598
Views
0
CrossRef citations to date
0
Altmetric
Review

Biological Reactivity of Zinc Oxide Nanoparticles With Mammalian Test Systems: an Overview

, &
Pages 2075-2092 | Published online: 02 Jul 2015

References

  • Filippi C , PrydeA , CowanPet al. Toxicology of ZnO and TiO2 nanoparticles on hepatocytes: impact on metabolism and bioenergetics . Nanotoxicology9 ( 1 ), 126 – 134 ( 2015 ).
  • Saptarshi S , DuschlA , LopataA . Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle . J. Nanobiotechnol.11 ( 1 ), 26 ( 2013 ).
  • Jeong SH , KimHJ , RyuHJet al. ZnO nanoparticles induce TNF-α expression via ROS-ERK-Egr-1 pathway in human keratinocytes . J. Dermatol. Sci.72 ( 3 ), 263 – 273 ( 2013 ).
  • Kao Y-Y , ChenY-C , ChengT-J , ChiungY-M , LiuP-S . Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity . Toxicol. Sci.125 ( 2 ), 462 – 472 ( 2012 ).
  • Yan Z , XuL , HanJet al. Transcriptional and posttranscriptional regulation and endocytosis were involved in zinc oxide nanoparticle-induced interleukin-8 overexpression in human bronchial epithelial cells . Cell Biol. Toxicol.30 ( 2 ), 79 – 88 ( 2014 ).
  • Cohen JM , DerkR , WangLet al. Tracking translocation of industrially relevant engineered nanomaterials (ENMs) across alveolar epithelial monolayers in vitro . Nanotoxicology8 ( S1 ), 216 – 225 ( 2014 ).
  • Sasidharan A , ChandranP , MenonD , RamanS , NairS , KoyakuttyM . Rapid dissolution of ZnO nanocrystals in acidic cancer microenvironment leading to preferential apoptosis . Nanoscale3 ( 9 ), 3657 – 3669 ( 2011 ).
  • Akhtar MJ , AhamedM , KumarS , KhanMaM , AhmadJ , AlrokayanSA . Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species . Int. J. Nanomedicine7 , 845 – 857 ( 2012 ).
  • Andersson-Willman B , GehrmannU , CansuZet al. Effects of subtoxic concentrations of TiO2 and ZnO nanoparticles on human lymphocytes, dendritic cells and exosome production . Toxicol. Appl. Pharmacol.264 ( 1 ), 94 – 103 ( 2012 ).
  • Taccola L , RaffaV , RiggioCet al. Zinc oxide nanoparticles as selective killers of proliferating cells . Int. J. Nanomedicine6 , 1129 – 1140 ( 2011 ).
  • Everett WN , ChernC , SunDet al. Phosphate-enhanced cytotoxicity of zinc oxide nanoparticles and agglomerates . Toxicol. Lett.225 ( 1 ), 177 – 184 ( 2014 ).
  • Hsiao IL , HuangY-J . Effects of serum on cytotoxicity of nano- and micro-sized ZnO particles . J. Nanopart. Res.15 ( 9 ), 1 – 16 ( 2013 ).
  • Bardhan M , MandalG , GangulyT . Steady state, time resolved, and circular dichroism spectroscopic studies to reveal the nature of interactions of zinc oxide nanoparticles with transport protein bovine serum albumin and to monitor the possible protein conformational changes . J. Appl. Phys.106 ( 3 ), 034701 ( 2009 ).
  • Chakraborti S , SarwarS , ChakrabartiP . The effect of the binding of ZnO nanoparticle on the structure and stability of α-lactalbumin: a comparative study . J. Phys. Chem. B117 ( 43 ), 13397 – 13408 ( 2013 ).
  • Osmond-Mcleod M , OsmondR , OytamYet al. Surface coatings of ZnO nanoparticles mitigate differentially a host of transcriptional, protein and signalling responses in primary human olfactory cells . Part. Fibre Toxicol.10 ( 1 ), 54 ( 2013 ).
  • Song W , ZhangJ , GuoJet al. Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles . Toxicol. Lett.199 ( 3 ), 389 – 397 ( 2010 ).
