367
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Variant Discovery Using Next-Generation Sequencing and its Future Role in Pharmacogenetics

& ORCID Icon
Pages 471-486 | Received 18 Dec 2019, Accepted 20 Feb 2020, Published online: 27 Apr 2020

References

  • Kilpinen H , BarrettJC. How next-generation sequencing is transforming complex disease genetics. Trends Genet.29(1), 23–30 (2013).
  • Koboldt DC , SteinbergKM , LarsonDE , WilsonRK , MardisER. The next-generation sequencing revolution and its impact on genomics. Cell155(1), 27–38 (2013).
  • Nebert DW . Pharmacogenetics and pharmacogenomics: why is this relevant to the clinical geneticist?Clin. Genet.56(4), 247–258 (1999).
  • Lauschke VM , Ingelman-SundbergM. The importance of patient-specific factors for hepatic drug response and toxicity. Int. J. Mol. Sci.17(10), E1714 (2016).
  • Sim SC , KacevskaM , Ingelman-SundbergM. Pharmacogenomics of drug-metabolizing enzymes: a recent update on clinical implications and endogenous effects. Pharmacogenomics J.13(1), 1–11 (2013).
  • Martin MA , HoffmanJM , FreimuthRRet al. Clinical Pharmacogenetics Implementation Consortium Guidelines for HLA-B genotype and abacavir dosing: 2014 update. Clin. Pharmacol. Ther.95(5), 499–500 (2014).
  • Martin MA , KleinTE , DongBJet al. Clinical Pharmacogenetics Implementation Consortium Guidelines for HLA-B genotype and abacavir dosing. Clin. Pharmacol. Ther.91(4), 734–738 (2012).
  • Hicks JK , SangkuhlK , SwenJJet al. Clinical Pharmacogenetics Implementation Consortium Guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin. Pharmacol. Ther.102(1), 37–44 (2017).
  • Hicks JK , SwenJJ , ThornCFet al. Clinical Pharmacogenetics Implementation Consortium Guideline for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants. Clin. Pharmacol. Ther.93(5), 402–408 (2013).
  • Scott SA , SangkuhlK , GardnerEEet al. Clinical Pharmacogenetics Implementation Consortium Guidelines for cytochrome P450-2C19 (CYP2C19) genotype and clopidogrel therapy. Clin. Pharmacol. Ther.90(2), 328–332 (2011).
  • Scott SA , SangkuhlK , SteinCMet al. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin. Pharmacol. Ther.94(3), 317–323 (2013).
  • Johnson JA , CaudleKE , GongLet al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for pharmacogenetics-guided warfarin dosing: 2017 update. Clin. Pharmacol. Ther.102(3), 397–404 (2017).
  • Johnson JA , GongL , Whirl-CarrilloMet al. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin. Pharmacol. Ther.90(4), 625–629 (2011).
  • Amstutz U , HenricksLM , OfferSMet al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing: 2017 update. Clin. Pharmacol. Ther.103(2), 210–216 (2018).
  • Caudle KE , ThornCF , KleinTEet al. Clinical Pharmacogenetics Implementation Consortium Guidelines for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing. Clin. Pharmacol. Ther.94(6), 640–645 (2013).
  • Relling MV , GardnerEE , SandbornWJet al. Clinical Pharmacogenetics Implementation Consortium Guidelines for thiopurine methyltransferase genotype and thiopurine dosing: 2013 update. Clin. Pharmacol. Ther.93(4), 324–325 (2013).
  • Relling MV , GardnerEE , SandbornWJet al. Clinical Pharmacogenetics Implementation Consortium Guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin. Pharmacol. Ther.89(3), 387–391 (2011).
  • Relling MV , SchwabM , Whirl-CarrilloMet al. Clinical Pharmacogenetics Implementation Consortium Guideline for thiopurine dosing based on TPMT and NUDT15 genotypes: 2018 update. Clin. Pharmacol. Ther.105(5), 1095–1105 (2019).
  • Kozyra M , Ingelman-SundbergM , LauschkeVM. Rare genetic variants in cellular transporters, metabolic enzymes, and nuclear receptors can be important determinants of interindividual differences in drug response. Genet. Med.19(1), 20–29 (2017).
