834
Views
0
CrossRef citations to date
0
Altmetric
Review

Antimicrobial Photodynamic Inactivation in Nanomedicine: Small Light Strides Against Bad Bugs

, , , , , & show all
Pages 2379-2404 | Published online: 25 Aug 2015

References

  • Guyer B , FreedmanMA , StrobinoDM , SondikEJ . Annual summary of vital statistics: trends in the health of Americans during the 20th century. Pediatrics106 ( 6 ), 1307 – 1317 ( 2000 ).
  • Fauci AS , MorensDM . The perpetual challenge of infectious diseases. N. Engl. J. Med.366 ( 5 ), 454 – 461 ( 2012 ).
  • Youngblood WJ , GrykoDT , LammiRK , BocianDF , HoltenD , LindseyJS . Glaser-mediated synthesis and photophysical characterization of diphenylbutadiyne-linked porphyrin dyads. J. Org. Chem.67 ( 7 ), 2111 – 2117 ( 2002 ).
  • Smith R , CoastJ . The true cost of antimicrobial resistance. Br. Med. J.346 , f1493 ( 2013 ).
  • Kraus CN . Low hanging fruit in infectious disease drug development. Curr. Opin. Microbiol.11 ( 5 ), 434 – 438 ( 2008 ).
  • Munoz-Price LS , PoirelL , BonomoRAet al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect. Dis.13 ( 9 ), 785 – 796 ( 2013 ).
  • Yoneyama H , KatsumataR . Antibiotic resistance in bacteria and its future for novel antibiotic development. Biosci. Biotechnol. Biochem.70 ( 5 ), 1060 – 1075 ( 2006 ).
  • Hamblin MR , HasanT . Photodynamic therapy: a new antimicrobial approach to infectious disease?Photochem. Photobiol. Sci.3 ( 5 ), 436 – 450 ( 2004 ).
  • Maisch T . Anti-microbial photodynamic therapy: useful in the future?Lasers Med. Sci.22 ( 2 ), 83 – 91 ( 2007 ).
  • Maisch T , HackbarthS , RegensburgerJet al. Photodynamic inactivation of multi-resistant bacteria (PIB) – a new approach to treat superficial infections in the 21st century. J. Dtsch Dermatol. Ges.9 ( 5 ), 360 – 366 ( 2011 ).
  • Bush K , CourvalinP , DantasGet al. Tackling antibiotic resistance. Nat. Rev. Microbiol.9 ( 12 ), 894 – 896 ( 2011 ).
  • Almeida RD , ManadasBJ , CarvalhoAP , DuarteCB . Intracellular signaling mechanisms in photodynamic therapy. Biochim. Biophys. Acta1704 ( 2 ), 59 – 86 ( 2004 ).
  • Johnson GA , EllisEA , KimH , MuthukrishnanN , SnavelyT , PelloisJP . Photoinduced membrane damage of E. coli and S. aureus by the photosensitizer-antimicrobial peptide conjugate eosin-(KLAKLAK)2. PLoS ONE9 ( 3 ), e91220 ( 2014 ).
  • Pereira MA , FaustinoMA , TomeJPet al. Influence of external bacterial structures on the efficiency of photodynamic inactivation by a cationic porphyrin. Photochem. Photobiol. Sci.13 ( 4 ), 680 – 690 ( 2014 ).
  • Malik Z , HananiaJ , NitzanY . Bactericidal effects of photoactivated porphyrins – an alternative approach to antimicrobial drugs. J. Photochem. Photobiol. B5 ( 3–4 ), 281 – 293 ( 1990 ).
  • Minnock A , VernonDI , SchofieldJ , GriffithsJ , ParishJH , BrownST . Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photoinactivate both gram-negative and gram-positive bacteria. J. Photochem. Photobiol. B32 ( 3 ), 159 – 164 ( 1996 ).
  • Malik Z , LadanH , NitzanY . Photodynamic inactivation of Gram-negative bacteria: problems and possible solutions. J. Photochem. Photobiol. B14 ( 3 ), 262 – 266 ( 1992 ).
  • Lambert PA . Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria. J. Appl. Microbiol.92 ( Suppl. ), S46 – S54 ( 2002 ).
  • Minnock A , VernonDI , SchofieldJ , GriffithsJ , ParishJH , BrownSB . Mechanism of uptake of a cationic water-soluble pyridinium zinc phthalocyanine across the outer membrane of Escherichia coli. Antimicrob. Agents Chemother.44 ( 3 ), 522 – 527 ( 2000 ).
  • Nitzan Y , GuttermanM , MalikZ , EhrenbergB . Inactivation of gram-negative bacteria by photosensitized porphyrins. Photochem. Photobiol.55 ( 1 ), 89 – 96 ( 1992 ).
  • Valduga G , BertoloniG , ReddiE , JoriG . Effect of extracellularly generated singlet oxygen on Gram-positive and Gram-negative bacteria. J. Photochem. Photobiol. B21 ( 1 ), 81 – 86 ( 1993 ).
  • Nishiyama N , NakagishiY , MorimotoYet al. Enhanced photodynamic cancer treatment by supramolecular nanocarriers charged with dendrimer phthalocyanine. J. Control. Release133 ( 3 ), 245 – 251 ( 2009 ).
  • Mills A , Le HunteS . An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A Chem.108 ( 1 ), 1 – 35 ( 1997 ).
  • Hashimoto K . TiO2 photocatalysis: a historical overview and future prospects. Jpn. J. Appl. Phys.44 ( 12 ), 8269 – 8285 ( Pt 8261 ) ( 2005 ).
  • Wong CC , ChuW . The hydrogen peroxide-assisted photocatalytic degradation of alachlor in TiO2 suspensions. Environ. Sci. Technol.37 ( 10 ), 2310 – 2316 ( 2003 ).
  • Spesia MB , MilanesioME , DurantiniEN . Synthesis, properties and photodynamic inactivation of Escherichia coli by novel cationic fullerene C60 derivatives. Eur. J. Med. Chem.43 ( 4 ), 853 – 861 ( 2008 ).
  • Jori G , BrownSB . Photosensitized inactivation of microorganisms. Photochem. Photobiol. Sci.3 ( 5 ), 403 – 405 ( 2004 ).
  • Soncin M , FabrisC , BusettiAet al. Approaches to selectivity in the Zn(II)-phthalocyanine-photosensitized inactivation of wild-type and antibiotic-resistant Staphylococcus aureus. Photochem. Photobiol. Sci.1 ( 10 ), 815 – 819 ( 2002 ).
