutic efficacy and macrophage uptake of lipid nanocapsules . Biomaterials61 , 266 – 278 ( 2015 ).
  • Longo D , FauciA , KasperD , HauserS . Harrison’s Principles of Internal Medicine (18th Edition) . McGraw-Hill Professional , NY, USA ( 2011 ).
  • Caracciolo G , PozziD , CapriottiALet al. The liposome–protein corona in mice and humans and its implications for in vivo delivery . J. Mater. Chem. B2 ( 42 ), 7419 – 7428 ( 2014 ).
  • Kirui DK , CeliaC , MolinaroRet al. Mild hyperthermia enhances transport of liposomal gemcitabine and improves in vivo therapeutic response . Adv. Healthc. Mater.4 ( 7 ), 1092 – 1103 ( 2015 ).
  • Cosco D , FedericoC , MaiuoloJet al. Physicochemical features and transfection properties of chitosan/poloxamer 188/poly (D, L-lactide-co-glycolide) nanoplexes . Int. J. Nanomedicine9 , 2359 ( 2014 ).
  • Martinez JO , EvangelopoulosM , KarunVet al. The effect of multistage nanovector targeting of VEGFR2 positive tumor endothelia on cell adhesion and local payload accumulation . Biomaterials35 ( 37 ), 9824 – 9832 ( 2014 ).
  • Yang T , CuiF-D , ChoiM-Ket al. Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation . Int. J. Pharm.338 ( 1 ), 317 – 326 ( 2007 ).
  • Molinaro R , WolframJ , FedericoCet al. Polyethylenimine and chitosan carriers for the delivery of RNA interference effectors . Expert Opin. Drug Deliv.10 ( 12 ), 1653 – 1668 ( 2013 ).
  • Ferrari M . Cancer nanotechnology: opportunities and challenges . Nat. Rev. Cancer5 ( 3 ), 161 – 171 ( 2005 ).
  • Bertrand N , WuJ , XuX , KamalyN , FarokhzadOC . Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology . Adv. Drug Deliv. Rev.66 , 2 – 25 ( 2014 ).
  • Parhi P , MohantyC , SahooSK . Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy . Drug Discov. Today17 ( 17 ), 1044 – 1052 ( 2012 ).
  • Dobrovolskaia MA , McneilSE . Strategy for selecting nanotechnology carriers to overcome immunological and hematological toxicities challenging clinical translation of nucleic acid-based therapeutics . Expert Opin. Drug Deliv. ( 0 ), 1 – 13 ( 2015 ).
  • Gu FX , KarnikR , WangAZet al. Targeted nanoparticles for cancer therapy . Nano Today2 ( 3 ), 14 – 21 ( 2007 ).
  • Torchilin VP . Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery . Nat. Rev. Drug Discov.13 ( 11 ), 813 – 827 ( 2014 ).
  • Koren E , ApteA , JaniA , TorchilinVP . Multifunctional PEGylated 2C5-immunoliposomes containing pH-sensitive bonds and TAT peptide for enhanced tumor cell internalization and cytotoxicity . J. Control. Release160 ( 2 ), 264 – 273 ( 2012 ).
  • Tope S , MaskeS , NagulwarV , SufiJ , WelankiwarA . Aptamers as therapeutics . Indo Am. J. Pharm. Res.3 ( 3 ), 2718 – 2743 ( 2013 ).
  • Danhier F , FeronO , PréatV . To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery . J. Control. Release148 ( 2 ), 135 – 146 ( 2010 ).
  • Allen TM , CullisPR . Liposomal drug delivery systems: from concept to clinical applications . Adv. Drug Del. Rev.65 ( 1 ), 36 – 48 ( 2013 ).
  • Choi CHJ , AlabiCA , WebsterP , DavisME . Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles . Proc. Natl Acad. Sci. USA107 ( 3 ), 1235 – 1240 ( 2010 ).
