427
Views
0
CrossRef citations to date
0
Altmetric
Review

Transition from Passive to Active Targeting of Oral Insulin Nanomedicines: Enhancement in Bioavailability and Glycemic Control in Diabetes

, , , , , , , , , & show all
Pages 1465-1486 | Received 31 Oct 2015, Accepted 24 Mar 2016, Published online: 12 May 2016

References

  • WHO . Global status report on noncommunicable diseases 2014 . WHO , Geneva, Switzerland ( 2012 ). www.who.int/mediacentre/factsheets/fs312/en/ .
  • WHO . Global health estimates: deaths by cause, age, sex and country, 2000–2012 . WHO , Geneva, Switzerland , 2014 . www.who.int/mediacentre/factsheets/fs312/en/ .
  • Mathers CD , LoncarD . Projections of global mortality and burden of disease from 2002 to 2030 . PLoS Med.3 , 442 ( 2006 ).
  • Wilcox G . Insulin and insulin resistance . Clin. Biochem. Rev.26 , 19 – 39 ( 2005 ).
  • Al-Tabakha MM , AridaAI . Recent challenges in insulin delivery systems: a review . Indian J. Pharm. Sci.70 , 278 – 286 ( 2008 ).
  • Sharma PK , BansalS . Noninvasive routes of proteins and peptides drug delivery . Indian J. Pharm. Sci.73 , 367 – 375 ( 2011 ).
  • Owens DR , ZinmanB , BoliG . Alternative routes of insulin delivery . Diabet. Med.20 , 886 – 898 ( 2003 ).
  • Akhter DT , NijhuRS . Diabetes mellitus: a journey of insulin . Int. Curr. Pharm. J.1 , 32 – 42 ( 2012 ).
  • Sonaje K , LinKJ , WeySPet al. Biodistribution, pharmacodynamics and pharmacokinetics of insulin analogues in a rat model: oral delivery using pH responsive nanoparticles vs. subcutaneous injection . Biomaterials31 , 6849 – 6858 ( 2010 ).
  • Kalra S , KalraB , AgrawalN . Oral insulin . Diabetol. Metab. Syndr.2 , 66 ( 2010 ).
  • Chang LL , BaiJP . Evidence for the existence of insulin degrading enzyme on the brush border membranes of rat enterocytes . Pharm. Res.13 , 801 – 803 ( 1996 ).
  • Cone RA . Barrier properties of mucus . Adv. Drug Deliv. Rev.61 , 75 – 85 ( 2009 ).
  • Ahmad A , OthmanI , ZainiAet al. Oral Nano insulin therapy: current progress on nanoparticles-based devices for intestinal epithelium targeted insulin delivery . J. Nanomed. Nanotechnol.S4 , 007 ( 2012 ).
  • Pelkonen O , BoobisAR , GundertRU . In-vitro prediction of gastrointestinal absorption and bioavailability: an experts meeting report . Eur. J. Clin. Pharmacol.57 , 621 – 629 ( 2001 ).
  • Andrews CW , BennettL , YuLX . Predicting human oral bioavailability of a compound: development of a novel quantitative structure bioavailability relationship . Pharm. Res.17 , 639 – 644 ( 2010 ).
  • Mahato RI , NarangAS , ThomasLet al. Emerging trends in oral delivery of peptide and protein drugs . Crit. Rev. Ther. Drug Carr. Syst.20 , 153 – 214 ( 2003 ).
  • Cardenas-Bailon F , Osorio-RevillaG , Gallardo-VelazquezT . Microencapsulation techniques to develop formulations of insulin oral delivery: a review . J. Microencapsul.30 ( 5 ), 409 – 424 ( 2012 ).
  • Damgé C , SochaM , UbrichNet al. Poly (epsilon-caprolactone)/eudragit nanoparticles for oral delivery of aspart-insuiln in the treatment of diabetes . J. Pharm. Sci.99 , 102 ( 2010 ).
  • Nellans HN . Mechanism of peptide and protein absorption: paracellular intestinal transport: modulation of absorption . Adv. Drug Deliv. Rev.7 , 339 – 364 ( 1991 ).
  • Chen MC , SonajeK , ChenKJet al. A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery . Biomaterials32 , 9826 – 9838 ( 2011 ).
