176
Views
0
CrossRef citations to date
0
Altmetric
Review

Aggressive Prostate Cancer Phenotype and Genome-Wide Association Studies: Where are we Now?

, , &
Pages 487-503 | Received 04 Sep 2019, Accepted 28 Nov 2019, Published online: 28 Apr 2020

References

  • Bray F , FerlayJ , SoerjomataramI , SiegelRL , TorreLA , JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin.68(6), 394–424 (2018).
  • Wong MC , GogginsWB , WangHHet al. Global incidence and mortality for prostate cancer: analysis of temporal patterns and trends in 36 countries. Eur. Urol.70(5), 862–874 (2016).
  • Pezaro C , WooHH , DavisID. Prostate cancer: measuring PSA. Intern. Med. J.44(5), 433–440 (2014).
  • Barry MJ , SimmonsLH. Prevention of prostate cancer morbidity and mortality: primary prevention and early detection. Med. Clin.101(4), 787–806 (2017).
  • Attard G , ParkerC , EelesRAet al. Prostate cancer. Lancet387(10013), 70–82 (2016).
  • Ewing CM , RayAM , LangeEMet al. Germline mutations in HOXB13 and prostate-cancer risk. N. Engl. J. Med.366(2), 141–149 (2012).
  • Easton D , SteeleL , FieldsPet al. Cancer risks in two large breast cancer families linked to BRCA2 on chromosome 13q12-13. Am. J. Hum. Genet.61(1), 120 (1997).
  • Consortium BCL . Cancer risks in BRCA2 mutation carriers. J. Natl Cancer Inst.91(15), 1310–1316 (1999).
  • Castro E , GohC , OlmosD. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J. Clin. Oncol.31(14), 1748 (2013).
  • Pritchard CC , MateoJ , WalshMFet al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N. Engl. J. Med.375(5), 443–453 (2016).
  • Leongamornlert D , SaundersE , DadaevTet al. Frequent germline deleterious mutations in DNA repair genes in familial prostate cancer cases are associated with advanced disease. Br. J. Cancer110(6), 1663 (2014).
  • Raymond VM , MukherjeeB , WangFet al. Elevated risk of prostate cancer among men with Lynch syndrome. J. Clin. Oncol.31(14), 1713 (2013).
  • Cybulski C , WokołorczykD , KluźniakWet al. An inherited NBN mutation is associated with poor prognosis prostate cancer. Br. J. Cancer108(2), 461 (2013).
  • Medeiros R , MoraisA , VasconcelosAet al. The role of vitamin D receptor gene polymorphisms in the susceptibility to prostate cancer of a southern European population. J. Hum. Genet.47(8), 413 (2002).
  • Medeiros R , VasconcelosA , CostaSet al. Metabolic susceptibility genes and prostate cancer risk in a southern European population: the role of glutathione S‐transferases GSTM1, GSTM3, and GSTT1 genetic polymorphisms. Prostate58(4), 414–420 (2004).
  • Teixeira A , RibeiroR , MoraisAet al. Combined analysis of EGF+ 61G> A and TGFB1+ 869T> C functional polymorphisms in the time to androgen independence and prostate cancer susceptibility. Pharmacogenomics J.9(5), 341 (2009).
  • Tomlins SA , RhodesDR , PernerSet al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science310(5748), 644–648 (2005).
  • Wu X , GuJ. Heritability of prostate cancer: a tale of rare variants and common single nucleotide polymorphisms. Ann. Transl. Med.4(10), (2016).
  • Heidenreich A , BastianPJ , BellmuntJet al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent – update 2013. Eur. Urol.65(1), 124–137 (2014).
  • Litwin MS , TanH-J. The diagnosis and treatment of prostate cancer: a review. JAMA317(24), 2532–2542 (2017).
  • Dasgupta S , SrinidhiS , VishwanathaJK. Oncogenic activation in prostate cancer progression and metastasis: molecular insights and future challenges. J. Carcinog.11(4), 11 (2012).