  • Sahu D , KannanGM , VijayaraghavanR . Size-dependent effect of zinc oxide on toxicity and inflammatory potential of human monocytes . J. Toxicol. Environ. Health, Part A77 ( 4 ), 177 – 191 ( 2014 ).
  • De Berardis B , CivitelliG , CondelloMet al. Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells . Toxicol. Appl. Pharmacol.246 ( 3 ), 116 – 127 ( 2010 ).
  • Heng BC , ZhaoXX , TanECet al. Evaluation of the cytotoxic and inflammatory potential of differentially shaped zinc oxide nanoparticles . Arch. Toxicol.85 ( 12 ), 1517 – 1528 ( 2011 ).
  • Lenz A-G , KargE , BrendelEet al. Inflammatory and oxidative stress responses of an alveolar epithelial cell line to airborne zinc oxide nanoparticles at the air–liquid interface: a comparison with conventional, submerged cell-culture conditions . Biomed. Res. Int.2013 , 652632 ( 2013 ).
  • Xie Y , WilliamsNG , TolicAet al. Aerosolized ZnO nanoparticles induce toxicity in alveolar type II epithelial cells at the air–liquid interface . Toxicol. Sci.125 , 450 – 461 ( 2011 ).
  • Mihai C , ChrislerWB , XieYet al. Intracellular accumulation dynamics and fate of zinc ions in alveolar epithelial cells exposed to airborne ZnO nanoparticles at the air–liquid interface . Nanotoxicology9 ( 1 ), 9 – 22 ( 2015 ).
  • James SA , FeltisBN , De JongeMDet al. Quantification of ZnO nanoparticle uptake, distribution, and dissolution within individual human macrophages . ACS Nano7 ( 12 ), 10621 – 10635 ( 2013 ).
  • Pujalte I , PassagneI , BrouillaudBet al. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells . Part. Fibre Toxicol.8 , 10 ( 2011 ).
  • Shen C , JamesSA , De JongeMD , TurneyTW , WrightPFA , FeltisBN . relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle-exposed human immune cells . Toxicol. Sci.136 ( 1 ), 120 – 130 ( 2013 ).
  • Turney TW , DuriskaMB , JayaratneVet al. Formation of zinc-containing nanoparticles from Zn2+ ions in cell culture media: implications for the nanotoxicology of ZnO . Chem. Res. Toxicol.25 ( 10 ), 2057 – 2066 ( 2012 ).
  • Tuomela S , AutioR , Buerki-ThurnherrTet al. Gene expression profiling of immune-competent human cells exposed to engineered zinc oxide or titanium dioxide nanoparticles . PLoS ONE8 ( 7 ), e68415 ( 2013 ).
  • Sahu D , KannanGM , VijayaraghavanR , AnandT , KhanumF . Nanosized zinc oxide induces toxicity in human lung cells . ISRN Toxicol.2013 , 316075 ( 2013 ).
  • Moos PJ , ChungK , WoessnerD , HoneggarM , CutlerNS , VeranthJM . ZnO particulate matter requires cell contact for toxicity in human colon cancer cells . Chem. Res. Toxicol.23 ( 4 ), 733 – 739 ( 2010 ).
  • Chen JK , HoCC , ChangHet al. Particulate nature of inhaled zinc oxide nanoparticles determines systemic effects and mechanisms of pulmonary inflammation in mice . Nanotoxicology9 ( 1 ), 43 – 53 ( 2015 ).
  • Saptarshi SR , FeltisBN , WrightPFA , LopataAL . Investigating the immunomodulatory nature of zinc oxide nanoparticles at sub-cytotoxic levels in vitro and after intranasal instillation in vivo . J. Nanobiotechnol.13 , 6 ( 2015 ).
  • Xu M , LiJ , HanagataN , SuH , ChenH , FujitaD . Challenge to assess the toxic contribution of metal cation released from nanomaterials for nanotoxicology – the case of ZnO nanoparticles . Nanoscale5 ( 11 ), 4763 – 4769 ( 2013 ).
  • Buerki-Thurnherr T , XiaoL , DienerLet al. In vitro mechanistic study towards a better understanding of ZnO nanoparticle toxicity . Nanotoxicology7 ( 4 ), 402 – 416 ( 2013 ).