  • Lopes MA , AbrahimBA , CabralLMet al. Intestinal absorption of insulin nanoparticles: contribution of M cells . Nanomedicine10 , 1139 – 1151 ( 2014 ).
  • Salamat-Miller N , JohnstonTP . Current strategies used to enhance the paracellular transport of therapeutic polypeptides across the intestinal epithelium . Int. J. Pharm.294 , 201 – 216 ( 2014 ).
  • Roger E , LagarceF , GarcionEet al. Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery . Nanomedicine5 , 287 – 306 ( 2010 ).
  • Garcia Fuentes M , TorresD , AlonsoMJ . New surface modified lipid nanoparticles as delivery vehicles for salmon calcitonin . Int. J. Pharm.296 , 122 – 132 ( 2005 ).
  • Bruno S , SusanaM , DomingosFet al. Oral insulin delivery by means of solid lipid nanoparticles . Int. J. Nanomed.2 , 743 – 749 ( 2007 ).
  • Eldrige JH , HammondCJ , MeulbroekJAet al. Controlled vaccine release in the gut associated lymphoid tissues. Orally administered biodegradable microspheres target the Peyer’s patches . J. Control. Release11 , 205 – 214 ( 1990 ).
  • Damgé C , ReisCP , MaincentP . Nanoparticle strategies for the oral delivery of insulin . Expert Opin. Drug Deliv.5 , 45 – 68 ( 2008 ).
  • Soppimath KS , AminabhaviTM , KulkarniARet al. Biodegradable polymeric nanoparticles as drug delivery devices . J. Control. Release70 , 1 – 20 ( 2001 ).
  • Moghimi SM , HunterAC , MurrayJC . Long-circulating and target-specific nanoparticles: theory to practice . Pharmacol. Rev.53 , 283 – 318 ( 2001 ).
  • Mehnert W , MäderK . Solid lipid nanoparticles: production, characterization and applications . Adv. Drug Del. Rev.47 , 165 – 196 ( 2001 ).
  • Wissing SA , KayserO , MüllerRH . Solid lipid nanoparticles for parenteral drug delivery . Adv. Drug Del. Rev.56 , 1257 – 1272 ( 2004 ).
  • Zhenjai Z , HuixiaLV , JianpingZ . Novel solid lipid nanoparticles as carriers for oral administration of insulin . Pharmazie64 , 574 – 578 ( 2009 ).
  • Muller RH , RuhlD , RungeSet al. Cytotoxicity of solid lipid nanoparticles as a function of the lipid matrix and the surfactant . Pharm. Res.14 , 458 – 462 ( 1997 ).
  • Shegokar R , SinghKK , MüllerRH . Production & stability of stavudine solid lipid nanoparticles--from lab to industrial scale . Int. J. Pharm.416 , 461 – 70 ( 2011 ).
  • Muller RH , LucksJS . European Patent 0605497 ( 1996 ).
  • Rawat M , SinghD , SarafSet al. Nanocarriers: promising vehicle for bioactive drugs . Biol. Pharm. Bull.29 , 1790 – 1798 ( 2006 ).
  • Singh I , SwamiR , KhanWet al. Lymphatic system: a prospective area for advanced targeting of particulate drug carriers . Expert Opin. Drug Deliv.11 , 211 – 219 ( 2014 ).
  • Shuhendler AJ , PrasadP , LeungMet al. A novel solid lipid nanoparticle formulation for active targeting to tumor α(v) β(3) integrin receptors reveals cyclic RGD as a double-edged sword . Adv. Healthc. Mater.1 , 600 – 608 ( 2012 ).
  • Garcia Fuentes M , TorresD , AlonsoMJ . New surface modified lipid nanoparticles as delivery vehicles for salmon calcitonin . Int. J. Pharm.296 , 122 – 132 ( 2005 ).
  • Tobio M , GrefR , SanchezAet al. Stealth PLA-PGA nanoparticles as protein carriers for nasal administration . Pharm. Res.15 , 270 – 275 ( 1998 ).
  • Muthu MS , SinghS . Targeted nanomedicines: effective treatment modalities for cancer, AIDS and brain disorders . Nanomedicine (Lond.)4 , 105 – 118 ( 2009 ).