  • Schröder F , CrawfordE , AxcronaK , PayneH , KeaneT. Androgen deprivation therapy: past, present and future. BJU Int.109, 1–12 (2012).
  • Pagliarulo V , BracardaS , EisenbergerMAet al. Contemporary role of androgen deprivation therapy for prostate cancer. Eur. Urol.61(1), 11–25 (2012).
  • Sharifi N , GulleyJL , DahutWL. Androgen deprivation therapy for prostate cancer. JAMA294(2), 238–244 (2005).
  • Sternberg CN , PetrylakDP , MadanRA , ParkerC. Progress in the treatment of advanced prostate cancer. Am. Soc. Clin. Oncol. Educ. Book2014, 117–131 (2014).
  • Gelmann EP . Molecular biology of the androgen receptor. J. Clin. Oncol.20(13), 3001–3015 (2002).
  • Lian F , SharmaN , MoranJD , MorenoCS. The biology of castrate resistant prostate cancer. Curr. Probl. Cancer39(1), 17 (2015).
  • Robinson D , Van AllenEM , WuY-Met al. Integrative clinical genomics of advanced prostate cancer. Cell161(5), 1215–1228 (2015).
  • Grasso CS , WuY-M , RobinsonDRet al. The mutational landscape of lethal castration-resistant prostate cancer. Nature487(7406), 239 (2012).
  • Hill R , WuH. PTEN, stem cells, and cancer stem cells. J. Biol. Chem.284(18), 11755–11759 (2009).
  • Pourmand G , ZiaeeA-A , SalemSet al. Role of PTEN gene in progression of prostate cancer. Urol. J.4(2), 95–100 (2009).
  • Stiles B , GroszerM , WangS , JiaoJ , WuH. PTENless means more. Dev. Biol.273(2), 175–184 (2004).
  • Wang S , GaoJ , LeiQet al. Prostate-specific deletion of the murine PTEN tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell4(3), 209–221 (2003).
  • Group ISMW . A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature409(6822), 928 (2001).
  • Brookes AJ . The essence of SNPs. Gene234(2), 177–186 (1999).
  • Collins FS , BrooksLD , ChakravartiA. A DNA polymorphism discovery resource for research on human genetic variation. Genome Res.8(12), 1229–1231 (1998).
  • Schork NJ , MurraySS , FrazerKA , TopolEJ. Common vs rare allele hypotheses for complex diseases. Curr. Opin. Genet. Develop.19(3), 212–219 (2009).
  • Hirschhorn JN , DalyMJ. Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet.6(2), 95 (2005).
  • Bush WS , MooreJH. Genome-wide association studies. PLoS Computat. Biol.8(12), e1002822 (2012).
  • Benafif S , Kote-JaraiZ , EelesRA. A review of prostate cancer genome-wide association studies (GWAS). Cancer Epidemiol. Biomarkers Preven.27(8), 845–857 (2018).
  • Sud A , KinnersleyB , HoulstonRS. Genome-wide association studies of cancer: current insights and future perspectives. Nat. Rev. Cancer17(11), 692 (2017).
  • Ahmed M , EelesR. Germline genetic profiling in prostate cancer: latest developments and potential clinical applications. Future Sci. OA2(1), FSO87 (2016).
  • Manolio TA . Genomewide association studies and assessment of the risk of disease. N. Engl. J. Med.363(2), 166–176 (2010).
  • Hindorff LA , SethupathyP , JunkinsHAet al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl Acad. Sci.106(23), 9362–9367 (2009).
  • Mueller JC , LohmussaarE , MägiRet al. Linkage disequilibrium patterns and tagSNP transferability among European populations. Am. J. Hum. Genet.76(3), 387–398 (2005).
  • Manolio TA , BrooksLD , CollinsFS. A HapMap harvest of insights into the genetics of common disease. J. Clin. Invest.118(5), 1590–1605 (2008).