  • Blanco E , ShenH , FerrariM . Principles of nanoparticle design for overcoming biological barriers to drug delivery . Nat. Biotechnol.33 ( 9 ), 941 – 951 ( 2015 ).
  • Parodi A , CorboC , CeveniniAet al. Enabling cytoplasmic delivery and organelle targeting by surface modification of nanocarriers . Nanomedicine10 ( 12 ), 1923 – 1940 ( 2015 ).
  • Ferrari M , OnuohaSC , PitzalisC . Trojan horses and guided missiles: targeted therapies in the war on arthritis . Nat. Rev. Rheumatol.11 ( 6 ), 328 – 337 ( 2015 ).
  • Xu X , HoW , ZhangX , BertrandN , FarokhzadO . Cancer nanomedicine: from targeted delivery to combination therapy . Trends Mol. Med.21 ( 4 ), 223 – 232 ( 2015 ).
  • Byrne JD , BetancourtT , Brannon-PeppasL . Active targeting schemes for nanoparticle systems in cancer therapeutics . Adv. Drug Deliv. Rev.60 ( 15 ), 1615 – 1626 ( 2008 ).
  • Huang B , AbrahamWD , ZhengY , LópezSCB , LuoSS , IrvineDJ . Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells . Sci. Transl. Med.7 ( 291 ), 291ra294 – 291ra294 ( 2015 ).
  • Gray BP , McguireMJ , BrownKC . A liposomal drug platform overrides peptide ligand targeting to a cancer biomarker, irrespective of ligand affinity or density . PLoS ONE8 ( 8 ), e72938 ( 2013 ).
  • Dobrovolskaia MA , GermolecDR , WeaverJL . Evaluation of nanoparticle immunotoxicity . Nat. Nanotechnol.4 ( 7 ), 411 – 414 ( 2009 ).
  • Deng ZJ , LiangM , MonteiroM , TothI , MinchinRF . Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation . Nat. Nanotechnol.6 ( 1 ), 39 – 44 ( 2011 ).
  • Prapainop K , WitterDP , WentworthPJr . A chemical approach for cell-specific targeting of nanomaterials: small-molecule-initiated misfolding of nanoparticle corona proteins . J. Am. Chem. Soc.134 ( 9 ), 4100 – 4103 ( 2012 ).
  • Mahmoudi M , SheibaniS , MilaniASet al. Crucial role of the protein corona for the specific targeting of nanoparticles . Nanomedicine10 ( 2 ), 215 – 226 ( 2015 ).
  • Salvati A , PitekAS , MonopoliMPet al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface . Nat. Nanotechnol.8 ( 2 ), 137 – 143 ( 2013 ).
  • Davis ME . The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic . Mol. Pharm.6 ( 3 ), 659 – 668 ( 2009 ).
  • Varnamkhasti BS , HosseinzadehH , AzhdarzadehMet al. Protein corona hampers targeting potential of MUC1 aptamer functionalized SN-38 core–shell nanoparticles . Int. J. Pharm.494 ( 1 ), 430 – 444 ( 2015 ).
  • Dai Q , YanY , AngC-Set al. Monoclonal antibody-functionalized multilayered particles: targeting cancer cells in the presence of protein coronas . ACS Nano9 ( 3 ), 2876 – 2885 ( 2015 ).
  • Caracciolo G , PozziD , CapriottiALet al. Cancer cell targeting of lipid gene vectors by protein corona . Nanotechnology3 , 354 – 357 ( 2012 ).
  • Monteiro-Riviere NA , InmanAO , ZhangL . Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line . Toxicol. Appl. Pharmacol.234 ( 2 ), 222 – 235 ( 2009 ).
  • Balbus JM , MaynardAD , ColvinVLet al. Meeting report: hazard assessment for nanoparticles: report from an interdisciplinary workshop . Environ. Health Perspect.115 ( 11 ), 1654 – 1659 ( 2007 ).