  • Scharfe CPI , TremmelR , SchwabM , KohlbacherO , MarksDS. Genetic variation in human drug-related genes. Genome Med.9(1), 117 (2017).
  • Hayden EC . Technology: the $1,000 genome. Nature507(7492), 294–295 (2014).
  • Genomes Project C , AbecasisGR , AutonAet al. An integrated map of genetic variation from 1,092 human genomes. Nature491(7422), 56–65 (2012).
  • Lek M , KarczewskiKJ , MinikelEVet al. Analysis of protein-coding genetic variation in 60,706 humans. Nature536(7616), 285–291 (2016).
  • Fujikura K , Ingelman-SundbergM , LauschkeVM. Genetic variation in the human cytochrome P450 supergene family. Pharmacogenet. Genomics25(12), 584–594 (2015).
  • Schaller L , LauschkeVM. The genetic landscape of the human solute carrier (SLC) transporter superfamily. Hum. Genet.138(11–12), 1359–1377 (2019).
  • Gordon AS , FultonRS , QinX , MardisER , NickersonDA , SchererS. PGRNseq: a targeted capture sequencing panel for pharmacogenetic research and implementation. Pharmacogenet. Genomics26(4), 161–168 (2016).
  • Gulilat M , LambT , TeftWAet al. Targeted next generation sequencing as a tool for precision medicine. BMC Med. Genomics12(1), 81 (2019).
  • Han SM , ParkJ , LeeJHet al. Targeted next-generation sequencing for comprehensive genetic profiling of pharmacogenes. Clin. Pharmacol. Ther.101(3), 396–405 (2017).
  • Klein K , TremmelR , WinterSet al. A new panel-based next-generation sequencing method for ADME genes reveals novel associations of common and rare variants with expression in a human liver cohort. Front. Genet.10, 7 (2019).
  • Depristo MA , BanksE , PoplinRet al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet.43(5), 491–498 (2011).
  • Rehm HL , BaleSJ , Bayrak-ToydemirPet al. ACMG clinical laboratory standards for next-generation sequencing. Genet. Med.15(9), 733–747 (2013).
  • Richards S , AzizN , BaleSet al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med.17(5), 405–424 (2015).
  • Bamshad MJ , NgSB , BighamAWet al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev. Genet.12(11), 745–755 (2011).
  • Abecasis GR , AutonA , BrooksLDet al. An integrated map of genetic variation from 1,092 human genomes. Nature491(7422), 56–65 (2012).
  • Mantere T , KerstenS , HoischenA. Long-read sequencing emerging in medical genetics. Front. Genet.10, 426 (2019).
  • van Dijk EL , JaszczyszynY , NaquinD , ThermesC. The third revolution in sequencing technology. Trends Genet.34(9), 666–681 (2018).
  • Schadt EE , TurnerS , KasarskisA. A window into third-generation sequencing. Hum. Mol. Genet.19(R2), R227–240 (2010).
  • Treangen TJ , SalzbergSL. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat. Rev. Genet.13(1), 36–46 (2011).
  • Ton KNT , CreeSL , Gronert-SumSJ , MerrimanTR , StampLK , KennedyMA. Multiplexed nanopore sequencing of HLA-B locus in Maori and Pacific island samples. Front. Genet.9, 152 (2018).
  • Mallal S , NolanD , WittCet al. Association between presence of HLA-B•5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet (London, England)359(9308), 727–732 (2002).
  • Tangamornsuksan W , ChaiyakunaprukN , SomkruaR , LohitnavyM , TassaneeyakulW. Relationship between the HLA-B•1502 allele and carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis: a systematic review and meta-analysis. JAMA Dermatol.149(9), 1025–1032 (2013).
  • Liau Y , MaggoS , MillerAL , PearsonJF , KennedyMA , CreeSL. Nanopore sequencing of the pharmacogene CYP2D6 allows simultaneous haplotyping and detection of duplications. Pharmacogenomics20(14), 1033–1047 (2019).
