235
Views
0
CrossRef citations to date
0
Altmetric
Review

Unraveling Heterogeneity of the Clinical Pharmacogenomic Guidelines in Oncology Practice Among Major Regulatory Bodies

ORCID Icon, &
Pages 1247-1264 | Received 18 Apr 2020, Accepted 03 Sep 2020, Published online: 30 Oct 2020

References

  • Relling MV , EvansWE. Pharmacogenomics in the clinic. Nature526(7573), 343–350 (2015).
  • Bykov VJN , ErikssonSE , BianchiJ , WimanKG. Targeting mutant p53 for efficient cancer therapy. Nat. Rev. Cancer18(2), 89–102 (2018).
  • World Health Organisation . WHO cancer fact sheet. (2018). https://www.who.int/news-room/fact-sheets/detail/cancer
  • Magid Diefenbach CS , DisisML , KeedyVet al. Clinical Cancer Advances 2019: Annual Report on Progress Against Cancer From the American Society of Clinical Oncology. J. Clin. Oncol.37(10), 834–849 (2019).
  • US FDA . Table of pharmacogenomic biomarkers in FDA drug labeling. (2019). https://www.fda.gov/drugs/science-and-research-drugs/table-pharmacogenomic-biomarkers-drug-labeling
  • Shekhani R , SteinacherL , SwenJJ , Ingelman-SundbergM. Evaluation of current regulation and guidelines of pharmacogenomic drug labels: opportunities for improvements. Clin. Pharmacol. Ther.107(5), 1240–1255 (2020).
  • PharmGKB . PharmGKB drug label information and legend. (2020). https://www.pharmgkb.org/page/drugLabelLegend
  • Mehta D , UberR , IngleTet al. Study of pharmacogenomic information in FDA-approved drug labeling to facilitate application of precision medicine. Drug Discov. Today25(5), 813–820 (2020).
  • Huddart R , GongL , SangkuhlKet al. Response to: unveiling the guidance heterogeneity for genome-informed drug treatment interventions among regulatory bodies and research consortia. Pharmacol. Res.158, 104838 (2020).
  • Koutsilieri S , TzioufaF , SismanoglouDC , PatrinosGP. Unveiling the guidance heterogeneity for genome-informed drug treatment interventions among regulatory bodies and research consortia. Pharmacol. Res.153, 104590 (2020).
  • Albassam A , AlshammariS , KoshyS , AwadA , OudaG. Knowledge, perceptions and confidence of physicians and pharmacists towards pharmacogenetics practice in Kuwait. PLoS ONE13(9), (2018).
  • Elewa H , AlkhiyamiD , AlsahanDet al. A survey on the awareness and attitude of pharmacists and doctors towards the application of pharmacogenomics and its challenges in Qatar. J. Eval. Clin. Pract.21(4), 703–709 (2015).
  • Abdela OA , BhagavathulaAS , GebreyohannesEA , TegegnHG. Ethiopian health care professionals’ knowledge, attitude, and interests toward pharmacogenomics. Pharmgenomics. Pers. Med.10, 279–285 (2017).
  • Yau A , AbdAziz AB , HaqueM. A systematic review of knowledge, attitude and practice towards pharmacogenomics among doctors ADAMU. Int. J. Pharm. Res.7(3), 145–154 (2015).
  • Nagy M , LynchM , KamalSet al. Assessment of healthcare professionals’ knowledge, attitudes, and perceived challenges of clinical pharmacogenetic testing in Egypt. Per. Med.17(4), 251–260 (2020).
  • Relling MV , SchwabM , Whirl-carrilloMet al. Clinical pharmacogenetics implementation consortium guideline for thiopurine dosing based on TPMT and NUDT 15 genotypes: 2018 update. Clin. Pharmacol. Ther.105(5), 1–11 (2019).
  • Zaza G , CheokM , KrynetskaiaNet al. Thiopurine pathway. Pharmacogenet. Genomics.20(9), 573–574 (2010).
  • Ji Y . Applications of pharmacogenomics in oncology. Adv. Mol. Pathol.1(1), 115–124 (2018).