  • Lauro FM , PrettoP , CovoloL , JoriG , BertoloniG . Photoinactivation of bacterial strains involved in periodontal diseases sensitized by porphycene-polylysine conjugates. Photochem. Photobiol. Sci.1 ( 7 ), 468 – 470 ( 2002 ).
  • Huang L , TerakawaM , ZhiyentayevTet al. Innovative cationic fullerenes as broad-spectrum light-activated antimicrobials. Nanomedicine6 ( 3 ), 442 – 452 ( 2010 ).
  • Perni S , ProkopovichP , PrattenJ , ParkinIP , WilsonM . Nanoparticles: their potential use in antibacterial photodynamic therapy. Photochem. Photobiol. Sci.10 ( 5 ), 712 – 720 ( 2011 ).
  • Felgentrager A , MaischT , SpathA , SchroderJA , BaumlerW . Singlet oxygen generation in porphyrin-doped polymeric surface coating enables antimicrobial effects on Staphylococcus aureus. Phys. Chem. Chem. Phys.16 ( 38 ), 20598 – 20607 ( 2014 ).
  • Zerdin K , ScullyAD . Inactivation of food-borne spoilage and pathogenic micro-organisms on the surface of a photoactive polymer. Photochem. Photobiol.86 ( 5 ), 1109 – 1117 ( 2010 ).
  • Bezman SA , BurtisPA , IzodTP , ThayerMA . Photodynamic inactivation of E. coli by rose bengal immobilized on polystyrene beads. Photochem. Photobiol.28 ( 3 ), 325 – 329 ( 1978 ).
  • Kendall CA , MortonCA . Photodynamic therapy for the treatment of skin disease. Technol. Cancer Res. Treat.2 ( 4 ), 283 – 288 ( 2003 ).
  • Moan J , PengQ , SorensenR , IaniV , NeslandJM . The biophysical foundations of photodynamic therapy. Endoscopy30 ( 4 ), 387 – 391 ( 1998 ).
  • Paszko E , EhrhardtC , SengeMO , KelleherDP , ReynoldsJV . Nanodrug applications in photodynamic therapy. Photodiagnosis Photodyn. Ther.8 ( 1 ), 14 – 29 ( 2011 ).
  • Derycke AS , De WittePA . Liposomes for photodynamic therapy. Adv. Drug Deliv. Rev.56 ( 1 ), 17 – 30 ( 2004 ).
  • Zhang GD , HaradaA , NishiyamaNet al. Polyion complex micelles entrapping cationic dendrimer porphyrin: effective photosensitizer for photodynamic therapy of cancer. J. Control. Release93 ( 2 ), 141 – 150 ( 2003 ).
  • Van Nostrum CF . Polymeric micelles to deliver photosensitizers for photodynamic therapy. Adv. Drug Deliv. Rev.56 ( 1 ), 9 – 16 ( 2004 ).
  • Li B , MoriyamaEH , LiF , JarviMT , AllenC , WilsonBC . Diblock copolymer micelles deliver hydrophobic protoporphyrin IX for photodynamic therapy. Photochem. Photobiol.83 ( 6 ), 1505 – 1512 ( 2007 ).
  • Nishiyama N , MorimotoY , JangWD , KataokaK . Design and development of dendrimer photosensitizer-incorporated polymeric micelles for enhanced photodynamic therapy. Adv. Drug Deliv. Rev.61 ( 4 ), 327 – 338 ( 2009 ).
  • Narsireddy A , VijayashreeK , IrudayarajJ , ManoramaSV , RaoNM . Targeted in vivo photodynamic therapy with epidermal growth factor receptor-specific peptide linked nanoparticles. Int. J. Pharm.471 ( 1–2 ), 421 – 429 ( 2014 ).
  • Yang Y , HuY , DuH , WangH . Intracellular gold nanoparticle aggregation and their potential applications in photodynamic therapy. Chem. Commun. (Camb.)50 ( 55 ), 7287 – 7290 ( 2014 ).
  • Ricci-Junior E , MarchettiJM . Preparation, characterization, photocytotoxicity assay of PLGA nanoparticles containing zinc (II) phthalocyanine for photodynamic therapy use. J. Microencapsul.23 ( 5 ), 523 – 538 ( 2006 ).
  • Roy I , OhulchanskyyTY , PudavarHEet al. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J. Am. Chem. Soc.125 ( 26 ), 7860 – 7865 ( 2003 ).
  • Wang L , ShiJ , LiuRet al. Photodynamic effect of functionalized single-walled carbon nanotubes: a potential sensitizer for photodynamic therapy. Nanoscale6 ( 9 ), 4642 – 4651 ( 2014 ).
  • Xing Y , DaiL . Nanodiamonds for nanomedicine. Nanomedicine (Lond.)4 ( 2 ), 207 – 218 ( 2009 ).
  • Zhang XQ , ChenM , LamR , XuX , OsawaE , HoD . Polymer-functionalized nanodiamond platforms as vehicles for gene delivery. ACS Nano3 ( 9 ), 2609 – 2616 ( 2009 ).
  • Griffiths G , NystromB , SableSB , KhullerGK . Nanobead-based interventions for the treatment and prevention of tuberculosis. Nat. Rev. Microbiol.8 ( 11 ), 827 – 834 ( 2010 ).
  • Kateb B , ChiuK , BlackKLet al. Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: what should be the policy? Neuroimage 54 ( Suppl. 1 ), S106 – S124 ( 2011 ).
  • Casas A , BattahS , Di VenosaGet al. Sustained and efficient porphyrin generation in vivo using dendrimer conjugates of 5-ALA for photodynamic therapy. J. Control. Release135 ( 2 ), 136 – 143 ( 2009 ).
  • Alarcon E , EdwardsAM , AspeeA , BorsarelliCD , LissiEA . Photophysics and photochemistry of rose bengal bound to human serum albumin. Photochem. Photobiol. Sci.8 ( 7 ), 933 – 943 ( 2009 ).
  • Guo Y , RogeljS , ZhangP . Rose Bengal-decorated silica nanoparticles as photosensitizers for inactivation of Gram-positive bacteria. Nanotechnology21 ( 6 ), 065102 ( 2010 ).
  • Tang W , XuH , KopelmanR , PhilbertMA . Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms. Photochem. Photobiol.81 ( 2 ), 242 – 249 ( 2005 ).
  • Khdair A , GerardB , HandaH , MaoG , ShekharMP , PanyamJ . Surfactant-polymer nanoparticles enhance the effectiveness of anticancer photodynamic therapy. Mol. Pharm.5 ( 5 ), 795 – 807 ( 2008 ).
  • Suppan P . Chemistry and Light . Royal Society of Chemistry , London, UK , 295 ( 1994 ).