  • Fu S , WangA , AuKF. A comparative evaluation of hybrid error correction methods for error-prone long reads. Genome Biol.20(1), 26 (2019).
  • Laehnemann D , BorkhardtA , McHardyAC. Denoising DNA deep sequencing data-high-throughput sequencing errors and their correction. Brief. Bioinform.17(1), 154–179 (2016).
  • Laver T , HarrisonJ , O’NeillPAet al. Assessing the performance of the Oxford Nanopore Technologies MinION. Biomol. Detect. Quantif.3, 1–8 (2015).
  • Sedlazeck FJ , LeeH , DarbyCA , SchatzMC. Piercing the dark matter: bioinformatics of long-range sequencing and mapping. Nat. Rev. Genet.19(6), 329–346 (2018).
  • Cohn I , PatonTA , MarshallCRet al. Genome sequencing as a platform for pharmacogenetic genotyping: a pediatric cohort study. NPJ Genom. Med.2, 19 (2017).
  • Tremmel R , KleinK , BattkeFet al. Copy number variation profiling in pharmacogenes using panel-based exome resequencing and correlation to human liver expression. Hum. Genet.139(2), 137–149 (2020).
  • Twist GP , GaedigkA , MillerNAet al. Constellation: a tool for rapid, automated phenotype assignment of a highly polymorphic pharmacogene, CYP2D6, from whole-genome sequences. NPJ Genom. Med.1, 15007 (2016).
  • Santos M , NiemiM , HiratsukaMet al. Novel copy-number variations in pharmacogenes contribute to interindividual differences in drug pharmacokinetics. Genet. Med.20(6), 622–629 (2018).
  • Zouk H , VennerE , LennonNJet al. Harmonizing clinical sequencing and interpretation for the eMERGE III network. Am. J. Hum. Genet.105(3), 588–605 (2019).
  • Visscher PM , WrayNR , ZhangQet al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet.101(1), 5–22 (2017).
  • Speed D , HemaniG , JohnsonMR , BaldingDJ. Improved heritability estimation from genome-wide SNPs. Am. J. Hum. Genet.91(6), 1011–1021 (2012).
  • Kumar P , HenikoffS , NgPC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc.4(7), 1073–1081 (2009).
  • Adzhubei IA , SchmidtS , PeshkinLet al. A method and server for predicting damaging missense mutations. Nature Methods7(4), 248–249 (2010).
  • Cooper GM , StoneEA , AsimenosGet al. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res.15(7), 901–913 (2005).
  • Grantham R . Amino-acid difference formula to help explain protein evolution. Science185(4154), 862–864 (1974).
  • Ng PC , HenikoffS. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res.31(13), 3812–3814 (2003).
  • Ioannidis NM , RothsteinJH , PejaverVet al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am. J. Hum. Genet.99(4), 877–885 (2016).
  • Kircher M , WittenDM , JainP , O’RoakBJ , CooperGM , ShendureJ. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet.46(3), 310–315 (2014).
  • Shihab HA , GoughJ , CooperDNet al. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum. Mutat.34(1), 57–65 (2013).
  • Ritchie GR , DunhamI , ZegginiE , FlicekP. Functional annotation of noncoding sequence variants. Nat Methods11(3), 294–296 (2014).
  • Zhou Y , MkrtchianS , KumondaiM , HiratsukaM , LauschkeVM. An optimized prediction framework to assess the functional impact of pharmacogenetic variants. Pharmacogenomics J.19(2), 115–126 (2019).
  • Zhou Y , FujikuraK , MkrtchianS , LauschkeVM. Computational methods for the pharmacogenetic interpretation of next generation sequencing data. Front. Pharmacol.9, 1437 (2018).
  • Arbiza L , GronauI , AksoyBAet al. Genome-wide inference of natural selection on human transcription factor binding sites. Nat. Genet.45(7), 723–729 (2013).
  • Boyle AP , DavisS , ShulhaHPet al. High-resolution mapping and characterization of open chromatin across the genome. Cell132(2), 311–322 (2008).
  • Zhang Y , LvJ , LiuHet al. HHMD: the human histone modification database. Nucleic Acids Res.38(Database issue), D149–154 (2010).