  • Wray NR . Allele frequencies and the r2 measure of linkage disequilibrium: impact on design and interpretation of association studies. Twin Res. Hum. Genet.8(2), 87–94 (2005).
  • Johnson GC , EspositoL , BarrattBJet al. Haplotype tagging for the identification of common disease genes. Nat. Genet.29(2), 233 (2001).
  • Manolio TA , CollinsFS , CoxNJet al. Finding the missing heritability of complex diseases. Nature461(7265), 747 (2009).
  • Mccarthy MI , HirschhornJN. Genome-wide association studies: potential next steps on a genetic journey. Hum. Mol. Genet.17(R2), R156–R165 (2008).
  • Yang Q , CuiJ , ChazaroI , CupplesLA , DemissieS. Power and type I error rate of false discovery rate approaches in genome-wide association studies. BMC Genet.6(S1), S134 (2005).
  • Risch N , MerikangasK. The future of genetic studies of complex human diseases. Science273(5281), 1516–1517 (1996).
  • Park J-H , WacholderS , GailMHet al. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat. Genet.42(7), 570 (2010).
  • Kote-Jarai Z , EastonDF , StanfordJLet al. Multiple novel prostate cancer predisposition loci confirmed by an international study: the PRACTICAL Consortium. Cancer Epidemiol. Biomarkers Preven.17(8), 2052–2061 (2008).
  • Schaid DJ , ChangBL , Genetics ICFPC. Description of the International Consortium For Prostate Cancer Genetics, and failure to replicate linkage of hereditary prostate cancer to 20q13. Prostate63(3), 276–290 (2005).
  • Zöllner S , PritchardJK. Overcoming the winner’s curse: estimating penetrance parameters from case–control data. Am. J. Hum. Genet.80(4), 605–615 (2007).
  • Igl B-W , KönigIR , ZieglerA. What do we mean by ‘replication’ and ‘validation’ in genome-wide association studies?Hum. Hered.67(1), 66–68 (2009).
  • König IR . Validation in genetic association studies. Brief. Bioinform.12(3), 253–258 (2011).
  • Klein RJ , ZeissC , ChewEYet al. Complement factor H polymorphism in age-related macular degeneration. Science308(5720), 385–389 (2005).
  • Gudmundsson J , SulemP , ManolescuAet al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat. Genet.39(5), 631 (2007).
  • Yeager M , OrrN , HayesRBet al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat. Genet.39(5), 645 (2007).
  • Haiman CA , PattersonN , FreedmanMLet al. Multiple regions within 8q24 independently affect risk for prostate cancer. Nat. Genet.39(5), 638 (2007).
  • Buniello A , MacarthurJAL , CerezoMet al. The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res.47(D1), D1005–D1012 (2018).
  • Gallagher DJ , VijaiJ , CroninAMet al. Susceptibility loci associated with prostate cancer progression and mortality. Clin. Cancer Res.16(10), 2819–2832, (2010).
  • Thomas G , JacobsKB , YeagerMet al. Multiple loci identified in a genome-wide association study of prostate cancer. Nat. Genet.40(3), 310 (2008).
  • Sung Y , ParkS , ParkSJet al. Jazf1 promotes prostate cancer progression by activating JNK/Slug. Oncotarget9(1), 755 (2018).
  • Xie Y , LiuS , LuWet al. Slug regulates E‐cadherin repression via p19Arf in prostate tumorigenesis. Mol. Oncol.8(7), 1355–1364 (2014).
  • Duggan D , ZhengSL , KnowltonMet al. Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB2IP. J. Natl Cancer Inst.99(24), 1836–1844 (2007).
  • Sun J , ZhengSL , WiklundFet al. Sequence variants at 22q13 are associated with prostate cancer risk. Cancer Res.69(1), 10–15 (2009).
  • Xu J , ZhengSL , IsaacsSDet al. Inherited genetic variant predisposes to aggressive but not indolent prostate cancer. Proc. Natl Acad. Sci.107(5), 2136–2140 (2010).