  • Fujishima A , HondaK . Electrochemical photolysis of water at a semiconductor electrode. Nature238 ( 5358 ), 37 – 38 ( 1972 ).
  • Herrmann JM . Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today53 ( 1 ), 115 – 129 ( 1999 ).
  • Kashyout AB , SolimanM , El-HaleemDA . Disinfection of bacterial suspensions by photocatalytic oxidation using TiO2 nanoparticles under ultraviolet illumination. Alexandria Eng.45 ( 3 ), 367 – 371 ( 2006 ).
  • Cheng CL , SunDS , ChuWCet al. The effects of the bacterial interaction with visible-light responsive titania photocatalyst on the bactericidal performance. J. Biomed. Sci.16 , 7 ( 2009 ).
  • Tatsuma T , TakedaS , SaitohS , OhkoY , FujishimaA . Bactericidal effect of an energy storage TiO2–WO3 photocatalyst in dark. Electrochem. Commun.5 ( 9 ), 793 – 796 ( 2003 ).
  • Vohra A , GoswamiDY , DeshpandeDA , BlockSS . Enhanced photocatalytic disinfection of indoor air. Appl Catalysis B Environ64 ( 1–2 ), 57 – 65 ( 2006 ).
  • Sapkota A , DuttaJ . Zinc oxide nanorod mediated visible light photoinactivation of model microbes in water. Nanotechnology22 ( 21 ), 215703 ( 2011 ).
  • Rodriguez J . Solar water disinfection studies with supported TiO2 and polymer-supported R(II) sensitizer in a compound parabolic collector. J. Sol. Energy Eng. Trans ASME132 ( 1 ), 0110011 – 0110015 ( 2007 ).
  • Ditta IB , SteeleA , LiptrotCet al. Photocatalytic antimicrobial activity of thin surface films of TiO(2), CuO and TiO(2)/CuO dual layers on Escherichia coli and bacteriophage T4. Appl. Microbiol. Biotechnol.79 ( 1 ), 127 – 133 ( 2008 ).
  • Sato T , KoizumiY , TayaM . Photocatalytic deactivation of airborne microbial cells on TiO2-loaded plate. Biochem. Eng. J.14 ( 2 ), 149 – 152 ( 2003 ).
  • Kuhn KP , ChabernyIF , MassholderKet al. Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light. Chemosphere53 ( 1 ), 71 – 77 ( 2003 ).
  • Luo L , MiaoL , TanemuraS , TanemuraM . Photocatalytic sterilization of TiO2 films coated on Al fiber. Mater. Sci. Eng. B148 ( 1–3 ), 183 – 186 ( 2008 ).
  • Yao Y , OhkoY , SekiguchiY , FujishimaA , KubotaY . Self-sterilization using silicone catheters coated with Ag and TiO2 nanocomposite thin film. J. Biomed. Mater. Res. B Appl. Biomater.85 ( 2 ), 453 – 460 ( 2008 ).
  • Block SS , SengVP , GoswamiDW . Chemically enhanced sunlight for killing bacteria. J. Sol. Energy Eng.119 ( 1 ), 85 ( 1997 ).
  • Goswami T . Photocatalytic system to destroy bioaerosols in air. J. Adv. Oxid. Technol.4 , 185 – 188 ( 1999 ).
  • Song S . Fabrication of TiO2 impregnated stainless steel fiber photocatalyts and evaluation of photocatalytic activity. J. Korean Ind. Eng. Chem.19 ( 6 ), 674 – 679 ( 2008 ).
  • Cho M , ChoiY , ParkH , KimK , WooGJ , ParkJ . Titanium dioxide/UV photocatalytic disinfection in fresh carrots. J. Food Prot.70 ( 1 ), 97 – 101 ( 2007 ).
  • Armon R . Disinfection of Bacillus spp. spores in drinking water by TiO2 photocatalysis as a model for Bacillus anthracis. Waterborne Pathog.4 ( 2 ), 7 – 14 ( 2004 ).
  • Butterfield IM . Water disinfection using an immobilised titanium dioxide film in a photochemical reactor with electric field enhancement. Water Res.31 ( 3 ), 675 – 677 ( 1997 ).
  • Guimarães JR , BarrettoAS . Photocatalytic inactivation of Clostridium perfringens and coliphages in water. Braz. J. Chem. Eng.20 , 403 – 411 ( 2003 ).
  • Singh A . Photocatalytic disinfection of water using immobilized titanium dioxide. Poll. Res.24 ( 1 ), 29 – 33 ( 2005 ).
  • Vidal A , DíAzAI , El HraikiAet al. Solar photocatalysis for detoxification and disinfection of contaminated water: pilot plant studies. Catal. Today54 ( 2–3 ), 283 – 290 ( 1999 ).
  • Chen WJ , TsaiPJ , ChenYC . Functional Fe3O4/TiO2 core/shell magnetic nanoparticles as photokilling agents for pathogenic bacteria. Small4 ( 4 ), 485 – 491 ( 2008 ).
  • Oka Y , KimWC , YoshidaTet al. Efficacy of titanium dioxide photocatalyst for inhibition of bacterial colonization on percutaneous implants. J. Biomed. Mater. Res. B Appl. Biomater.86 ( 2 ), 530 – 540 ( 2008 ).
  • Chen F , YangX , WuQ . Antifungal capability of TiO2 coated film on moist wood. Build. Environ.44 ( 5 ), 1088 – 1093 ( 2009 ).
  • Wolfrum EJ , HuangJ , BlakeDMet al. Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide-coated surfaces. Environ. Sci. Technol.36 ( 15 ), 3412 – 3419 ( 2002 ).
  • Erkan A . Photocatalytic microbial inactivation over Pd doped SnO2 and TiO2 thin films. J. Photoch. Photobiol. A Chem.184 ( 3 ), 313 – 321 ( 2006 ).
  • Sokmen M , DegerliS , AslanA . Photocatalytic disinfection of Giardia intestinalis and Acanthamoeba castellani cysts in water. Exp. Parasitol.119 ( 1 ), 44 – 48 ( 2008 ).
  • Ryu H . Photocatalytic inactivation of Cryptosporidium parvum with TiO2 and low-pressure ultraviolet irradiation. Water. Res.42 ( 6–7 ), 1523 – 1530 ( 2008 ).
  • Guillard C , BuiT-H , FelixC , MoulesV , LinaB , LejeuneP . Microbiological disinfection of water and air by photocatalysis. C. R. Chim.11 ( 1–2 ), 107 – 113 ( 2008 ).