  • Hsiao IL , HuangY-J . Titanium oxide shell coatings decrease the cytotoxicity of ZnO nanoparticles . Chem. Res. Toxicol.24 ( 3 ), 303 – 313 ( 2011 ).
  • Luo M , ShenC , FeltisBNet al. Reducing ZnO nanoparticle cytotoxicity by surface modification . Nanoscale6 ( 11 ), 5791 – 5798 ( 2014 ).
  • Xia T , KovochichM , LiongMet al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties . ACS Nano2 ( 10 ), 2121 – 2134 ( 2008 ).
  • Heng BC , ZhaoX , XiongS , Woei NgK , Yin-Chiang BoeyF , Say-Chye LooJ . Toxicity of zinc oxide (ZnO) nanoparticles on human bronchial epithelial cells (BEAS-2B) is accentuated by oxidative stress . Food Chem. Toxicol.48 ( 6 ), 1762 – 1766 ( 2010 ).
  • Shi J , KarlssonHL , JohanssonKet al. Microsomal glutathione transferase 1 protects against toxicity induced by silica nanoparticles but not by zinc oxide nanoparticles . ACS Nano6 ( 3 ), 1925 – 1938 ( 2012 ).
  • Prach M , StoneV , ProudfootL . Zinc oxide nanoparticles and monocytes: impact of size, charge and solubility on activation status . Toxicol. Appl. Pharmacol.266 ( 1 ), 19 – 26 ( 2013 ).
  • Feltis BN , O’keefeSJ , HarfordAJ , PivaTJ , TurneyTW , WrightPFA . Independent cytotoxic and inflammatory responses to zinc oxide nanoparticles in human monocytes and macrophages . Nanotoxicology6 ( 7 ), 757 – 765 ( 2012 ).
  • Tsou T-C , YehS-C , TsaiF-Yet al. Zinc oxide particles induce inflammatory responses in vascular endothelial cells via NF-κB signaling . J. Hazard. Mater.183 ( 1–3 ), 182 – 188 ( 2010 ).
  • Wu W , SametJM , PedenDB , BrombergPA . Phosphorylation of p65 is required for zinc oxide nanoparticle-induced interleukin 8 expression in human bronchial epithelial cells . Environ. Health Perspect.118 ( 7 ), 982 – 987 ( 2010 ).
  • Chang H , HoC-C , YangCSet al. Involvement of MyD88 in zinc oxide nanoparticle-induced lung inflammation . Exp. Toxicol. Pathol.65 ( 6 ), 887 – 896 ( 2013 ).
  • Roy R , SinghSK , DasM , TripathiA , DwivediPD . Toll-like receptor 6 mediated inflammatory and functional responses of zinc oxide nanoparticles primed macrophages . Immunology142 ( 3 ), 453 – 464 ( 2014 ).
  • Goncalves DM , GirardD . Zinc oxide nanoparticles delay human neutrophil apoptosis by a de novo protein synthesis-dependent and reactive oxygen species-independent mechanism . Toxicol. In Vitro28 ( 5 ), 926 – 931 ( 2014 ).
  • Yamaki K , YoshinoS . Comparison of inhibitory activities of zinc oxide ultrafine and fine particulates on IgE-induced mast cell activation . Biometals22 ( 6 ), 1031 – 1040 ( 2009 ).
  • Hong T-K , TripathyN , SonH-J , HaK-T , JeongH-S , HahnY-B . A comprehensive in vitro and in vivo study of ZnO nanoparticles toxicity . J. Mater. Chem. B1 ( 23 ), 2985 – 2992 ( 2013 ).
  • Moos PJ , OlszewskiK , HoneggarMet al. Responses of human cells to ZnO nanoparticles: a gene transcription study . Metallomics3 ( 11 ), 1199 – 1211 ( 2011 ).
  • Lozano-Fernández T , Ballester-AntxordokiL , Pérez-TempranoNet al. Potential impact of metal oxide nanoparticles on the immune system: the role of integrins, L-selectin and the chemokine receptor CXCR4 . Nanomedicine10 ( 6 ), 1301 – 1310 ( 2014 ).