  • Relling MV , HancockML , RiveraGKet al. Mercaptopurine therapy intolerance and heterozygosity. J. Natl Cancer Inst.91(23), 2001–2008 (2001).
  • Evans WE . Pharmacogenetics of thiopurine s-methyltransferase and thiopurine therapy. Drug Monit.26(2), 186–191 (2004).
  • Dean L . Azathioprine therapy and TPMT genotype. Med. Genet. Summ.1–7 (2012). http://www.ncbi.nlm.nih.gov/pubmed/28520349
  • Song K , JungY , ParkS-Ket al. A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia. Nat. Genet.46(9), 1017–1020 (2014).
  • Nielsen SN , GrellK , NerstingJet al. DNA-thioguanine nucleotide concentration and relapse-free survival during maintenance therapy of childhood acute lymphoblastic leukaemia (NOPHO ALL2008): a prospective substudy of a Phase III trial. Lancet. Oncol.18(4), 515–524 (2017).
  • Swen JJ , NijenhuisM , DeBoer Aet al. Pharmacogenetics: from bench to byte an update of guidelines. Clin. Pharmacol. Ther.89(5), 662–673 (2011).
  • The Royal Dutch Pharmacists Association - Pharmacogenetics Working Group . DPWG guideline for mercaptopurine and NUDT15 [Internet]. 8/2019. https://www.pharmgkb.org/gene/PA134963132/guidelineAnnotation/PA166184613
  • Relling MV , GardnerEE , SandbornWJet al. Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin. Pharmacol. Ther.89(3), 387–391 (2011).
  • Schmiegelow K , RellingMV , SteinCMet al. Clinical Pharmacogenetics Implementation Consortium Guidelines for thiopurine methyltransferase genotype and thiopurine dosing: 2013 update. Clin. Pharmacol. Ther.93(4), 324–325 (2013).
  • Bank PCD , CaudleKE , SwenJJet al. Comparison of the Guidelines of the Clinical Pharmacogenetics Implementation Consortium and the Dutch Pharmacogenetics Working Group. Clin. Pharmacol. Ther.103(4), 599–618 (2018).
  • The Royal Dutch Pharmacists Association - Pharmacogenetics Working Group . Annotation of DPWG Guideline for mercaptopurine and TPMT]. 8/2019. https://www.pharmgkb.org/guidelineAnnotation/PA166104952
  • PharmGKB . Drug label annotations for mercaptopurine, azathiopurine, thioguanine and TPMT. (2020). https://www.pharmgkb.org/gene/PA356/labelAnnotation
  • PharmGKB . Drug label annotations for mercaptopurine, azathiopurine,thioguanine and NUDT15. (2020). https://www.pharmgkb.org/gene/PA134963132/labelAnnotation
  • Chu E , DeVitaVT. Physicians’ cancer chemotherapy drug manual 2015. Jones & Bartlett Learning (2015). https://rudiapt.files.wordpress.com/2017/11/physicians-cancer-chemotherapy-drug-manual-2015.pdf
  • Heggie GD , SommadossiJP , CrossDS , HusterWJ , DiasioRB. Clinical pharmacokinetics of 5-fluorouracil and its metabolites in plasma, urine, and bile. Cancer Res.47(8), 2203–2206 (1987).
  • van Kuilenburg ABP . Dihydropyrimidine dehydrogenase and the efficacy and toxicity of 5-fluorouracil. Eur. J. Cancer40(7), 939–950 (2004).
  • Bertholee D , MaringJG , van KuilenburgABP. Genotypes affecting the pharmacokinetics of anticancer drugs. Clin. Pharmacokinet.56(4), 317–337 (2017).
  • Amstutz U , HenricksLM , OfferSMet al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing: 2017 update. Clin. Pharmacol. Ther.103(2), 210–216 (2018).
  • Lunenburg CATC , vander Wouden CH , NijenhuisMet al. Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene-drug interaction of DPYD and fluoropyrimidines. Eur. J. Hum. Genet. (1), (2019). http://www.ncbi.nlm.nih.gov/pubmed/31745289
  • Clinical Pharmacogenetics Implementation Consortium (CPIC®) . November 2018 Update on the CPIC November 2017 DPD and fluoropyrimidines Guideline. (2018). https://www.pharmgkb.org/gene/PA145/guidelineAnnotation/PA166109594
  • Henricks LM , LunenburgCATC , de ManFMet al. DPYD genotype-guided dose individualisation of fluoropyrimidine therapy in patients with cancer: a prospective safety analysis. Lancet Oncol.19(11), 1459–1467 (2018).