  • Zan L , FaW , PengT , GongZK . Photocatalysis effect of nanometer TiO2 and TiO2-coated ceramic plate on hepatitis B virus. J. Photochem. Photobiol. B86 ( 2 ), 165 – 169 ( 2007 ).
  • Lin Z . Inactivation efficiency of TiO2 on H1N1 influenza virus. Gaodeng Xuexiao Huaxue Xuebao Chem. J. Chin. Univ.27 ( 4 ), 721 – 725 ( 2006 ).
  • Kozlova EA , SafatovAS , KiselevSAet al. Inactivation and mineralization of aerosol deposited model pathogenic microorganisms over TiO2 and Pt/TiO2. Environ. Sci. Technol.44 ( 13 ), 5121 – 5126 ( 2010 ).
  • Watts RJ , KongS , OrrMP , MillerGC , HenryBE . Photocatalytic inactivation of coliform bacteria and viruses in secondary wastewater effluent. Water Res.29 ( 1 ), 95 – 100 ( 1995 ).
  • Han W , ZhangB , CaoWet al. The inactivation effect of photocatalytic titanium apatite filter on SARS virus. Sheng wu hua xue yu sheng wu wu li jin zhan31 ( 11 ), 982 – 985 ( 2003 ).
  • Sekiguchi Y , YaoY , OhkoYet al. Self-sterilizing catheters with titanium dioxide photocatalyst thin films for clean intermittent catheterization: basis and study of clinical use. Int. J. Urol.14 ( 5 ), 426 – 430 ( 2007 ).
  • Nakamura H , TanakaM , ShinoharaS , GotohM , KarubeI . Development of a self-sterilizing lancet coated with a titanium dioxide photocatalytic nano-layer for self-monitoring of blood glucose. Biosens. Bioelectron.22 ( 9–10 ), 1920 – 1925 ( 2007 ).
  • Chawengkijwanich C , HayataY . Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int. J. Food Microbiol.123 ( 3 ), 288 – 292 ( 2008 ).
  • Suketa N , SawaseT , KitauraHet al. An antibacterial surface on dental implants, based on the photocatalytic bactericidal effect. Clin. Implant Dent. Relat. Res.7 ( 2 ), 105 – 111 ( 2005 ).
  • Lilja M , ForsgrenJ , WelchK , AstrandM , EngqvistH , StrommeM . Photocatalytic and antimicrobial properties of surgical implant coatings of titanium dioxide deposited though cathodic arc evaporation. Biotechnol. Lett.34 ( 12 ), 2299 – 2305 ( 2012 ).
  • Sharma SK , ChiangLY , HamblinMR . Photodynamic therapy with fullerenes in vivo: reality or a dream?Nanomedicine (Lond.)6 ( 10 ), 1813 – 1825 ( 2011 ).
  • Liu Q , CuiQ , LiXJ , JinL . The applications of buckminsterfullerene C60 and derivatives in orthopaedic research. Connect. Tissue Res.55 ( 2 ), 71 – 79 ( 2014 ).
  • Gunes S , NeugebauerH , SariciftciNS . Conjugated polymer-based organic solar cells. Chem. Rev.107 ( 4 ), 1324 – 1338 ( 2007 ).
  • Arias AC , MackenzieJD , MccullochI , RivnayJ , SalleoA . Materials and applications for large area electronics: solution-based approaches. Chem. Rev.110 ( 1 ), 3 – 24 ( 2010 ).
  • Kang H , ChoCH , ChoHHet al. Controlling number of indene solubilizing groups in multiadduct fullerenes for tuning optoelectronic properties and open-circuit voltage in organic solar cells. ACS Appl. Mater. Interfaces4 ( 1 ), 110 – 116 ( 2012 ).
  • Mizuno K , ZhiyentayevT , HuangLet al. Antimicrobial photodynamic therapy with functionalized fullerenes: quantitative structure-activity relationships. J. Nanomed. Nanotechnol.2 ( 2 ), 1 – 9 ( 2011 ).
  • Mroz P , PawlakA , SattiMet al. Functionalized fullerenes mediate photodynamic killing of cancer cells: type I versus type II photochemical mechanism. Free Radic. Biol. Med.43 ( 5 ), 711 – 719 ( 2007 ).
  • Mroz P , TegosGP , GaliH , WhartonT , SarnaT , HamblinMR . Photodynamic therapy with fullerenes. Photochem. Photobiol. Sci.6 ( 11 ), 1139 – 1149 ( 2007 ).
  • Tegos GP , DemidovaTN , Arcila-LopezDet al. Cationic fullerenes are effective and selective antimicrobial photosensitizers. Chem. Biol.12 ( 10 ), 1127 – 1135 ( 2005 ).
  • Lu Z , DaiT , HuangLet al. Photodynamic therapy with a cationic functionalized fullerene rescues mice from fatal wound infections. Nanomedicine (Lond.)5 ( 10 ), 1525 – 1533 ( 2010 ).
  • Huang L , WangM , SharmaSKet al. Decacationic [70]fullerene approach for efficient photokilling of infectious bacteria and cancer cells. ECS Trans.45 ( 20 ), doi:10.1149/04520.0065ecst ( 2013 ).
  • Wang M , MaraganiS , HuangLet al. Synthesis of decacationic [60]fullerene decaiodides giving photoinduced production of superoxide radicals and effective PDT-mediation on antimicrobial photoinactivation. Eur. J. Med. Chem.63C , 170 – 184 ( 2013 ).
  • Wang M , HuangL , SharmaSKet al. Synthesis and photodynamic effect of new highly photostable decacationically armed [60]- and [70]fullerene decaiodide monoadducts to target pathogenic bacteria and cancer cells. J. Med. Chem.55 ( 9 ), 4274 – 4285 ( 2012 ).
  • Manjon F , Santana-MaganaM , Garcia-FresnadilloD , OrellanaG . Are silicone-supported [C60]-fullerenes an alternative to Ru(II) polypyridyls for photodynamic solar water disinfection?Photochem. Photobiol. Sci.13 ( 2 ), 397 – 406 ( 2014 ).
  • Aoshima H , KokuboK , ShirakawaS , ItoM , YamanaS , OshimaT . Antimicrobial activity of fullerenes and their hydroxylated derivatives. Biocontrol. Sci.14 ( 2 ), 69 – 72 ( 2009 ).
  • Iijima S . Helical microtubules of graphitic carbon. Nature354 ( 6348 ), 56 – 58 ( 1991 ).
  • Baughman RH , ZakhidovAA , De HeerWA . Carbon nanotubes – the route toward applications. Science297 ( 5582 ), 787 – 792 ( 2002 ).