  • Sharma V , AndersonD , DhawanA . Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2) . Apoptosis17 ( 8 ), 852 – 870 ( 2012 ).
  • Meyer K , RajanahalliP , AhamedM , RoweJJ , HongY . ZnO nanoparticles induce apoptosis in human dermal fibroblasts via p53 and p38 pathways . Toxicol. In Vitro25 ( 8 ), 1721 – 1726 ( 2011 ).
  • Guo D , BiH , LiuB , WuQ , WangD , CuiY . Reactive oxygen species-induced cytotoxic effects of zinc oxide nanoparticles in rat retinal ganglion cells . Toxicol. In Vitro27 ( 2 ), 731 – 738 ( 2013 ).
  • Wilhelmi V , FischerU , WeighardtHet al. Zinc Oxide nanoparticles induce necrosis and apoptosis in macrophages in a p47phox- and Nrf2-independent manner . PLoS ONE8 ( 6 ), e65704 ( 2013 ).
  • Wang J , DengX , ZhangF , ChenD , DingW . ZnO nanoparticle-induced oxidative stress triggers apoptosis by activating JNK signaling pathway in cultured primary astrocytes . Nanoscale Res. Lett.9 ( 1 ), 117 ( 2014 ).
  • Cho W-S , DuffinR , HowieSet al. Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes . Part. Fibre Toxicol.8 ( 1 ), 1 – 16 ( 2011 ).
  • Stern ST , AdiseshaiahPP , CristRM . Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity . Part. Fibre Toxicol.9 , 20 – 20 ( 2012 ).
  • Yu K-N , YoonT-J , Minai-TehraniAet al. Zinc oxide nanoparticle induced autophagic cell death and mitochondrial damage via reactive oxygen species generation . Toxicol. In Vitro27 ( 4 ), 1187 – 1195 ( 2013 ).
  • Sharma V , ShuklaRK , SaxenaN , ParmarD , DasM , DhawanA . DNA damaging potential of zinc oxide nanoparticles in human epidermal cells . Toxicol. Lett.185 ( 3 ), 211 – 218 ( 2009 ).
  • Kermanizadeh A , VranicS , BolandSet al. An in vitro assessment of panel of engineered nanomaterials using a human renal cell line: cytotoxicity, pro-inflammatory response, oxidative stress and genotoxicity . BMC Nephrol.14 ( 1 ), 1 – 12 ( 2013 ).
  • Hackenberg S , ScherzedA , KesslerMet al. Zinc oxide nanoparticles induce photocatalytic cell death in human head and neck squamous cell carcinoma cell lines in vitro . Int. J. Oncol.37 ( 6 ), 1583 – 1590 ( 2010 ).
  • Kwon JY , LeeSY , KoedrithPet al. Lack of genotoxic potential of ZnO nanoparticles in in vitro and in vivo tests . Mutat. Res. Genet. Toxicol. Environ. Mutagen.761 , 1 – 9 ( 2014 ).
  • Demir E , AkçaH , KayaBet al. Zinc oxide nanoparticles: genotoxicity, interactions with UV-light and cell-transforming potential . J. Hazard. Mater.264 ( 0 ), 420 – 429 ( 2014 ).
  • Shen C , TurneyTW , PivaTJ , FeltisBN , WrightPFA . Comparison of UVA-induced ROS and sunscreen nanoparticle-generated ROS in human immune cells . Photochem. Photobiol. Sci.13 ( 5 ), 781 – 788 ( 2014 ).
  • Sahu D , KannanGM , VijayaraghavanR , AnandT , KhanumF . Nanosized zinc oxide induces toxicity in human lung cells . ISRN Toxicol.2013 , 8 ( 2013 ).
  • Roy R , ParasharV , ChauhanLKSet al. Mechanism of uptake of ZnO nanoparticles and inflammatory responses in macrophages require PI3K mediated MAPKs signaling . Toxicol. In Vitro28 ( 3 ), 457 – 467 ( 2014 ).