  • Fitzgerald LM , KwonEM , ConomosMPet al. Genome-wide association study identifies a genetic variant associated with risk for more aggressive prostate cancer. Cancer Epidemiol. Biomarkers Preven.20(6), 1196–1203 (2011).
  • Nam RK , ZhangW , SiminovitchKet al. New variants at 10q26 and 15q21 are associated with aggressive prostate cancer in a genome-wide association study from a prostate biopsy screening cohort. Cancer Biol. Ther.12(11), 997–1004 (2011).
  • Schumacher FR , BerndtSI , SiddiqAet al. Genome-wide association study identifies new prostate cancer susceptibility loci. Hum. Mol. Genet.20(19), 3867–3875 (2011).
  • Amin Al Olama A , Kote-JaraiZ , SchumacherFRet al. A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease. Hum. Mol. Genet.22(2), 408–415 (2012).
  • Berndt SI , WangZ , YeagerMet al. Two susceptibility loci identified for prostate cancer aggressiveness. Nat. Commun.6, 6889 (2015).
  • Chang AJ , AutioKA , RoachIii M , ScherHI. High-risk prostate cancer – classification and therapy. Nat. Rev. Clin. Oncol.11(6), 308 (2014).
  • Thompson I , ThrasherJB , AusGet al. Guideline for the management of clinically localized prostate cancer: 2007 update. J. Urol.177(6), 2106–2131 (2007).
  • D’amico AV , WhittingtonR , MalkowiczSBet al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA280(11), 969–974 (1998).
  • Huang J , ViciniFA , WilliamsSGet al. Percentage of positive biopsy cores: a better risk stratification model for prostate cancer? Int. J. Radiat. Oncol. Biol. Phys. 83(4), 1141–1148 (2012).
  • Heidenreich A , BastianPJ , BellmuntJet al. EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur. Urol.65(2), 467–479 (2014).
  • Kirby M , HirstC , CrawfordE. Characterising the castration‐resistant prostate cancer population: a systematic review. Int. J. Clin. Pract.65(11), 1180–1192 (2011).
  • Zheng SL , Augustsson-BälterK , ChangBet al. Sequence variants of Toll-like receptor 4 are associated with prostate cancer risk: results from the Cancer Prostate in Sweden Study. Cancer Res.64(8), 2918–2922 (2004).
  • Chen H , ToyookaS , GazdarAF , HsiehJ-T. Epigenetic regulation of a novel tumor suppressor gene (hDAB2IP) in prostate cancer cell lines. J. Biol. Chem.278(5), 3121–3130 (2003).
  • Gao P , XiaJ-H , SipekyCet al. Biology and clinical implications of the 19q13 aggressive prostate cancer susceptibility locus. Cell174(3), 576–589.e518 (2018).
  • Baillat D , ShiekhattarR. Functional dissection of the human TNRC6 (GW182-related) family of proteins. Mol. Cell. Biol.29(15), 4144–4155 (2009).
  • Stelzer G , RosenN , PlaschkesIet al. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics54(1), 1.30.31–31.30.33 (2016).
  • Chen D , TengJ , NorthP , LapinskiPE , KingPD. RASA1-dependent cellular export of collagen IV controls blood and lymphatic vascular development. J. Clin. Invest.129(9), 3545–3561 (2019).
  • Whitaker H , ShiongL , KayJet al. N-acetyl-L-aspartyl-L-glutamate peptidase-like 2 is overexpressed in cancer and promotes a pro-migratory and pro-metastatic phenotype. Oncogene33(45), 5274 (2014).
  • Lawrence MG , LaiJ , ClementsJA. Kallikreins on steroids: structure, function, and hormonal regulation of prostate-specific antigen and the extended kallikrein locus. Endocr. Rev.31(4), 407–446 (2010).