  • Chen P , WuX , LinJ , TanKL . High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science285 ( 5424 ), 91 – 93 ( 1999 ).
  • Hussain CM , SaridaraC , MitraS . Microtrapping characteristics of single and multi-walled carbon nanotubes. J. Chromatogr. A1185 ( 2 ), 161 – 166 ( 2008 ).
  • Jolles P , JollesJ . What’s new in lysozyme research? Always a model system, today as yesterday. Mol. Cell Biochem.63 ( 2 ), 165 – 189 ( 1984 ).
  • Nepal D , BalasubramanianS , SimonianAL , DavisVA . Strong antimicrobial coatings: single-walled carbon nanotubes armored with biopolymers. Nano Lett.8 ( 7 ), 1896 – 1901 ( 2008 ).
  • Banerjee I , DouaisiMP , MondalD , KaneRS . Light-activated nanotube-porphyrin conjugates as effective antiviral agents. Nanotechnology23 ( 10 ), 105101 ( 2012 ).
  • Oza G , PandeyS , GuptaAet al. Photocatalysis-assisted water filtration: using TiO2-coated vertically aligned multi-walled carbon nanotube array for removal of Escherichia coli O157:H7. Mater. Sci. Eng. C Mater. Biol. Appl.33 ( 7 ), 4392 – 4400 ( 2013 ).
  • Dinu CZ , ZhuG , BaleSSet al. Enzyme-based nanoscale composites for use as active decontamination surfaces. Adv. Funct. Mater.20 ( 3 ), 392 – 398 ( 2010 ).
  • Wang Y , LiZ , WangJ , LiJ , LinY . Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol.29 ( 5 ), 205 – 212 ( 2011 ).
  • Sun X , LiuZ , WelsherKet al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res.1 ( 3 ), 203 – 212 ( 2008 ).
  • Huang YY , SharmaSK , DaiTet al. Can nanotechnology potentiate photodynamic therapy? Nanotech. Rev. 10 ( 2 ), 111 – 146 ( 2012 ).
  • Rong P , YangK , SrivastanAet al. Photosensitizer loaded nano-graphene for multimodality imaging guided tumor photodynamic therapy. Theranostics4 ( 3 ), 229 – 239 ( 2014 ).
  • Zhou L , ZhouL , WeiSet al. Combination of chemotherapy and photodynamic therapy using graphene oxide as drug delivery system. J. Photochem. Photobiol. B135 , 7 – 16 ( 2014 ).
  • Sahu A , ChoiWI , LeeJH , TaeG . Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy. Biomaterials34 ( 26 ), 6239 – 6248 ( 2013 ).
  • Ristic BZ , MilenkovicMM , DakicIRet al. Photodynamic antibacterial effect of graphene quantum dots. Biomaterials35 ( 15 ), 4428 – 4435 ( 2014 ).
  • Sun H , GaoN , DongK , RenJ , QuX . Graphene quantum dots-band-AIDS used for wound disinfection. ACS Nano8 ( 6 ), 6202 – 6210 ( 2014 ).
  • Bangham AD . A correlation between surface charge and coagulant action of phospholipids. Nature192 , 1197 – 1198 ( 1961 ).
  • Sadasivam M , AvciP , GuptaGKet al. Self-assembled liposomal nanoparticles in photodynamic therapy. Eur. J. Nanomed.5 ( 3 ), 115 – 129 ( 2013 ).
  • Kozlowska D , ForanP , MacmahonP , ShellyMJ , EustaceS , O’KennedyR . Molecular and magnetic resonance imaging: the value of immunoliposomes. Adv. Drug Deliv. Rev.61 ( 15 ), 1402 – 1411 ( 2009 ).
  • Vemuri S , RhodesCT . Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm. Acta Helv.70 ( 2 ), 95 – 111 ( 1995 ).
  • Samad A , SultanaY , AqilM . Liposomal drug delivery systems: an update review. Curr. Drug Deliv.4 ( 4 ), 297 – 305 ( 2007 ).
  • Kim HJ , JonesMN . The delivery of benzyl penicillin to Staphylococcus aureus biofilms by use of liposomes. J. Liposome Res.14 ( 3–4 ), 123 – 139 ( 2004 ).
  • Mugabe C , AzghaniAO , OmriA . Liposome-mediated gentamicin delivery: development and activity against resistant strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients. J. Antimicrob. Chemother.55 ( 2 ), 269 – 271 ( 2005 ).
  • Pinto-Alphandary H , AndremontA , CouvreurP . Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int. J. Antimicrob. Agents13 ( 3 ), 155 – 168 ( 2000 ).
  • Ferro S , RicchelliF , ManciniG , TognonG , JoriG . Inactivation of methicillin-resistant Staphylococcus aureus (MRSA) by liposome-delivered photosensitising agents. J. Photochem. Photobiol. B83 ( 2 ), 98 – 104 ( 2006 ).
  • Ferro S , RicchelliF , MontiD , ManciniG , JoriG . Efficient photoinactivation of methicillin-resistant Staphylococcus aureus by a novel porphyrin incorporated into a poly-cationic liposome. Int. J. Biochem. Cell. Biol.39 ( 5 ), 1026 – 1034 ( 2007 ).
  • Bombelli C , BordiF , FerroSet al. New cationic liposomes as vehicles of m-tetrahydroxyphenylchlorin in photodynamic therapy of infectious diseases. Mol. Pharm.5 ( 4 ), 672 – 679 ( 2008 ).
  • Haldar J , KondaiahP , BhattacharyaS . Synthesis and antibacterial properties of novel hydrolyzable cationic amphiphiles. Incorporation of multiple head groups leads to impressive antibacterial activity. J. Med. Chem.48 ( 11 ), 3823 – 3831 ( 2005 ).
  • Yang YT , ChienHF , ChangPHet al. Photodynamic inactivation of chlorin e6-loaded CTAB-liposomes against Candida albicans. Lasers Surg. Med.45 ( 3 ), 175 – 185 ( 2013 ).
  • Yang K , GitterB , RugerRet al. Antimicrobial peptide-modified liposomes for bacteria targeted delivery of temoporfin in photodynamic antimicrobial chemotherapy. Photochem. Photobiol. Sci.10 ( 10 ), 1593 – 1601 ( 2011 ).
  • Brancaleon L , MoseleyH . Laser and non-laser light sources for photodynamic therapy. Lasers Med. Sci.17 ( 3 ), 173 – 186 ( 2002 ).
  • Phillip MJ , MaximukePP . Chemiluminescence and hematoporphyrin derivative: a novel therapy for mammary adenocarcinomas in mice. Oncology46 ( 4 ), 266 – 272 ( 1989 ).