  • Monteiro-Riviere NA , InmanAO . Challenges for assessing carbon nanomaterial toxicity to the skin . Carbon44 ( 6 ), 1070 – 1078 ( 2006 ).
  • Ruenraroengsak P , NovakP , BerhanuDet al. Respiratory epithelial cytotoxicity and membrane damage (holes) caused by amine-modified nanoparticles . Nanotoxicology6 ( 1 ), 94 – 108 ( 2012 ).
  • Ramasamy M , DasM , AnSSA , YiDK . Role of surface modification in zinc oxide nanoparticles and its toxicity assessment toward human dermal fibroblast cells . Int. J. Nanomedicine9 , 3707 ( 2014 ).
  • Yin H , ChenR , CaseyPS , KePC , DavisTP , ChenC . Reducing the cytotoxicity of ZnO nanoparticles by a pre-formed protein corona in a supplemented cell culture medium . RSC Adv.5 ( 90 ), 73963 – 73973 ( 2015 ).
  • Liu Z , ChenK , DavisCet al. Drug delivery with carbon nanotubes for in vivo cancer treatment . Cancer Res.68 ( 16 ), 6652 – 6660 ( 2008 ).
  • Robinson JT , WelsherK , TabakmanSMet al. High performance in vivo near-IR (> 1 μm) imaging and photothermal cancer therapy with carbon nanotubes . Nano Res.3 ( 11 ), 779 – 793 ( 2010 ).
  • Kostarelos K . The long and short of carbon nanotube toxicity . Nat. Biotechnol.26 ( 7 ), 774 – 776 ( 2008 ).
  • Zhao Y , XingG , ChaiZ . Nanotoxicology: are carbon nanotubes safe?Nat. Nanotechnol.3 ( 4 ), 191 – 192 ( 2008 ).
  • De Paoli SH , DiduchLL , TegegnTZet al. The effect of protein corona composition on the interaction of carbon nanotubes with human blood platelets . Biomaterials35 ( 24 ), 6182 – 6194 ( 2014 ).
  • Wang F , YuL , MonopoliMPet al. The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes . Nanomed. Nanotechnol. Biol. Med.9 ( 8 ), 1159 – 1168 ( 2013 ).
  • Kittler S , GreulichC , DiendorfJ , KollerM , EppleM . Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions . Chem. Mater.22 ( 16 ), 4548 – 4554 ( 2010 ).
  • Sies H , De GrootH . Role of reactive oxygen species in cell toxicity . Toxicol. Lett.64 , 547 – 551 ( 1992 ).
  • Manke A , WangL , RojanasakulY . Mechanisms of nanoparticle-induced oxidative stress and toxicity . BioMed. Res. Int.2013 , 942916 ( 2013 ).
  • Minai L , Yeheskely-HayonD , YelinD . High levels of reactive oxygen species in gold nanoparticle-targeted cancer cells following femtosecond pulse irradiation . Sci. Rep.3 , 2146 ( 2013 ).
  • Gheshlaghi ZN , RiaziGH , AhmadianS , GhafariM , MahinpourR . Toxicity and interaction of titanium dioxide nanoparticles with microtubule protein . Acta Biochim. Biophys. Sin.40 ( 9 ), 777 – 782 ( 2008 ).
  • Wangoo N , SuriCR , ShekhawatG . Interaction of gold nanoparticles with protein: a spectroscopic study to monitor protein conformational changes . Appl. Phys. Lett.92 ( 13 ), 133104 ( 2008 ).
  • Saptarshi SR , DuschlA , LopataAL . Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle . J. Nanobiotechnol.11 ( 1 ), 26 ( 2013 ).
  • Yoo SI , YangM , BrenderJRet al. Inhibition of amyloid peptide fibrillation by inorganic nanoparticles: functional similarities with proteins . Angew. Chem. Int. Ed. Engl.50 ( 22 ), 5110 – 5115 ( 2011 ).