  • Bensen JT , XuZ , SmithGJ , MohlerJL , FonthamET , TaylorJA. Genetic polymorphism and prostate cancer aggressiveness: a case‐only study of 1,536 GWAS and candidate SNPs in African–Americans and European–Americans. Prostate73(1), 11–22 (2013).
  • Bu H , NarisuN , SchlickBet al. Putative prostate cancer risk snp in an androgen receptor‐binding site of the melanophilin gene illustrates enrichment of risk SNPs in androgen receptor target sites. Hum. Mutat.37(1), 52–64 (2016).
  • Penney KL , SinnottJA , TyekuchevaSet al. Association of prostate cancer risk variants with gene expression in normal and tumor tissue. Cancer Epidemiol. Biomarkers Prev.24(1), 255–260 (2015).
  • Min J , ZaslavskyA , FedeleGet al. An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-κB. Nat. Med.16(3), 286 (2010).
  • Chernova OB , HunyadiA , MalajEet al. A novel member of the WD-repeat gene family, WDR11, maps to the 10q26 region and is disrupted by a chromosome translocation in human glioblastoma cells. Oncogene20(38), 5378 (2001).
  • Lee JE , ShinS-H , ShinH-W , ChunY-S , ParkJ-W. Nuclear FGFR2 negatively regulates hypoxia-induced cell invasion in prostate cancer by interacting with HIF-1 and HIF-2. Sci. Rep.9(1), 3480 (2019).
  • Salama M , Benitez-RiquelmeD , ElabdSet al. Fam83F induces p53 stabilisation and promotes its activity. Cell Death Differ.26(10), 2125–2138 (2019).
  • Benafif S , EelesR. Genetic predisposition to prostate cancer. Br. Med. Bull.120(1), 75–89 (2016).
  • Ahn J , KibelAS , ParkJYet al. Prostate cancer predisposition loci and risk of metastatic disease and prostate cancer recurrence. Clin. Cancer Res.17(5), 1075–1081 (2011).
  • Klein RJ , HalldenC , GuptaAet al. Evaluation of multiple risk-associated single nucleotide polymorphisms versus prostate-specific antigen at baseline to predict prostate cancer in unscreened men. Eur. Urol.61(3), 471–477 (2012).
  • Agalliu I , WangZ , WangTet al. Characterization of SNPs associated with prostate cancer in men of Ashkenazic descent from the set of GWAS identified SNPs: impact of cancer family history and cumulative SNP risk prediction. PLoS ONE8(4), e60083 (2013).
  • Chan JY , LiH , SinghOet al. 8q24 and 17q prostate cancer susceptibility loci in a multiethnic Asian cohort. Urol. Oncol.31(8), 1553–1560 (2013).
  • Teerlink CC , ThibodeauSN , McdonnellSKet al. Association analysis of 9,560 prostate cancer cases from the International Consortium of Prostate Cancer Genetics confirms the role of reported prostate cancer associated SNPs for familial disease. Hum. Genet.133(3), 347–356 (2014).
  • He Y , GuJ , StromS , LogothetisCJ , KimJ , WuX. The prostate cancer susceptibility variant rs2735839 near KLK3 gene is associated with aggressive prostate cancer and can stratify gleason score 7 patients. Clin. Cancer Res.20(19), 5133–5139 (2014).
  • Helfand BT , RoehlKA , CooperPRet al. Associations of prostate cancer risk variants with disease aggressiveness: results of the NCI-SPORE Genetics Working Group analysis of 18,343 cases. Hum. Genet.134(4), 439–450 (2015).
  • Jinga V , CsikiIE , ManolescuAet al. Replication study of 34 common SNP s associated with prostate cancer in the Romanian population. J. Cell. Mol. Med.20(4), 594–600 (2016).
  • Vaidyanathan V , NaiduV , NishiKarunasinghe AJ , PallatiR , MarlowG , FergusonLR. SNP–SNP interactions as risk factors for aggressive prostate cancer. F1000Research6(621), (2017).