  • Carpenter S , FehrMJ , KrausGA , PetrichJW . Chemiluminescent activation of the antiviral activity of hypericin: a molecular flashlight. Proc. Natl Acad. Sci. USA91 ( 25 ), 12273 – 12277 ( 1994 ).
  • Nakonechny F , FirerMA , NitzanY , NisnevitchM . Intracellular antimicrobial photodynamic therapy: a novel technique for efficient eradication of pathogenic bacteria. Photochem. Photobiol.86 ( 6 ), 1350 – 1355 ( 2010 ).
  • Langer R . Biomaterials in drug delivery and tissue engineering: one laboratory’s experience. Acc. Chem. Res.33 ( 2 ), 94 – 101 ( 2000 ).
  • Zhang Z , OrtizO , GoyalR , KohnJ . Biodegradable polymers. Princip. Tissue Eng. ( 23 ), 441 – 490 ( 2014 ).
  • Coenye T , HonraetK , RigoleP , Nadal JimenezP , NelisHJ . In vitro inhibition of Streptococcus mutans biofilm formation on hydroxyapatite by subinhibitory concentrations of anthraquinones. Antimicrob. Agents Chemother.51 ( 4 ), 1541 – 1544 ( 2007 ).
  • Nafee N , YoussefA , El-GowelliH , AsemH , KandilS . Antibiotic-free nanotherapeutics: hypericin nanoparticles thereof for improved in vitro and in vivo antimicrobial photodynamic therapy and wound healing. Int. J. Pharm.454 ( 1 ), 249 – 258 ( 2013 ).
  • Pagonis TC , ChenJ , FontanaCRet al. Nanoparticle-based endodontic antimicrobial photodynamic therapy. J. Endod.36 ( 2 ), 322 – 328 ( 2010 ).
  • Harris F , ChatfieldLK , PhoenixDA . Phenothiazinium based photosensitisers – photodynamic agents with a multiplicity of cellular targets and clinical applications. Curr. Drug Targets6 ( 5 ), 615 – 627 ( 2005 ).
  • Helander IM , Nurmiaho-LassilaEL , AhvenainenR , RhoadesJ , RollerS . Chitosan disrupts the barrier properties of the outer membrane of gram-negative bacteria. Int. J. Food Microbiol.71 ( 2–3 ), 235 – 244 ( 2001 ).
  • Muzzarelli R , TarsiR , FilippiniO , GiovanettiE , BiaginiG , VaraldoPE . Antimicrobial properties of N-carboxybutyl chitosan. Antimicrob. Agents Chemother.34 ( 10 ), 2019 – 2023 ( 1990 ).
  • Ueno H , MoriT , FujinagaT . Topical formulations and wound healing applications of chitosan. Adv. Drug Deliv. Rev.52 ( 2 ), 105 – 115 ( 2001 ).
  • Ueno H , YamadaH , TanakaIet al. Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials20 ( 15 ), 1407 – 1414 ( 1999 ).
  • Wang XH , LiDP , WangWJet al. Crosslinked collagen/chitosan matrix for artificial livers. Biomaterials24 ( 19 ), 3213 – 3220 ( 2003 ).
  • Shimono N , TakatoriT , UedaM , MoriM , HigashiY , NakamuraY . Chitosan dispersed system for colon-specific drug delivery. Int. J. Pharm.245 ( 1–2 ), 45 – 54 ( 2002 ).
  • Raafat D , Von BargenK , HaasA , SahlHG . Insights into the mode of action of chitosan as an antibacterial compound. Appl. Environ. Microbiol.74 ( 12 ), 3764 – 3773 ( 2008 ).
  • Calvo P , Remuñán-LópezC , Vila-JatoJL , AlonsoMJ . Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J. Appl. Poly Sci.63 ( 1 ), 125 – 132 ( 1997 ).
  • Shrestha A , KishenA . Antibacterial efficacy of photosensitizer functionalized biopolymeric nanoparticles in the presence of tissue inhibitors in root canal. J. Endod.40 ( 4 ), 566 – 570 ( 2014 ).
  • Shrestha A , KishenA . Polycationic chitosan-conjugated photosensitizer for antibacterial photodynamic therapy. Photochem. Photobiol.88 ( 3 ), 577 – 583 ( 2012 ).
  • Chen CP , ChenCT , TsaiT . Chitosan nanoparticles for antimicrobial photodynamic inactivation: characterization and in vitro investigation. Photochem. Photobiol.88 ( 3 ), 570 – 576 ( 2012 ).
  • Choi S , LeeH , ChaeH . Synergistic in vitro photodynamic antimicrobial activity of methylene blue and chitosan against Helicobacter pylori 26695. Photodiagnosis Photodyn. Ther.11 ( 4 ), 526 – 532 ( 2014 ).
  • Habibi Y , LuciaLA , RojasOJ . Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev.110 ( 6 ), 3479 – 3500 ( 2010 ).
  • Araki J , WadaM , KugaS , OkanoT . Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf. A Physicochem. Eng. Asp.142 ( 1 ), 75 – 82 ( 1998 ).
  • Araki J , WadaM , KugaS , OkanoT . Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J. Wood. Sci.45 ( 3 ), 258 – 261 ( 1999 ).
  • Beck-Candanedo S , RomanM , GrayDG . Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules6 ( 2 ), 1048 – 1054 ( 2005 ).
  • Filpponen EI . The synthetic strategies for unique properties in cellulose nanocrystal materials. http://repository.lib.ncsu.edu/ir/bitstream/1840.16/4626/1/etd.pdf .
  • Rånby BG . Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discuss Faraday Soc.11 , 158 – 164 ( 1951 ).
  • Filpponen I , ArgyropoulosDS . Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels. Biomacromolecules11 ( 4 ), 1060 – 1066 ( 2010 ).
  • Feese E , SadeghifarH , GraczHS , ArgyropoulosDS , GhiladiRA . Photobactericidal porphyrin-cellulose nanocrystals: synthesis, characterization, and antimicrobial properties. Biomacromolecules12 ( 10 ), 3528 – 3539 ( 2011 ).
  • Carpenter BL , FeeseE , SadeghifarH , ArgyropoulosDS , GhiladiRA . Porphyrin-cellulose nanocrystals: a photobactericidal material that exhibits broad spectrum antimicrobial activity. Photochem. Photobiol.88 ( 3 ), 527 – 536 ( 2012 ).
  • Bhattacharya R , MukherjeeP . Biological properties of “naked” metal nanoparticles. Adv. Drug Deliv. Rev.60 ( 11 ), 1289 – 1306 ( 2008 ).