  • Lowe PL , TempleCS . Calcitonin and insulin in isobutilcyanoacrylate nanocapsules: protection against proteases and effect on intestinal absorption . J. Pharm. Pharmacol.46 , 547 – 552 ( 1994 ).
  • Sarmento B , MartinsS , FerreiraDet al. Oral insulin delivery by means of solid lipid nanoparticles . Int. J. Nanomed.2 , 743 – 749 ( 2007 ).
  • Zhang N , PingQet al. Lectin modified nanoparticles as carriers for oral administration of insulin . Int. J. Pharm.327 , 153 – 159 ( 2006 ).
  • Kamei N , MorishitaM , EdaYet al. Usefulness of cell penetrating peptides to improve intestinal insulin absorption . J. Control. Release132 , 21 – 25 ( 2008 ).
  • Futaki S , OhashiW , SuzukiTet al. Stearylated arginine rich peptides: a new class of transfection systems . Bioconjug. Chem.12 , 1005 – 1011 ( 2001 ).
  • Yun Y , ChoYW , ParkK . Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery . Adv. Drug Deliv. Rev.65 , 822 – 32 ( 2013 ).
  • Liu X , LiuC , ZhangWet al. Oligoarginine-modified biodegradable nanoparticles improve the intestinal absorption of insulin . Int. J. Pharm.448 , 159 – 167 ( 2013 ).
  • Zhen HZ , YinLZ , JianPZet al. Solid nanoparticles modified with stearic acid octaarginine for oral administration of insulin . Int. J. Nanomed.7 , 3333 – 3339 ( 2012 ).
  • Torchilin VP . Recent advances with liposomes as pharmaceutical carriers . Nat. Rev. Drug Discov.4 , 145 – 160 ( 2005 ).
  • Voinea M , SimionescuM . Designing of ‘intelligent’ liposomes for efficient delivery of drugs . J. Cell Mol. Med.6 , 465 – 474 ( 2002 ).
  • Muthu MS , FengSS . Nanopharmacology of liposomes developed for cancer therapy . Nanomedicine (Lond.)5 , 1017 – 1019 ( 2010 ).
  • Weingarten C , MouftiA , DelattreJet al. Protection of insulin from enzymatic degradation by its association to liposomes . Int. J. Pharm.26 , 251 – 257 ( 1985 ).
  • Mengmeng N , YiL , LarsHet al. Liposomes containing glycocholate as potential oral insulin delivery system: preparation, in vitro characterization and improved protection against enzymatic degradation . Int. J. Nanomed.6 , 1155 – 1166 ( 2011 ).
  • Nie Y , JiL , DingHet al. Cholesterol derivatives based charged liposomes for doxorubicin delivery: preparation, in vitro and in vivo characterization . Theranostics2 , 1092 – 1103 ( 2012 ).
  • Leung SJ , RomanowskiM . Light-activated content release from liposomes . Theranostics2 , 1020 – 1036 ( 2012 ).
  • Wen CJ , SungCT , AljuffaliIAet al. Nanocomposite liposomes containing quantum dots and anticancer drugs for bioimaging and therapeutic delivery: a comparison of cationic, PEGylated and deformable liposomes . Nanotechnology24 , 325101 ( 2013 ).
  • Kisel MA , KulikLN , TsybovskyISet al. Liposomes with phosphatidylethanol as a carrier for oral delivery of insulin: studies in the rats . Int. J. Pharm.216 , 105 – 114 ( 2001 ).
  • Grange C , Geninatti-CrichS , EspositoGet al. Combined delivery and magnetic resonance imaging of neural cell adhesion molecule-targeted doxorubicin-containing liposomes in experimentally induced Kaposi’s sarcoma . Cancer Res.70 , 2180 – 2190 ( 2010 ).
  • Muthu MS , FengSS . Theranostic liposomes for cancer diagnosis and treatment: current development and pre-clinical success . Expert Opin. Drug Deliv.10 , 151 – 155 ( 2013 ).
  • Mengmeng N , YiL , LarsHet al. Hypoglycaemic activity and oral bioavailability of insulin loaded liposomes containing bile salts in rats: the effect of cholate type, particle size and administered dose . Eur. J. Pharm. Biopharm.81 , 265 – 272 ( 2012 ).
  • Dwivedi N , ArunagirinathanMA , SharmaSet al. Silica coated liposomes for insulin delivery . J. Nanomater.2010 , 652048 ( 2010 ).