  • Mirsadeghi S , DinarvandR , GhahremaniMHet al. Protein corona composition of gold nanoparticles/nanorods affects amyloid beta fibrillation process . Nanoscale7 ( 11 ), 5004 – 5013 ( 2015 ).
  • Shannahan JH , PodilaR , AldossariAAet al. Formation of a protein corona on silver nanoparticles mediates cellular toxicity via scavenger receptors . Toxicol. Sci.143 ( 1 ), 136 – 146 ( 2014 ).
  • Yan Y , GauseKT , KamphuisMMet al. Differential roles of the protein corona in the cellular uptake of nanoporous polymer particles by monocyte and macrophage cell lines . ACS Nano7 ( 12 ), 10960 – 10970 ( 2013 ).
  • Maiorano G , SabellaS , SorceBet al. Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response . ACS Nano4 ( 12 ), 7481 – 7491 ( 2010 ).
  • Saptarshi SR , DuschlA , LopataAL . Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle . J. Nanobiotechnol.11 , 26 ( 2013 ).
  • Fadeel B . Clear and present danger? Engineered nanoparticles and the immune system . Swiss Med. Wkly142 , w13609 ( 2012 ).
  • Yan Y , GauseKT , KamphuisMMet al. Differential roles of the protein corona in the cellular uptake of nanoporous polymer particles by monocyte and macrophage cell lines . ACS Nano7 ( 12 ), 10960 – 10970 ( 2013 ).
  • Lee YK , ChoiEJ , WebsterTJ , KimSH , KhangD . Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity . Int. J. Nanomedicine10 , 97 – 113 ( 2015 ).
  • Salmon JE , KapurS , KimberlyRP . Opsonin-independent ligation of Fc gamma receptors. The 3G8-bearing receptors on neutrophils mediate the phagocytosis of concanavalin A-treated erythrocytes and nonopsonized Escherichia coli . J. Exp. Med.166 ( 6 ), 1798 – 1813 ( 1987 ).
  • Leroux J-C , De JaeghereF , AnnerB , DoelkerE , GurnyR . An investigation on the role of plasma and serum opsonins on the evternalization of biodegradable poly (D, L-lactic acid) nanoparticles by human monocytes . Life Sci.57 ( 7 ), 695 – 703 ( 1995 ).
  • Harashima H , SakataK , FunatoK , KiwadaH . Enhanced hepatic uptake of liposomes through complement activation depending on the size of liposomes . Pharm. Res.11 ( 3 ), 402 – 406 ( 1994 ).
  • Hulander M , HongJ , AnderssonMet al. Blood interactions with noble metals: coagulation and immune complement activation . ACS Appl. Mater. Interfaces1 ( 5 ), 1053 – 1062 ( 2009 ).
  • Sim RB , TsiftsoglouSA . Proteases of the complement system . Biochem. Soc. Trans.32 ( Pt 1 ), 21 – 27 ( 2004 ).
  • Salvador-Morales C , FlahautE , SimE , SloanJ , GreenML , SimRB . Complement activation and protein adsorption by carbon nanotubes . Mol. Immunol.43 ( 3 ), 193 – 201 ( 2006 ).
  • Hulander M , LundgrenA , BerglinM , OhrlanderM , LausmaaJ , ElwingH . Immune complement activation is attenuated by surface nanotopography . Int. J. Nanomedicine6 , 2653 ( 2011 ).
  • Yu K , LaiBF , FoleyJH , KrisingerMJ , ConwayEM , KizhakkedathuJN . Modulation of complement activation and amplification on nanoparticle surfaces by glycopolymer conformation and chemistry . ACS Nano8 ( 8 ), 7687 – 7703 ( 2014 ).
  • Hubbell JA , ThomasSN , SwartzMA . Materials engineering for immunomodulation . Nature462 ( 7272 ), 449 – 460 ( 2009 ).