  • Daniel MC , AstrucD . Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.104 ( 1 ), 293 – 346 ( 2004 ).
  • Kuo WS , ChangCN , ChangYT , YehCS . Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia. Chem. Commun. (Camb.) ( 32 ), 4853 – 4855 ( 2009 ).
  • Pissuwan D , CortieCH , ValenzuelaSM , CortieMB . Functionalised gold nanoparticles for controlling pathogenic bacteria. Trends Biotechnol.28 ( 4 ), 207 – 213 ( 2010 ).
  • Zharov VP , MercerKE , GalitovskayaEN , SmeltzerMS . Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys. J.90 ( 2 ), 619 – 627 ( 2006 ).
  • Norman RS , StoneJW , GoleA , MurphyCJ , Sabo-AttwoodTL . Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods. Nano Lett.8 ( 1 ), 302 – 306 ( 2008 ).
  • Simon-Deckers A , BrunE , GougetB , CarrièreM , Sicard-RoselliC . Impact of gold nanoparticles combined to x-ray irradiation on bacteria. Gold Bull.41 ( 2 ), 187 – 194 ( 2008 ).
  • Huang WC , TsaiPJ , ChenYC . Functional gold nanoparticles as photothermal agents for selective-killing of pathogenic bacteria. Nanomedicine (Lond.)2 ( 6 ), 777 – 787 ( 2007 ).
  • Gil-Tomás J , TubbyS , ParkinIPet al. Lethal photosensitisation of Staphylococcus aureus using a toluidine blue O-tiopronin-gold nanoparticle conjugate. J. Mater. Chem.17 , 3739 – 3746 ( 2007 ).
  • Perni S , PiccirilloC , PrattenJet al. The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles. Biomaterials30 ( 1 ), 89 – 93 ( 2009 ).
  • Hongwei G , HoPL , EdmondT , LingW , BingX . Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett.3 ( 9 ), 1261 – 1263 ( 2003 ).
  • Nath S , KaittanisC , TinkhamA , PerezJM . Dextran-coated gold nanoparticles for the assessment of antimicrobial susceptibility. Anal. Chem.80 ( 4 ), 1033 – 1038 ( 2008 ).
  • Burygin GL , KhlebtsovBN , ShantrokhaAN , DykmanLA , BogatyrevVA , KhlebtsovNG . On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles. Nanoscale Res. Lett.4 ( 8 ), 794 – 801 ( 2009 ).
  • Nirmala Grace A , PandianK . Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles – a brief study. Colloids Surf. A Physicochem. Eng. Asp.297 ( 1 ), 63 – 70 ( 2007 ).
  • Rai A , PrabhuneA , PerryCC . Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J. Mater. Chem.20 , 6789 – 6798 ( 2010 ).
  • Chamundeeswari M , SobhanaSS , JacobJPet al. Preparation, characterization and evaluation of a biopolymeric gold nanocomposite with antimicrobial activity. Biotechnol. Appl. Biochem.55 ( 1 ), 29 – 35 ( 2010 ).
  • Khan S , AlamF , AzamA , KhanAU . Gold nanoparticles enhance methylene blue-induced photodynamic therapy: a novel therapeutic approach to inhibit Candida albicans biofilm. Int. J. Nanomedicine7 , 3245 – 3257 ( 2012 ).
  • Di Gianvincenzo P , MarradiM , Martinez-AvilaOM , BedoyaLM , AlcamiJ , PenadesS . Gold nanoparticles capped with sulfate-ended ligands as anti-HIV agents. Bioorg. Med. Chem. Lett.20 ( 9 ), 2718 – 2721 ( 2010 ).
  • Lara HH , Ayala-NunezNV , Ixtepan-TurrentL , Rodriguez-PadillaC . Mode of antiviral action of silver nanoparticles against HIV-1. J. Nanobiotechnol.8 , 1 ( 2010 ).
  • Ravishankar Rai V , Jamuna BaiA . Nanoparticles and their potential application as antimicrobials. In : Science Against Microbial Pathogens: Communicating Current Research And Technological Advances . Méndez-VilasA ( Ed. ). Formatex Research Center , Badajoz, Spain , 197 – 209 ( 2011 ).
  • Gupta A , SilverS . Silver as a biocide: will resistance become a problem?Nat. Biotechnol.16 ( 10 ), 888 ( 1998 ).
  • Matsumura Y , YoshikataK , KunisakiS , TsuchidoT . Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl. Environ. Microbiol.69 ( 7 ), 4278 – 4281 ( 2003 ).
  • Gogoi SK , GopinathP , PaulA , RameshA , GhoshSS , ChattopadhyayA . Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir22 ( 22 ), 9322 – 9328 ( 2006 ).
  • Smetana AB , KlabundeKJ , MarchinGR , SorensenCM . Biocidal activity of nanocrystalline silver powders and particles. Langmuir24 ( 14 ), 7457 – 7464 ( 2008 ).
  • Shrivastava S , BeraT , RoyA , SinghG , RamachandraraoP , DashD . Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotech18 ( 22 ), 225103 ( 2007 ).
  • Holt KB , BardAJ . Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry44 ( 39 ), 13214 – 13223 ( 2005 ).
  • Dibrov P , DziobaJ , GosinkKK , HaseCC . Chemiosmotic mechanism of antimicrobial activity of Ag(+) in Vibrio cholerae. Antimicrob. Agents Chemother.46 ( 8 ), 2668 – 2670 ( 2002 ).
  • Sondi I , Salopek-SondiB . Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid. Interface Sci.275 ( 1 ), 177 – 182 ( 2004 ).
  • Panacek A , KvitekL , PrucekRet al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B110 ( 33 ), 16248 – 16253 ( 2006 ).
  • Cho KH , ParkJE , OsakaT , ParkSG . The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim. Acta51 ( 5 ), 956 – 960 ( 2005 ).
  • Baker C , PradhanA , PakstisL , PochanDJ , ShahSI . Synthesis and antibacterial properties of silver nanoparticles. J. Nanosci. Nanotechnol.5 ( 2 ), 244 – 249 ( 2005 ).
  • Martinez-Castanon GA , Nino-MartinezN , Martinez-GutierrezF , Martinez-MendozaJR , RuizF . Synthesis and antibacterial activity of silver nanoparticles with different sizes. J. Nanopart. Res.10 ( 8 ), 1343 – 1348 ( 2008 ).
  • Pal S , TakYK , SongJM . Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol.73 ( 6 ), 1712 – 1720 ( 2007 ).
  • Brett DW . A discussion of silver as an antimicrobial agent: alleviating the confusion. Ostomy Wound Manage.52 ( 1 ), 34 – 41 ( 2006 ).