  • Eeles RA , Kote-JaraiZ , GilesGGet al. Multiple newly identified loci associated with prostate cancer susceptibility. Nat. Genet.40(3), 316 (2008).
  • Pomerantz MM , WernerL , XieWet al. Association of prostate cancer risk loci with disease aggressiveness and prostate cancer–specific mortality. Cancer Prev. Res.4(5), 719–728 (2011).
  • Penney KL , SchumacherFR , KraftPet al. Association of KLK3 (PSA) genetic variants with prostate cancer risk and PSA levels. Carcinogenesis32(6), 853–859 (2011).
  • Chan JM , StampferMJ , MaJet al. Insulin-like growth factor-I (IGF-I) and IGF binding protein-3 as predictors of advanced-stage prostate cancer. J. Natl Cancer Inst.94(14), 1099–1106 (2002).
  • Ahn J , BerndtSI , WacholderSet al. Variation in KLK genes, prostate-specific antigen and risk of prostate cancer. Nat. Genet.40(9), 1032 (2008).
  • Gudmundsson J , BesenbacherS , SulemPet al. Genetic correction of PSA values using sequence variants associated with PSA levels. Sci. Transl. Med.2(62), 62ra92–62ra92 (2010).
  • Tong Y , QuY , LiS , ZhaoF , WangY , MuD. Cumulative evidence for relationships between multiple variants of HNF1B and the risk of prostate and endometrial cancers. BMC Med. Genet.19(1), 128 (2018).
  • Donjacour AA , ThomsonAA , CunhaGR. FGF-10 plays an essential role in the growth of the fetal prostate. Dev. Biol.261(1), 39–54 (2003).
  • Memarzadeh S , XinL , MulhollandDJet al. Enhanced paracrine FGF10 expression promotes formation of multifocal prostate adenocarcinoma and an increase in epithelial androgen receptor. Cancer Cell12(6), 572–585 (2007).
  • Lou Y-R , QiaoS , TalonpoikaR , SyväläH , TuohimaaP. The role of vitamin D3 metabolism in prostate cancer. J. Steroid Biochem. Mol. Biol.92(4), 317–325 (2004).
  • Epstein JI , ZelefskyMJ , SjobergDDet al. A contemporary prostate cancer grading system: a validated alternative to the Gleason score. Eur. Urol.69(3), 428–435 (2016).
  • Bjurlin MA , CarterHB , SchellhammerPet al. Optimization of initial prostate biopsy in clinical practice: sampling, labeling and specimen processing. J. Urol.189(6), 2039–2046 (2013).
  • Farashi S , KryzaT , ClementsJ , BatraJ. Post-GWAS in prostate cancer: from genetic association to biological contribution. Nat. Rev. Cancer19(1), 46–69 (2018).
  • Bourrat P , LuQ , JablonkaE. Why the missing heritability might not be in the DNA. BioEssays39(7), 1700067 (2017).
  • Vieira FQ , Costa-PinheiroP , Almeida-RiosDet al. SMYD3 contributes to a more aggressive phenotype of prostate cancer and targets cyclin D2 through H4K20me3. Oncotarget6(15), 13644 (2015).
  • Teixeira AL , GomesM , NogueiraAet al. Improvement of a predictive model of castration-resistant prostate cancer: functional genetic variants in TGFβ1 signaling pathway modulation. PLoS ONE8(8), e72419 (2013).
  • Fraga A , RibeiroR , PríncipePet al. The HIF1A functional genetic polymorphism at locus+ 1772 associates with progression to metastatic prostate cancer and refractoriness to hormonal castration. Eur. J. Cancer50(2), 359–365 (2014).
  • Mccarthy MI , AbecasisGR , CardonLRet al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat. Rev. Genet.9(5), 356 (2008).
  • Seibert TM , FanCC , WangYet al. Polygenic hazard score to guide screening for aggressive prostate cancer: development and validation in large scale cohorts. BMJ360, j5757 (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.