  • Johnson DS , MortazaviA , MyersRM , WoldB. Genome-wide mapping of in vivo protein–DNA interactions. Science316(5830), 1497–1502 (2007).
  • Rentzsch P , WittenD , CooperGM , ShendureJ , KircherM. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res.47(D1), D886–D894 (2019).
  • Lauschke VM , ZhouY , Ingelman-SundbergM. Novel genetic and epigenetic factors of importance for inter-individual differences in drug disposition, response and toxicity. Pharmacol. Ther.197, 122–152 (2019).
  • Lauschke VM , MilaniL , Ingelman-SundbergM. Pharmacogenomic biomarkers for improved drug therapy-recent progress and future developments. AAPS J.20(1), 4 (2017).
  • Russell LE , KimRB , ZhouY , LauschkeVM. In vitro functional characterization and in silico prediction of rare genetic variation in the bile acid and drug transporter, Na+ – taurocholate cotransporting polypeptide (NTCP, SLC10A1). Mol Pharm. (17(4), 1170–1181 (2020).
  • Ho RH , LeakeBF , RobertsRL , LeeW , KimRB. Ethnicity-dependent polymorphism in Na+ – taurocholate cotransporting polypeptide (SLC10A1) reveals a domain critical for bile acid substrate recognition. J. Biol. Chem.279(8), 7213–7222 (2004).
  • Ho RH , LeakeBF , UrquhartBL , GregorJC , DawsonPA , KimRB. Functional characterization of genetic variants in the apical sodium-dependent bile acid transporter (ASBT; SLC10A2). J. Gastroenterol. Hepatol.26(12), 1740–1748 (2011).
  • Kim RB , LeakeBF , ChooEFet al. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin. Pharmacol. Ther.70(2), 189–199 (2001).
  • Schwarz UI , MeyerZu Schwabedissen HE , TironaRGet al. Identification of novel functional organic anion-transporting polypeptide 1B3 polymorphisms and assessment of substrate specificity. Pharmacogenet. Genomics21(3), 103–114 (2011).
  • Tirona RG , LeakeBF , MerinoG , KimRB. Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European– and African–Americans. J. Biol. Chem.276(38), 35669–35675 (2001).
  • Urquhart BL , WareJA , TironaRGet al. Breast cancer resistance protein (ABCG2) and drug disposition: intestinal expression, polymorphisms and sulfasalazine as an in vivo probe. Pharmacogenet. Genomics18(5), 439–448 (2008).
  • Chiasson M , DunhamMJ , RettieAE , FowlerDM. Applying multiplex assays to understand variation in pharmacogenes. Clin. Pharmacol. Ther.106(2), 290–294 (2019).
  • Fowler DM , FieldsS. Deep mutational scanning: a new style of protein science. Nature Methods11(8), 801–807 (2014).
  • Suiter CC , MoriyamaT , MatreyekKAet al. Massive parallel variant characterization identifies NUDT15 alleles associated with thiopurine toxicity. PNAS117(10), 5394–5401 (2020).
  • Matreyek KA , StaritaLM , StephanyJJet al. Multiplex assessment of protein variant abundance by massively parallel sequencing. Nat. Genet.50(6), 874–882 (2018).
  • Aguiar M , MasseR , GibbsBF. Regulation of cytochrome P450 by posttranslational modification. Drug Metab. Rev.37(2), 379–404 (2005).
  • Czuba LC , HillgrenKM , SwaanPW. Post-translational modifications of transporters. Pharmacol. Ther.192, 88–99 (2018).
  • Xu D , YouG. Loops and layers of post-translational modifications of drug transporters. Adv. Drug Deliv. Rev116, 37–44 (2017).
  • Daly AK . Genome-wide association studies in pharmacogenomics. Nat. Rev. Genet.11(4), 241–246 (2010).
  • Daly AK . Pharmacogenomics of adverse drug reactions. Genome Med.5(1), 5 (2013).
  • Lee S , AbecasisGR , BoehnkeM , LinX. Rare-variant association analysis: study designs and statistical tests. Am. J. Hum. Genet.95(1), 5–23 (2014).