  • Agrawal AK , HardeH , ThankiKet al. Improved stability and antidiabetic potential of insulin containing folic acid functionalized polymer stabilized multilayered liposomes following oral administration . Biomacromolecules15 , 350 – 360 ( 2014 ).
  • Sonaje K , LinYH , JuangJHet al. In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery . Biomaterials30 , 2329 – 2339 ( 2009 ).
  • Feng SS . New-concept chemotherapy by nanoparticles of biodegradable polymers: where are we now?Nanomedicine (Lond.)1 , 297 – 309 ( 2006 ).
  • Muthu MS , RajeshCV , MishraAet al. Stimulus responsive targeted nanomicelles for effective cancer therapy . Nanomedicine (Lond.)4 , 657 – 667 ( 2009 ).
  • Win KY , FengSS . Effect of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs . Biomaterials26 , 2713 – 2722 ( 2005 ).
  • Mu L , FengSS . PLGA/TPGS nanoparticles for controlled release of paclitaxel: effects of the emulsifier and drug loading ratio . Pharm. Res.20 , 1864 – 1872 ( 2003 ).
  • Zhang Z , TanS , FengSS . Vitamin E TPGS as a molecular biomaterial for drug delivery . Biomaterials33 , 4889 – 4906 ( 2012 ).
  • Hu CM , FangRH , LukBTet al. Polymeric nanotherapeutics: clinical development and advances in stealth functionalization strategies . Nanoscale6 , 65 – 75 ( 2014 ).
  • Luk BT , FangRH , ZhangL . Lipid- and polymer-based nanostructures for cancer theranostics . Theranostics2 , 1117 – 1126 ( 2012 ).
  • Moore T , ChenH , MorrisonRet al. Nanotechnologies for noninvasive measurement of drug release . Mol. Pharm.11 , 24 – 39 ( 2014 ).
  • Vijayakumar MR , MuthuMS , SinghS . Copolymers of poly(lactic acid) and D-α-tocopheryl polyethylene glycol 1000 succinate-based nanomedicines: versatile multifunctional platforms for cancer diagnosis and therapy . Expert Opin. Drug Deliv.10 , 529 – 543 ( 2013 ).
  • Soppimath KS , AminabhaviTM , KulkarniARet al. Biodegradable polymeric nanoparticles as drug delivery devices . J. Control. Release70 , 1 – 20 ( 2001 ).
  • Svenson S . Theranostics: are we there yet?Mol. Pharm.10 ( 3 ), 848 – 856 ( 2013 ).
  • Mok H , ParkTG . Hybrid polymeric nanomaterials for siRNA delivery and imaging . Macromol. Biosci.12 , 40 – 48 ( 2012 ).
  • Sinha VR , KumriaR . Polysaccharides in colon-specific drug delivery . Int. J. Pharm.224 , 19 – 38 ( 2001 ).
  • Chaudhury A , DasS . Recent advancement of chitosan based nanoparticles for oral controlled delivery of insulin and other therapeutic agents . AAPS Pharm. Sci. Tech.12 , 10 – 20 ( 2011 ).
  • Sonaje K , ChuangEY , LinKJet al. Opening of epithelial tight junctions and enhancement of paracellular permeation by chitosan: microscopic, ultrastructural and computed tomographic observations . Mol. Pharm.9 , 1271 – 1279 ( 2012 ).
  • Nagpal K , SinghSK , MishraDN . Chitosan nanoparticles: a promising system in novel drug delivery . Chem. Pharm. Bull.58 , 1423 – 1430 ( 2010 ).
  • Yeh TH , HsuLW , TsengMTet al. Mechanism and consequence of chitosan mediated reversible epithelial tight junction opening . Biomaterials32 , 6164 – 6173 ( 2010 ).
  • Pan Y , LiYJ , ZhaoHYet al. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo . Int. J. Pharm.249 , 139 – 147 ( 2002 ).
  • Mao S , BakowskyU , JintapattanakitAet al. Self-assembled polyelectrolyte nanocomplexes between chitosan derivatives and insulin . J. Pharm. Sci.95 , 1035 – 1048 ( 2006 ).
  • Lin YH , MiFL , ChenCTet al. Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery . Biomacromolecules8 , 146 – 152 ( 2007 ).