  • European Medicines Agency . EMA recommendations on DPD testing prior to treatment with fluorouracil, capecitabine, tegafur and flucytosine. ((2020). https://www.ema.europa.eu/en/news/ema-recommendations-dpd-testing-prior-treatment-fluorouracil-capecitabine-tegafur-flucytosine
  • PharmGKB . Drug label annotations for fluoropyrimidines and DPYD. https://www.pharmgkb.org/gene/PA145/labelAnnotation
  • American Cancer Society . Cancer facts and figures 2019.. CA Cancer J. Clin. (2019). https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2019/cancer-facts-and-figures-2019.pdf
  • Wilson BS , TucciDL , MersonMH , O’DonoghueGM. Global hearing health care: new findings and perspectives. Lancet390(10111), 2503–2515 (2017).
  • Shaloam D , TchounwouPB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol.740(1), 364–378 (2014).
  • Tserga E , NandwaniT , EdvallNKet al. The genetic vulnerability to cisplatin ototoxicity: a systematic review. Sci. Rep.9(1), 3455 (2019).
  • Bhavsar AP , GunaretnamEP , LiY , HasbullahJS , CarletonBC , RossCJD. Pharmacogenetic variants in TPMT alter cellular responses to cisplatin in inner ear cell lines. PLoS ONE12(4), 1–10 (2017).
  • Siddik ZH . Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene22(47), 7265–7279 (2003).
  • Ross CJD , Katzov-EckertH , DubeM-Pet al. Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. Nat. Genet.41(12), 1345–1349 (2009).
  • Yancey A , HarrisMS , EgbelakinA , GilbertJ , PisoniDB , RenbargerJ. Risk factors for cisplatin-associated ototoxicity in pediatric oncology patients. Pediatr. Blood Cancer59(1), 144–148 (2012).
  • Grondin Y , BortoniME , SepulvedaRet al. Genetic polymorphisms associated with hearing threshold shift in subjects during first encounter with occupational impulse noise. PLoS ONE10(6), e0130827 (2015).
  • Yang JJ , LimJYS , HuangJet al. The role of inherited TPMT and COMT genetic variation in cisplatin-induced ototoxicity in children with cancer. Clin. Pharmacol. Ther.94(2), 252–259 (2013).
  • Thiesen S , YinP , JorgensenALet al. TPMT, COMT and ACYP2 genetic variants in paediatric cancer patients with cisplatin-induced ototoxicity. Pharmacogenet. Genomics27(6), 213–222 (2017).
  • Lee JW , PussegodaK , RassekhSRet al. Clinical practice recommendations for the management and prevention of cisplatin-induced hearing loss using pharmacogenetic markers. Ther. Drug Monit.38(4), 423–431 (2016).
  • Packer RJ , GajjarA , VezinaGet al. Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J. Clin. Oncol.24(25), 4202–4208 (2006).
  • Perilongo G , ShaffordE , MaibachRet al. Risk-adapted treatment for childhood hepatoblastoma. final report of the second study of the International Society of Paediatric Oncology–SIOPEL 2. Eur. J. Cancer40(3), 411–421 (2004).
  • Katzenstein HM , LondonWB , DouglassECet al. Treatment of unresectable and metastatic hepatoblastoma: a pediatric oncology group phase II study. J. Clin. Oncol.20(16), 3438–3444 (2002).
  • Brock PR , MaibachR , ChildsMet al. Sodium thiosulfate for protection from cisplatin-induced hearing loss. N. Engl. J. Med.378(25), 2376–2385 (2018).
  • Stern JW , BuninN. Prospective study of carboplatin-based chemotherapy for pediatric germ cell tumors. Med. Pediatr. Oncol.39(3), 163–167 (2002).