  • Hernandez-Sierra JF , RuizF , PenaDCet al. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine4 ( 3 ), 237 – 240 ( 2008 ).
  • Besinis A , De PeraltaT , HandyRD . The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared with the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology8 ( 1 ), 1 – 16 ( 2014 ).
  • Feng QL , WuJ , ChenGQ , CuiFZ , KimTN , KimJO . A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res.52 ( 4 ), 662 – 668 ( 2000 ).
  • Jung WK , KooHC , KimKW , ShinS , KimSH , ParkYH . Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microbiol.74 ( 7 ), 2171 – 2178 ( 2008 ).
  • Aymonier C , SchlotterbeckU , AntoniettiLet al. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem. Commun. (Camb.) ( 24 ), 3018 – 3019 ( 2002 ).
  • Melaiye A , SunZ , HindiKet al. Silver(I)-imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity. J. Am. Chem. Soc.127 ( 7 ), 2285 – 2291 ( 2005 ).
  • Banerjee M , MallickS , PaulA , ChattopadhyayA , GhoshSS . Heightened reactive oxygen species generation in the antimicrobial activity of a three component iodinated chitosan-silver nanoparticle composite. Langmuir26 ( 8 ), 5901 – 5908 ( 2010 ).
  • Lok CN , HoCM , ChenRet al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res.5 ( 4 ), 916 – 924 ( 2006 ).
  • Otani M , TabataJ , UekiT , SanoK , InouyeS . Heat-shock-induced proteins from Myxococcus xanthus. J. Bacteriol.183 ( 21 ), 6282 – 6287 ( 2001 ).
  • Kitagawa M , MatsumuraY , TsuchidoT . Small heat shock proteins, IbpA and IbpB, are involved in resistances to heat and superoxide stresses in Escherichia coli. FEMS Microbiol. Lett.184 ( 2 ), 165 – 171 ( 2000 ).
  • Nanda A , SaravananM . Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine5 ( 4 ), 452 – 456 ( 2009 ).
  • Brown AN , SmithK , SamuelsTA , LuJ , ObareSO , ScottME . Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl. Environ. Microbiol.78 ( 8 ), 2768 – 2774 ( 2012 ).
  • Baram-Pinto D , ShuklaS , PerkasN , GedankenA , SaridR . Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjug. Chem.20 ( 8 ), 1497 – 1502 ( 2009 ).
  • Lu L , SunRW , ChenRet al. Silver nanoparticles inhibit hepatitis B virus replication. Antivir. Ther.13 ( 2 ), 253 – 262 ( 2008 ).
  • Sun L , SinghAK , VigK , PillaiSR , SinghSR . Silver nanoparticles inhibit replication of respiratory syncytial virus. J. Biomed. Nanotech.4 ( 2 ), 149 – 158 ( 2008 ).
  • Rogers JV , ParkinsonCV , ChoiYW , SpeshockJL , HussainSM . A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res. Lett.3 ( 4 ), 129 – 133 ( 2008 ).
  • Kim KJ , SungWS , MoonSK , ChoiJS , KimJG , LeeDG . Antifungal effect of silver nanoparticles on dermatophytes. J. Microbiol. Biotechnol.18 ( 8 ), 1482 – 1484 ( 2008 ).
  • Kim KJ , SungWS , SuhBKet al. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals22 ( 2 ), 235 – 242 ( 2009 ).
  • Gajbhiye M , KesharwaniJ , IngleA , GadeA , RaiM . Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine5 ( 4 ), 382 – 386 ( 2009 ).
  • Couleaud P , MorosiniV , FrochotC , RicheterS , RaehmL , DurandJO . Silica-based nanoparticles for photodynamic therapy applications. Nanoscale2 ( 7 ), 1083 – 1095 ( 2010 ).
  • Walter WG , StoberA . Probe method for the microbial sampling of hospital carpets. Health Lab. Sci.5 ( 3 ), 162 – 170 ( 1968 ).
  • Brevet D , Gary-BoboM , RaehmLet al. Mannose-targeted mesoporous silica nanoparticles for photodynamic therapy. Chem. Commun. (Camb.) ( 12 ), 1475 – 1477 ( 2009 ).
  • Cheng Y , CSA , MeyersJD , PanagopoulosI , FeiB , BurdaC . Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J. Am. Chem. Soc.130 ( 32 ), 10643 – 10647 ( 2008 ).
  • Carpenter AW , WorleyBV , SlombergDL , SchoenfischMH . Dual action antimicrobials: nitric oxide release from quaternary ammonium-functionalized silica nanoparticles. Biomacromolecules13 ( 10 ), 3334 – 3342 ( 2012 ).
  • Tassa C , ShawSY , WeisslederR . Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc. Chem. Res.44 ( 10 ), 842 – 852 ( 2011 ).
  • Mccarthy JR , KellyKA , SunEY , WeisslederR . Targeted delivery of multifunctional magnetic nanoparticles. Nanomedicine (Lond.)2 ( 2 ), 153 – 167 ( 2007 ).
  • Choi KH , LeeHJ , ParkBJet al. Photosensitizer and vancomycin-conjugated novel multifunctional magnetic particles as photoinactivation agents for selective killing of pathogenic bacteria. Chem. Commun. (Camb.)48 ( 38 ), 4591 – 4593 ( 2012 ).
  • Lim ME , LeeYL , ZhangY , ChuJJ . Photodynamic inactivation of viruses using upconversion nanoparticles. Biomaterials33 ( 6 ), 1912 – 1920 ( 2012 ).
  • Wainwright M . Local treatment of viral disease using photodynamic therapy. Int. J. Antimicrob. Agents21 ( 6 ), 510 – 520 ( 2003 ).
  • Haase M , SchaferH . Upconverting nanoparticles. Angew. Chem. Int. Ed. Engl.50 ( 26 ), 5808 – 5829 ( 2011 ).
  • Feynman RP . There’s plenty of room at the bottom. Eng. Sci.23 ( 5 ), 22 – 36 ( 1960 ).
  • Von Tappeiner H . Uber die Wirkung fluoreszierender Stoffe auf Infusorien nach Versuchen von O. Raab. Muench. Med. Wochenschr.47 ( 5 ), ( 1900 ).
  • Kharkwal GB , SharmaSK , HuangYY , DaiT , HamblinMR . Photodynamic therapy for infections: clinical applications. Lasers Surg. Med.43 ( 7 ), 755 – 767 ( 2011 ).
  • Etheridge ML , CampbellSA , ErdmanAG , HaynesCL , WolfSM , McculloughJ . The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine9 ( 1 ), 1 – 14 ( 2013 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.