  • Raemy D , GrassR , StarkWet al. Effects of flame made zinc oxide particles in human lung cells – a comparison of aerosol and suspension exposures . Part. Fibre Toxicol.9 ( 1 ), 33 ( 2012 ).
  • Esmaeillou M , MoharamnejadM , HsankhaniR , TehraniAA , MaadiH . Toxicity of ZnO nanoparticles in healthy adult mice . Environ. Toxicol. Pharmacol.35 ( 1 ), 67 – 71 ( 2013 ).
  • Sharma V , SinghP , PandeyAK , DhawanA . Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles . Mut. Res.745 ( 1–2 ), 84 – 91 ( 2012 ).
  • Shrivastava R , RazaS , YadavA , KushwahaP , FloraSJS . Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain . Drug Chem. Toxicol.37 ( 3 ), 336 – 347 ( 2014 ).
  • Baek M , ChungH-E , YuJet al. Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles . Int. J. Nanomedicine7 , 3081 – 3097 ( 2012 ).
  • Chuang H-C , JuanH-T , ChangC-Net al. Cardiopulmonary toxicity of pulmonary exposure to occupationally relevant zinc oxide nanoparticles . Nanotoxicology8 ( 6 ), 593 – 604 ( 2014 ).
  • Adamcakova-Dodd A , StebounovaL , KimJet al. Toxicity assessment of zinc oxide nanoparticles using sub-acute and sub-chronic murine inhalation models . Part. Fibre Toxicol.11 ( 1 ), 15 ( 2014 ).
  • Roy R , KumarS , VermaAKet al. Zinc oxide nanoparticles provide an adjuvant effect to ovalbumin via a Th2 response in Balb/c mice . Int. Immunol.26 ( 3 ), 159 – 172 ( 2014 ).
  • Fukui H , HorieM , EndohSet al. Association of zinc ion release and oxidative stress induced by intratracheal instillation of ZnO nanoparticles to rat lung . Chem. Biol. Interact.198 ( 1–3 ), 29 – 37 ( 2012 ).
  • Juang Y-M , LaiB-H , ChienH-J , HoM , ChengT-J , LaiC-C . Changes in protein expression in rat bronchoalveolar lavage fluid after exposure to zinc oxide nanoparticles: an iTRAQ proteomic approach . Rapid Commun. Mass Spectrom.28 ( 8 ), 974 – 980 ( 2014 ).
  • Kao Y-Y , ChengT-J , YangD-M , WangC-T , ChiungY-M , LiuP-S . Demonstration of an olfactory bulb-brain translocation pathway for ZnO nanoparticles in rodent cells in vitro and in vivo . J. Mol. Neurosci.48 ( 2 ), 464 – 471 ( 2012 ).
  • Cho W-S , DuffinR , PolandCAet al. Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs . Nanotoxicology6 ( 1 ), 22 – 35 ( 2012 ).
  • Jo E , SeoG , KwonJ-Tet al. Exposure to zinc oxide nanoparticles affects reproductive development and biodistribution in offspring rats . J. Toxicol. Sci.38 ( 4 ), 525 – 530 ( 2013 ).
  • Pasupuleti S , AlapatiS , GanapathyS , AnumoluG , PullyNR , PrakhyaBM . Toxicity of zinc oxide nanoparticles through oral route . Toxicol. Ind. Health28 ( 8 ), 675 – 686 ( 2012 ).
  • Li C-H , ShenC-C , ChengY-Wet al. Organ biodistribution, clearance, and genotoxicity of orally administered zinc oxide nanoparticles in mice . Nanotoxicology6 ( 7 ), 746 – 756 ( 2012 ).
  • Cho W-S , KangB-C , LeeJK , JeongJ , CheJ-H , SeokSH . Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration . Part. Fibre Toxicol.10 ( 1 ), 9 ( 2013 ).
  • Xia T , ZhaoY , SagerTet al. Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos . ACS Nano5 ( 2 ), 1223 – 1235 ( 2011 ).
  • Konduru N , MurdaughK , SotiriouGet al. Bioavailability, distribution and clearance of tracheally-instilled and gavaged uncoated or silica-coated zinc oxide nanoparticles . Part. Fibre Toxicol.11 ( 1 ), 44 ( 2014 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.