  • Mann JR , RaafatF , RobinsonKet al. The United Kingdom Children’s Cancer Study Group’s second germ cell tumor study: carboplatin, etoposide, and bleomycin are effective treatment for children with malignant extracranial germ cell tumors, with acceptable toxicity. J. Clin. Oncol.18(22), 3809–3818 (2000).
  • Shaikh F , NathanPC , HaleJ , UlerykE , FrazierL. Is there a role for carboplatin in the treatment of malignant germ cell tumors? A systematic review of adult and pediatric trials. Pediatr. Blood Cancer.60(4), 587–592 (2013).
  • Kolinsky DC , HayashiSS , KarzonR , MaoJ , HayashiRJ. Late onset hearing loss: a significant complication of cancer survivors treated with Cisplatin containing chemotherapy regimens. J. Pediatr. Hematol. Oncol.32(2), 119–123 (2010).
  • PharmGKB . Drug label annotation for cisplatin and TPMT. (2020). https://www.pharmgkb.org/chemical/PA449014/labelAnnotation
  • Noone AM , HowladerN , KrapchoMet al. SEER cancer statistics review, 1975–2015, Childhood Cancer by By International Classification of Childhood Cancer (ICCC). Natl Cancer Institute (2020). https://seer.cancer.gov/csr/1975_2015/
  • Lipshultz SE , AlvarezJA , ScullyRE. Anthracycline associated cardiotoxicity in survivors of childhood cancer. Heart94(4), 525–533 (2008).
  • Scully RE , LipshultzSE. Anthracycline cardiotoxicity in long-term survivors of childhood cancer. Cardiovasc. Toxicol.7(2), 122–128 (2007).
  • Kremer LCM , vander Pal HJH , OffringaM , van DalenEC , VoutePA. Frequency and risk factors of subclinical cardiotoxicity after anthracycline therapy in children: a systematic review. Ann. Oncol.13(6), 819–829 (2002).
  • van der Pal HJ , van DalenEC , HauptmannMet al. Cardiac function in 5-year survivors of childhood cancer: a long-term follow-up study. Arch. Intern. Med.170(14), 1247–1255 (2010).
  • Hershman DL , ShaoT. Anthracycline cardiotoxicity after breast cancer treatment. Oncology (Williston Park)23(3), 227–234 (2009).
  • Von Hoff DD , LayardMW , BasaPet al. Risk factors for doxorubicin-induced congestive heart failure. Ann. Intern. Med.91(5), 710–717 (1979).
  • Lefrak EA , PithaJ , RosenheimS , GottliebJA. A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer32(2), 302–314 (1973).
  • Felker GM , ThompsonRE , HareJMet al. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N. Engl. J. Med.342(15), 1077–1084 (2000).
  • Kremer LC , van DalenEC , OffringaM , OttenkampJ , VoutePA. Anthracycline-induced clinical heart failure in a cohort of 607 children: long-term follow-up study. J. Clin. Oncol.19(1), 191–196 (2001).
  • Rodvold KA , RushingDA , TewksburyDA. Doxorubicin clearance in the obese. J. Clin. Oncol.6(8), 1321–1327 (1988).
  • Lipshultz SE , LipsitzSR , MoneSMet al. Female sex and higher drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N. Engl. J. Med.332(26), 1738–1743 (1995).
  • Lipshultz SE , ColanSD , GelberRD , Perez-AtaydeAR , SallanSE , SandersSP. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N. Engl. J. Med.324(12), 808–815 (1991).
  • Aminkeng F , RossCJD , RassekhSRet al. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br. J. Clin. Pharmacol.82(3), 683–695 (2016).
  • Olson RD , MushlinPS , BrennerDEet al. Doxorubicin cardiotoxicity may be caused by its metabolite, doxorubicinol. Proc. Natl Acad. Sci. USA85(10), 3585–3589 (1988).
  • Boucek RJJ , OlsonRD , BrennerDE , OgunbunmiEM , InuiM , FleischerS. The major metabolite of doxorubicin is a potent inhibitor of membrane-associated ion pumps. A correlative study of cardiac muscle with isolated membrane fractions. J. Biol. Chem.262(33), 15851–15856 (1987).