  • Mansourpour M , MahjubR , AminiMet al. Development of acid-resistant alginate/trimethyl chitosan nanoparticles containing cationic β-cyclodextrin polymers for insulin oral delivery . AAPS PharmSciTech16 , 952 – 962 ( 2015 ).
  • Yun J , YupinS , XiZet al. Goblet cell targeting nanoparticles for oral insulin delivery and the influence of mucus on insulin transport . Biomaterials33 , 1573 – 1582 ( 2012 ).
  • Kumar TM , PaulW , SharmaCPet al. Bioadhesive, pH responsive micromatrix for oral delivery of insulin . Trends Biomater. Artif. Organs18 , 198 – 202 ( 2005 ).
  • Xiaoyang L , JianpingQ , YunchangXet al. Nanoemulsion coated with alginate-chitosan as oral insulin delivery systems: preparation, characterization and hypoglycaemic effect in rats . Int. J. Nanomed.8 , 23 – 32 ( 2013 ).
  • Smith J , WoodE , DornishM . Effect of chitosan on epithelial cell tight junctions . Pharm. Res.21 , 43 – 49 ( 2004 ).
  • Knowles MR , BoucherRC . Mucus clearance as a primary innate defence mechanism for mammalian airways . J. Clin. Invest.109 , 571 – 577 ( 2002 ).
  • Kang SK , WooJH , KimMKet al. Identification of a peptide sequence that improves transport of macromolecules across the intestinal mucosal barrier targeting goblet cells . J. Biotechnol.135 , 210 – 216 ( 2008 ).
  • Seetharam B , YammaniRR . Cobalamin transport proteins and their cell-surface receptors . Expert Rev. Mol. Med.5 , 1 – 18 ( 2003 ).
  • Chalasani KB , Russel JonesGJ , JainAKet al. Effective oral delivery of insulin in animal models using vitamin B12 coated dextran nanoparticles . J. Control. Release122 , 141 – 150 ( 2007 ).
  • Amanda KP , TimothyJF , DoyleRP . Traveling the vitamin b12 pathway: oral delivery of protein and peptide drugs . Angew. Chem. Int. Ed. Engl.48 , 1022 – 1028 ( 2009 ).
  • Russell-Jones GJ . Use of vitamin B12 conjugates to deliver protein drugs by the oral route . Crit. Rev. Ther. Drug Carrier Syst.15 , 557 – 586 ( 1998 ).
  • Chalasani KB , Russell JonesGJ , YandrapuSKet al. A novel vitamin B12 nanosphere conjugates carrier system for peroral delivery of insulin . J. Control. Release117 , 421 – 429 ( 2007 ).
  • Xiong XY , LiYP , LiZLet al. Vesicles from pluronic/poly(lactic acid) block copolymers as new carriers for oral insulin delivery . J. Control. Release20 , 11 – 7 ( 2007 ).
  • Damgé C , SochaM , UbrichNet al. Poly(epsilon-caprolactone)/eudragit nanoparticles for oral delivery of aspart-insulin in the treatment of diabetes . J. Pharm. Sci.99 , 879 – 889 ( 2010 ).
  • Xie H , SmithJW . Fabrication of PLGA nanoparticles with a fluidic nanoprecipitation system . J. Nanobiotechnol.8 , 18 ( 2010 ).
  • Stevanoviae M , SaviaeJ , JordoviaeBet al. Fabrication, in vitro degradation and the release behaviours of PLGA nanospheres containing ascorbic acid . Colloids Surf. B Biointerfaces59 , 215 – 223 ( 2007 ).
  • Panagi Z , BeletsiA , EvangelatosGet al. Effect of dose on the biodistribution and pharmacokinetics of PLGA and PLGA-mPEG nanoparticles . Int. J. Pharm.221 , 143 – 152 ( 2001 ).
  • Qianyu Z , NaH , LiZet al. The in vitro and in vivo study on self nanoemulsifying drug delivery system (SNEDDS) based on insulin-phospholipid complex . J. Biomed. Nanotechnol.8 , 90 – 97 ( 2012 ).
  • Balasubramaniem A , MohammedZM , VaziriNDet al. Effect of folate oversupplementation on folate uptake by human intestinal and renal epithelial cells . Am. J. Clin. Nutr.86 , 159 – 166 ( 2007 ).
