2,562
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Deciphering Intracellular Events Triggered by Mild Magnetic Hyperthermia in Vitro and in Vivo

, , , , , , , & show all
Pages 2167-2183 | Published online: 11 May 2015

References

  • Hao R , XingR , XuZ , HouY , GaoS , SunS . Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles . Adv. Mater.22 ( 25 ), 2729 – 2742 ( 2010 ).
  • Reddy LH , AriasJL , NicolasJ , CouvreurP . magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications . Chem. Rev.112 , 5818 – 5878 ( 2012 ).
  • Kumar CSSR , MohammadF . Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery . Adv. Drug Deliv. Rev.63 ( 9 ), 789 – 808 ( 2011 ).
  • Mornet S , VasseurS , GrassetF , DuguetE . Magnetic nanoparticle design for medical diagnosis and therapy . J. Mater. Chem.14 ( 14 ), 2161 – 2175 ( 2004 ).
  • Berry CC . Progress in functionalization of magnetic nanoparticles for applications in biomedicine . J. Phys. D Appl. Phys.42 ( 22 ), 224003 ( 2009 ).
  • Berry CC , CurtisASG . Functionalisation of magnetic nanoparticles for applications in biomedicine . J. Phys. D Appl. Phys.36 ( 13 ), R198 – R206 ( 2003 ).
  • Goya GF , LimaE , ArelaroADet al. Magnetic hyperthermia with Fe3O4 nanoparticles: the influence of particle size on energy absorption . IEEE Trans. Magn. Magn.44 ( 11 ), 4444 – 4447 ( 2008 ).
  • Gilchrist RK , MedalR , ShoreyWD , HanselmanRC , ParrottJC , TaylorCB . Selective inductive heating of lymph nodes . Ann. Surg.146 ( 4 ), 596 – 606 ( 1957 ).
  • Basel MT , BalivadaS , WangHWet al. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model . Int. J. Nanomedicine7 , 297 – 306 ( 2012 ).
  • Johannsen M , GneueckowU , ThiesenBet al. Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution . Eur. Urol.52 ( 6 ), 1653 – 1662 ( 2007 ).
  • Toraya-Brown S , SheenMR , ZhangPet al. Local hyperthermia treatment of tumors induces CD8+ T cell-mediated resistance against distal and secondary tumors . Nanomedicine10 ( 6 ), 1273 – 1285 ( 2014 ).
  • Maier-Hauff K , UlrichF , NestlerDet al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme . J. Neurooncol.103 ( 2 ), 317 – 324 ( 2011 ).
  • Dewey WC . Arrhenius relationships from the molecule and cell to the clinic . Int. J. Hyperthermia25 ( 1 ), 3 – 20 ( 2009 ).
  • Kobayashi T . Cancer hyperthermia using magnetic nanoparticles . Biotechnol. J.6 ( 11 ), 1342 – 1347 ( 2011 ).
  • Wust P , HildebrandtB , SreenivasaGet al. Hyperthermia in combined treatment of cancer . Lancet Oncol.3 ( 8 ), 487 – 497 ( 2002 ).
  • Ryu KS , KimJH , KoHSet al. Effects of intraperitoneal hyperthermic chemotherapy in ovarian cancer . Gynecol. Oncol.94 ( 2 ), 325 – 332 ( 2004 ).
  • Franckena M , StalpersLJA , KoperPCMet al. Long-term improvement in treatment outcome after radiotherapy and hyperthermia in locoregionally advanced cervix cancer: an update of the Dutch Deep Hyperthermia Trial . Int. J. Radiat. Oncol. Biol. Phys.70 ( 4 ), 1176 – 1182 ( 2008 ).
  • Roti Roti J . Cellular responses to hyperthermia (40–46 degrees C): cell killing and molecular events . Int. J. Hyperthermia24 ( 1 ), 3 – 15 ( 2008 ).
  • Mukherjee A , CastanaresM , HedayatiMet al. Monitoring nanoparticle-mediated cellular hyperthermia with a high-sensitivity biosensor . Nanomedicine (Lond.)9 ( 18 ), 2729 – 2743 ( 2014 ).