  • Degorter MK , TironaRG , SchwarzUIet al. Clinical and pharmacogenetic predictors of circulating atorvastatin and rosuvastatin concentrations in routine clinical care. Circ. Cardiovasc. Genet.6(4), 400–408 (2013).
  • Nies AT , NiemiM , BurkOet al. Genetics is a major determinant of expression of the human hepatic uptake transporter OATP1B1, but not of OATP1B3 and OATP2B1. Genome Med.5(1), 1 (2013).
  • Lee S , WuMC , LinX. Optimal tests for rare variant effects in sequencing association studies. Biostatistics13(4), 762–775 (2012).
  • Wu MC , LeeS , CaiT , LiY , BoehnkeM , LinX. Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet.89(1), 82–93 (2011).
  • Gibson G . Rare and common variants: twenty arguments. Nat. Rev. Genet.13(2), 135–145 (2012).
  • Lee S , EmondMJ , BamshadMJet al. Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. Am. J. Hum. Genet.91(2), 224–237 (2012).
  • Need AC , GoldsteinDB. Next-generation disparities in human genomics: concerns and remedies. Trends Genet.25(11), 489–494 (2009).
  • Giacomini KM , YeeSW , RatainMJ , WeinshilboumRM , KamataniN , NakamuraY. Pharmacogenomics and patient care: one size does not fit all. Sci. Transl. Med.4(153), 153ps118 (2012).
  • Zhang H , DeT , ZhongY , PereraMA. The advantages and challenges of diversity in pharmacogenomics: can minority populations bring us closer to implementation?Clin. Pharmacol. Ther.106(2), 338–349 (2019).
  • Rieder MJ , ReinerAP , GageBFet al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N. Engl. J. Med.352(22), 2285–2293 (2005).
  • Daneshjou R , GamazonER , BurkleyBet al. Genetic variant in folate homeostasis is associated with lower warfarin dose in African–Americans. Blood124(14), 2298–2305 (2014).
  • Perera MA , CavallariLH , LimdiNAet al. Genetic variants associated with warfarin dose in African–American individuals: a genome-wide association study. Lancet (London, England)382(9894), 790–796 (2013).
  • Church GM . The personal genome project. Mol. Syst. Biol.1(2005), 0030 (2005).
  • Beck S , BernerAM , BignellGet al. Personal Genome Project UK (PGP-UK): a research and citizen science hybrid project in support of personalized medicine. BMC Med. Genomics11(1), 108 (2018).
  • Lunshof JE , ChadwickR , VorhausDB , ChurchGM. From genetic privacy to open consent. Nat. Rev. Genet.9(5), 406–411 (2008).
  • Ball MP , ThakuriaJV , ZaranekAWet al. A public resource facilitating clinical use of genomes. Proc. Natl Acad. Sci. USA109(30), 11920–11927 (2012).
  • Reuter MS , WalkerS , ThiruvahindrapuramBet al. The Personal Genome Project Canada: findings from whole genome sequences of the inaugural 56 participants. CMAJ190(5), E126–E136 (2018).
  • Turnbull C , ScottRH , ThomasEet al. The 100 000 Genomes Project: bringing whole genome sequencing to the NHS. BMJ361, k1687 (2018).
  • Gottesman O , KuivaniemiH , TrompGet al. The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future. Genet. Med.15(10), 761–771 (2013).
  • Rasmussen-Torvik LJ , StallingsSC , GordonASet al. Design and anticipated outcomes of the eMERGE-PGx project: a multicenter pilot for preemptive pharmacogenomics in electronic health record systems. Clin. Pharmacol. Ther.96(4), 482–489 (2014).
  • Bush WS , CrosslinDR , Owusu-ObengAet al. Genetic variation among 82 pharmacogenes: the PGRNseq data from the eMERGE network. Clin. Pharmacol. Ther.100(2), 160–169 (2016).
  • Park J , KatzN , ZhangXet al. Exome-by-phenome-wide rare variant gene burden association with electronic health record phenotypes. bioRxiv798330(2019) ( Epub ahead of print). doi:10.1101/798330
  • Cao Y , FanningS , ProosS , JordanK , SrikumarS. A review on the applications of next generation sequencing technologies as applied to food-related microbiome studies. Front. Microbiol.8, 1829–1829 (2017).