  • Jain S , RathiVV , JainAKet al. Folate-decorated PLGA nanoparticles as a rationally designed vehicle for the oral delivery of insulin . Nanomedicine (Lond.)7 , 1311 – 1337 ( 2012 ).
  • Tobio M , SanchezA , VilaAet al. The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA NPs following oral administration . Colloids Surf. B Biointerfaces18 , 315 – 323 ( 2000 ).
  • Russell-Jones GJ , VeitchH , ArthurL . Lectin mediated transport of nanoparticles across Caco- 2 and OK cells . Int. J. Pharm.190 , 165 – 174 ( 1999 ).
  • Sharma R , GuptaU , GargNKet al. Surface engineered and ligand anchored nanobioconjugate: an effective therapeutic approach for oral insulin delivery in experimental diabetic rats . Colloids Surf. B. Biointerfaces127 , 172 – 181 ( 2015 ).
  • Jain A , JainSK . L-Valine appended PLGA nanoparticles for oral insulin delivery . Acta Diabetol.52 , 663 – 676 ( 2015 ).
  • Liu XL , ZhangWJ , WeiGet al. Poly(arginine)8 enhanced intestinal absorption of insulin-loaded nanoparticles . Yao Xue Xue Bao47 , 512 – 516 ( 2012 ).
  • Lammers T , UlbrichK . HPMA copolymers: 30 years of advances . Adv. Drug Del. Rev.62 , 119 – 121 ( 2010 ).
  • Allmeroth M , ModereggerD , GündelDet al. PEGylation of HPMA-based block copolymers enhances tumor accumulation in vivo: a quantitative study using radiolabeling and positron emission tomography . J. Control. Release172 , 77 – 85 ( 2013 ).
  • Kopecek J , KopeckovaP . HPMA copolymers: orgins, early developments, present, and future . Adv. Drug Del. Rev.62 , 122 – 149 ( 2010 ).
  • Shan W , ZhuX , LiuMet al. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin . ACS Nano9 , 2345 – 2356 ( 2015 ).
  • Sawant RR , JhaveriAM , KoshkaryevAet al. Targeted transferrin-modified polymeric micelles: enhanced efficacy in vitro and in vivo in ovarian carcinoma . Mol. Pharm.11 , 375 – 381 ( 2014 ).
  • Xia CQ , WangJ , ShenWCet al. Hypoglycemic effect of insulin-transferrin conjugate in streptozotocin-induced diabetic rats . J. Pharmacol. Exp. Ther.295 , 594 – 600 ( 2000 ).
  • Sonali , AgrawalP , SinghRPet al. Transferrin receptor-targeted vitamin E TPGS micelles for brain cancer therapy: preparation, characterization and brain distribution in rats . Drug Deliv.1 – 11 ( 2015 ) ( Epub ahead of print ).
  • Singh RP , SharmaG , Sonaliet al. Transferrin receptor targeted PLA-TPGS micelles improved efficacy and safety in docetaxel delivery . Int. J. Biol. Macromol.83 , 335 – 344 ( 2016 ).
  • Xia CQ , ShenWC . Tyrphostin-8 enhances transferrin receptor-mediated transcytosis in Caco-2- cells and inreases hypoglycemic effect of orally administered insulin-transferrin conjugate in diabetic rats . Pharm. Res.18 , 191 – 195 ( 2001 ).
  • Shah D , ShenWC . Transcellular delivery of an insulin-transferrin conjugate in enterocyte-like Caco-2 cells . J. Pharm. Sci.85 , 1306 – 1311 ( 1996 ).
  • Kavimandan NJ , LosiE , PeppasNAet al. Novel delivery system based on complexation hydrogels as delivery vehicles for insulin-transferrin conjugates . Biomaterials27 , 3846 – 3854 ( 2006 ).
  • Shofner JP , PhillipsMA , PeppasNAet al. Cellular evaluation of synthesized insulin/transferrin bioconjugates for oral insulin delivery using intelligent complexation hydrogels . Macromol. Biosci.10 , 299 – 306 ( 2010 ).
  • Blair Geho W , Geho HansC , Lau JohnRet al. Hepatic-directed vesicle insulin: a review of formulation development and preclinical evaluation . J. Diabetes Sci. Technol.3 , 1451 – 1459 ( 2009 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.