  • Jolly C , MorimotoRI . Role of the heat shock response and molecular chaperones in oncogenesis and cell death . J. Natl Cancer. Inst.92 ( 19 ), 1564 – 1572 ( 2000 ).
  • Ito A , HondaH , KobayashiT . Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of “heat-controlled necrosis” with heat shock protein expression . Cancer Immunol. Immunother.55 , 320 – 328 ( 2006 ).
  • Hegyi G , SzigetiGP , SzászA . Hyperthermia versus oncothermia: cellular effects in complementary cancer therapy . Evid. Based Complement. Alternat. Med.2013 , 672873 ( 2013 ).
  • Dias JT , MorosM , Del PinoP , RiveraS , GrazúV , de la FuenteJM . DNA as a molecular local thermal probe for the analysis of magnetic hyperthermia . Angew. Chem. Int. Ed. Engl.52 ( 44 ), 11526 – 11529 ( 2013 ).
  • Riedinger A , GuardiaP , CurcioAet al. Subnanometer local temperature probing and remotely controlled drug release based on azo-functionalized iron oxide nanoparticles . Nano Lett.13 ( 6 ), 2399 – 2406 ( 2013 ).
  • Ambrosone A , MalvindiMA , RoopinMet al. Impact of amorphous SiO2 nanoparticles on a living organism: morphological, behavioral, and molecular biology implications . Front. Bioeng. Biotechnol.2 , 37 ( 2014 ).
  • Ambrosone A , del PinoP , MarchesanoV , ParakWJ , de la FuenteJM , TortiglioneC . Gold nanoprisms for photothermal cell ablation in vivo . Nanomedicine (Lond.)9 ( 13 ), 1913 – 1922 ( 2014 ).
  • Ambrosone A , MatteraL , MarchesanoVet al. Mechanisms underlying toxicity induced by CdTe quantum dots determined in an invertebrate model organism . Biomaterials33 ( 7 ), 1991 – 2000 ( 2012 ).
  • Conde J , AmbrosoneA , SanzVet al. Design of multifunctional gold nanoparticles for in vitro and in vivo gene silencing . ACS Nano6 ( 9 ), 8316 – 8324 ( 2012 ).
  • Marchesano V , HernandezY , SalvenmoserWet al. Imaging inward and outward trafficking of gold nanoparticles in whole animals . ACS Nano7 ( 3 ), 2431 – 2442 ( 2013 ).
  • Sun S , ZengH , RobinsonDBet al. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles . J. Am. Chem. Soc.126 ( 1 ), 273 – 279 ( 2004 ).
  • Moros M , PelazB , López-LarrubiaP , García-MartinML , GrazúV , de la FuenteJM . Engineering biofunctional magnetic nanoparticles for biotechnological applications . Nanoscale2 ( 9 ), 1746 – 1755 ( 2010 ).
  • Moros M , HernáezB , GaretEet al. Monosaccharides versus PEG functionalized nps: influence in the cellular uptake . ACS Nano6 ( 2 ), 1565 – 1577 ( 2012 ).
  • Loomis W , LenhoffHM . Growth and sexual differentiation of Hydra in mass culture . J. Exp. Zool.132 , 555 – 574 ( 1956 ).
  • Lasi M , DavidCN , BottgerA . Apoptosis in pre-Bilaterians: Hydra as a model . Apoptosis15 ( 3 ), 269 – 278 ( 2010 ).
  • Primer3 . http://frodo.wi.mit.edu/primer3 .
  • Livak KJ , SchmittgenTD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method . Methods25 ( 4 ), 402 – 408 ( 2001 ).
  • Kariya A , TabuchiY , YunokiT , KondoT . Identification of common gene networks responsive to mild hyperthermia in human cancer cells . Int. J. Mol. Med.32 ( 1 ), 195 – 202 ( 2013 ).
  • Grazu V , SilberAM , MorosMet al. Application of magnetically induced hyperthermia in the model protozoan Crithidia fasciculata as a potential therapy against parasitic infections . Int. J. Nanomedicine7 , 5351 – 5360 ( 2012 ).
  • Gota C , OkabeK , FunatsuT , HaradaY , UchiyamaS . Hydrophilic fluorescent nanogel thermometer for intracellular thermometry . J. Am. Chem. Soc.131 ( 8 ), 2766 – 2767 ( 2009 ).