  • Turnbaugh PJ , LeyRE , HamadyM , Fraser-LiggettCM , KnightR , GordonJI. The human microbiome project. Nature449(7164), 804–810 (2007).
  • Alexander JL , WilsonID , TeareJ , MarchesiJR , NicholsonJK , KinrossJM. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat. Rev. Gastroenterol. Hepatol.14(6), 356–365 (2017).
  • Koppel N , MainiRekdal V , BalskusEP. Chemical transformation of xenobiotics by the human gut microbiota. Science356(6344), eaag2770 (2017).
  • Sousa T , PatersonR , MooreV , CarlssonA , AbrahamssonB , BasitAW.The gastrointestinal microbiota as a site for the biotransformation of drugs. Int. J. Pharm.363(1–2), 1–25 (2008).
  • Kelly L . Harnessing the microbiome to improve drug therapy. Clin. Pharmacol. Ther.106(2), 287–289 (2019).
  • Iyer R , CroucherJL , ChornyMet al. Nanoparticle delivery of an SN38 conjugate is more effective than irinotecan in a mouse model of neuroblastoma. Cancer Lett.360(2), 205–212 (2015).
  • Sugiyama Y , KatoY , ChuX. Multiplicity of biliary excretion mechanisms for the camptothecin derivative irinotecan (CPT-11), its metabolite SN-38, and its glucuronide: role of canalicular multispecific organic anion transporter and P-glycoprotein. Cancer Chemother. Pharmacol.42(Suppl.), S44–S49 (1998).
  • Wallace BD , RobertsAB , PolletRMet al. Structure and inhibition of microbiome beta-glucuronidases essential to the alleviation of cancer drug toxicity. Chem. Biol.22(9), 1238–1249 (2015).
  • Wallace BD , WangH , LaneKTet al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science330(6005), 831–835 (2010).
  • Ando Y , SakaH , AndoMet al. Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res.60(24), 6921–6926 (2000).
  • Iyer L , HallD , DasSet al. Phenotype-genotype correlation of in vitro SN-38 (active metabolite of irinotecan) and bilirubin glucuronidation in human liver tissue with UGT1A1 promoter polymorphism. Clin. Pharmacol. Ther.65(5), 576–582 (1999).
  • Minami H , SaiK , SaekiMet al. Irinotecan pharmacokinetics/pharmacodynamics and UGT1A genetic polymorphisms in Japanese: roles of UGT1A1•6 and •28. Pharmacogenet. Genomics17(7), 497–504 (2007).
  • Athreya A , IyerR , NeavinDet al. Augmentation of physician assessments with multi-omics enhances predictability of drug response: a case study of major depressive disorder. IEEE Comput. Intell. Mag.13(3), 20–31 (2018).
  • Athreya AP , NeavinD , Carrillo-RoaTet al. Pharmacogenomics-driven prediction of antidepressant treatment outcomes: a machine-learning approach with multi-trial replication. Clin. Pharmacol. Ther.106(4), 855–865 (2019).
  • Kalinin AA , HigginsGA , ReamaroonNet al. Deep learning in pharmacogenomics: from gene regulation to patient stratification. Pharmacogenomics19(7), 629–650 (2018).
  • Preuer K , LewisRPI , HochreiterS , BenderA , BulusuKC , KlambauerG. DeepSynergy: predicting anti-cancer drug synergy with Deep Learning. Bioinformatics34(9), 1538–1546 (2018).
  • Wen M , ZhangZ , NiuSet al. Deep-learning-based drug-target interaction prediction. J. Proteome Res.16(4), 1401–1409 (2017).
  • Mcinnes G , DaltonR , SangkuhlKet al. Hubble2D6: a deep learning approach for predicting drug metabolic activity. bioRxiv doi:10.1101/684357684357(2019) ( Epub ahead of print).
  • Gianfrancesco MA , TamangS , YazdanyJ , SchmajukG. Potential biases in machine learning algorithms using electronic health record data. JAMA Internal Med.178(11), 1544–1547 (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.