  • Bogart LK , PourroyG , MurphyCJet al. Nanoparticles for imaging, sensing, and therapeutic intervention . ACS Nano8 ( 4 ), 3107 – 3122 ( 2014 ).
  • Boraschi D , DuschlA ( Eds ). Nanoparticles and The Immune System: Safety and Effects . Academic Press , Waltham, MA, USA , 2013 , 33 – 46 ( 2014 ).
  • Deng ZJ , LiangM , MonteiroM , TothI , MinchinRF . Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation . Nat. Nanotechnol.6 ( 1 ), 39 – 44 ( 2011 ).
  • Dobrovolskaia MA , NeunBW , ManSet al. Protein corona composition does not accurately predict hematocompatibility of colloidal gold nanoparticles . Nanomed. Nanotechnol. Biol. Med.10 ( 7 ), 1453 – 1463 ( 2014 ).
  • Walkey CD , OlsenJB , GuoH , EmiliA , ChanWC . Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake . J. Am. Chem. Soc.134 ( 4 ), 2139 – 2147 ( 2012 ).
  • Oldenborg P-A , ZheleznyakA , FangY-F , LagenaurCF , GreshamHD , LindbergFP . Role of CD47 as a marker of self on red blood cells . Science288 ( 5473 ), 2051 – 2054 ( 2000 ).
  • Rodriguez PL , HaradaT , ChristianDA , PantanoDA , TsaiRK , DischerDE . Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles . Science339 ( 6122 ), 971 – 975 ( 2013 ).
  • Ashley CE , CarnesEC , PhillipsGKet al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers . Nat. Mater.10 ( 5 ), 389 – 397 ( 2011 ).
  • Toledano Furman NE , Lupu-HaberY , BronshteinTet al. Reconstructed stem cell nanoghosts: a natural tumor targeting platform . Nano Lett.13 ( 7 ), 3248 – 3255 ( 2013 ).
  • Muzykantov VR . Drug delivery by red blood cells: vascular carriers designed by mother nature . Expert Opin. Drug Deliv.7 ( 4 ), 403 – 427 ( 2010 ).
  • Hu CM , ZhangL , AryalS , CheungC , FangRH , ZhangL . Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform . Proc. Natl Acad. Sci. USA108 ( 27 ), 10980 – 10985 ( 2011 ).
  • Parodi A , QuattrocchiN , Van De VenALet al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions . Nat. Nanotechnol.8 ( 1 ), 61 – 68 ( 2013 ).
  • Hu C-MJ , FangRH , WangK-Cet al. Nanoparticle biointerfacing by platelet membrane cloaking . Nature526 ( 7571 ), 118 – 121 ( 2015 ).
  • Hirlekar R , PatelP , DandN , KadamV . Drug loaded erythrocytes: as novel drug delivery system . Curr. Pharm. Des.14 ( 1 ), 63 – 70 ( 2008 ).
  • Hu C-MJ , ZhangL , AryalS , CheungC , FangRH , ZhangL . Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform . Proc. Natl Acad. Sci. USA108 ( 27 ), 10980 – 10985 ( 2011 ).
  • Fang RH , HuC-MJ , LukBTet al. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery . Nano Lett.14 ( 4 ), 2181 – 2188 ( 2014 ).
  • Corbo C , ParodiA , EvangelopoulosMet al. Proteomic profiling of a biomimetic drug delivery platform . Curr. Drug Targets16 ( 13 ), 1540 – 1547 ( 2015 ).
  • Aimanianda V , BayryJ , BozzaSet al. Surface hydrophobin prevents immune recognition of airborne fungal spores . Nature460 ( 7259 ), 1117 – 1121 ( 2009 ).
  • Sarparanta M , BimboLM , RytkonenJet al. Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: stability, plasma protein adsorption and biodistribution . Mol. Pharm.9 ( 3 ), 654 – 663 ( 2012 ).