  • Suzuki M , TseebV , OyamaK , IshiwataSI . Microscopic detection of thermogenesis in a single hela cell associated with the increase in Ca2+ concentration induced by ionomycin . Biophys. J.92 ( 6 ), L46 – L48 ( 2007 ).
  • Morimoto RI . Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators . Genes Dev.12 ( 24 ), 3788 – 3796 ( 1998 ).
  • Mayer MP , BukauB . Hsp70 chaperones: cellular functions and molecular mechanism . Cell. Mol. Life Sci.62 ( 6 ), 670 – 684 ( 2005 ).
  • Garcia MP , CavalheiroJRT , FernandesMH . Acute and long-term effects of hyperthermia in B16-F10 melanoma cells . PLoS ONE7 ( 4 ), e35489 ( 2012 ).
  • Pirkkala L , NykanenP , SistonenL . Roles of the heat shock transcription factors in regulation of the heat shock response and beyond . FASEB J.15 ( 7 ), 1118 – 1131 ( 2001 ).
  • Huang H , DelikanliS , ZengH , FerkeyDM , PralleA . Remote control of ion channels and neurons through magnetic-field heating of nanoparticles . Nat. Nanotechnol.5 ( 8 ), 602 – 606 ( 2010 ).
  • Ogden JA , TateJA , StrawbridgeRR , IvkovR , HoopesPJ . Comparison of iron oxide nanoparticle and waterbath hyperthermia cytotoxicity . Proc. Soc. Photo Opt. Instrum. Eng.7181 , 71810K ( 2009 ).
  • Creixell M , BohorquezAC , Torres-LugoM , RinaldiC . EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise . ACS Nano5 ( 9 ), 7124 – 7129 ( 2011 ).
  • Villanueva A , de la PresaP , AlonsoJMet al. Hyperthermia HeLa cell treatment with silica-coated manganese oxide nanoparticles . J. Phys. Chem. C114 ( 5 ), 1976 – 1981 ( 2010 ).
  • Ambrosone A , TortiglioneC . Methodological approaches for nanotoxicology using cnidarian models . Toxicol. Mech. Methods23 ( 3 ), 207 – 216 ( 2013 ).
  • Wilby OK , TeshJM . The Hydra assay as a nearly screen for teratogenic potential . Toxicol. In Vitro4 , 582 – 583 ( 1990 ).
  • Pollino CA , HoldwayDA . Potential of two Hydra species as standard toxicity test animals . Ecotoxicol. Environ. Saf.43 ( 3 ), 309 – 316 ( 1999 ).
  • Bosch T , DavidC . Growth regulation in Hydra: relationship between epithelial cell cycle length and growth rate . Dev. Biol.104 ( 1 ), 161 – 171 ( 1984 ).
  • Bosch T , KrylowSM , BodeH , SteeleR . Thermotolerance and synthesis of heat shock proteins: these responses are present in Hydra attenuata but absent in Hydra oligactis . Proc. Natl Acad. Sci. USA85 ( 21 ), 7927 – 7931 ( 1988 ).
  • Maier-Hauff K , RotheR , ScholzRet al. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme . J. Neurooncol.81 ( 1 ), 53 – 60 ( 2007 ).
  • Marcos-Campos I , AsinL , TorresTEet al. Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells . Nanotechnology22 ( 20 ), 205101 ( 2011 ).
  • Asin L , IbarraMR , TresA , GoyaGF . Controlled cell death by magnetic hyperthermia: effects of exposure time, field amplitude, and nanoparticle concentration . Pharm. Res.29 ( 5 ), 1319 – 1327 ( 2012 ).
  • Polla BS , KantengwaS , FrancoisDet al. Mitochondria are selective targets for the protective effects of heat shock against oxidative injury . Proc. Natl Acad. Sci. USA93 ( 13 ), 6458 – 6463 ( 1996 ).
  • Di Corato R , EspinosaA , LartigueLet al. Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs . Biomaterials35 ( 24 ), 6400 – 6411 ( 2014 ).
  • Perez-Hernandez M , Del PinoP , MitchellSGet al. Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms . ACS Nano9 ( 1 ), 52 – 61 ( 2015 ).