  • Mushlin PS , CusackBJ , BoucekRJJ , AndrejukT , LiX , OlsonRD. Time-related increases in cardiac concentrations of doxorubicinol could interact with doxorubicin to depress myocardial contractile function. Br. J. Pharmacol.110(3), 975–982 (1993).
  • Mordente A , MeucciE , SilvestriniA , MartoranaGE , GiardinaB. New developments in anthracycline-induced cardiotoxicity. Curr. Med. Chem.16(13), 1656–1672 (2009).
  • Minotti G , MennaP , SalvatorelliE , CairoG , GianniL. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev.56(2), 185–229 (2004).
  • Kremer LCM , van DalenEC , OffringaM , VoutePA. Frequency and risk factors of anthracycline-induced clinical heart failure in children: a systematic review. Ann. Oncol.13(4), 503–512 (2002).
  • Gottdiener JS , AppelbaumFR , FerransVJ , DeisserothA , ZieglerJ. Cardiotoxicity associated with high-dose cyclophosphamide therapy. Arch. Intern. Med.141(6), 758–763 (1981).
  • Krischer JP , EpsteinS , CuthbertsonDD , GoorinAM , EpsteinML , LipshultzSE. Clinical cardiotoxicity following anthracycline treatment for childhood cancer: the Pediatric Oncology Group experience. J. Clin. Oncol.15(4), 1544–1552 (1997).
  • Barry E , AlvarezJA , ScullyRE , MillerTL , LipshultzSE. Anthracycline-induced cardiotoxicity: course, pathophysiology, prevention and management. Expert Opin. Pharmacother.8(8), 1039–1058 (2007).
  • Tukenova M , GuiboutC , OberlinOet al. Role of cancer treatment in long-term overall and cardiovascular mortality after childhood cancer. J. Clin. Oncol.28(8), 1308–1315 (2010).
  • Aminkeng F , BhavsarAP , VisscherHet al. A coding variant in RARG confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer. Nat. Genet.47(9), 1079–1084 (2015).
  • Visscher H , RossCJD , RassekhSRet al. Validation of variants in SLC28A3 and UGT1A6 as genetic markers predictive of anthracycline-induced cardiotoxicity in children. Pediatr. Blood Cancer60(8), 1375–1381 (2013).
  • Visscher H , RossCJD , RassekhSRet al. Pharmacogenomic prediction of anthracycline-induced cardiotoxicity in children. J. Clin. Oncol.30(13), 1422–1428 (2012).
  • Cascales A , Sanchez-VegaB , NavarroNet al. Clinical and genetic determinants of anthracycline-induced cardiac iron accumulation. Int. J. Cardiol.154(3), 282–286 (2012).
  • Volkan-Salanci B , AksoyH , KiratliPOet al. The relationship between changes in functional cardiac parameters following anthracycline therapy and carbonyl reductase 3 and glutathione S transferase Pi polymorphisms. J. Chemother.24(5), 285–291 (2012).
  • Armenian SH , DingY , MillsGet al. Genetic susceptibility to anthracycline-related congestive heart failure in survivors of haematopoietic cell transplantation. Br. J. Haematol.163(2), 205–213 (2013).
  • Semsei AF , ErdelyiDJ , UngvariIet al. ABCC1 polymorphisms in anthracycline-induced cardiotoxicity in childhood acute lymphoblastic leukaemia. Cell Biol. Int.36(1), 79–86 (2012).
  • Visscher H , RassekhSR , SandorGSet al. Genetic variants in SLC22A17 and SLC22A7 are associated with anthracycline-induced cardiotoxicity in children. Pharmacogenomics16(10), 1065–1076 (2015).
  • Nagasawa K , NagaiK , OhnishiN , YokoyamaT , FujimotoS. Contribution of specific transport systems to anthracycline transport in tumor and normal cells. Curr. Drug Metab.2(4), 355–366 (2001).
  • Reichwagen A , ZiepertM , KreuzMet al. Association of NADPH oxidase polymorphisms with anthracycline-induced cardiotoxicity in the RICOVER-60 trial of patients with aggressive CD20(+) B-cell lymphoma. Pharmacogenomics16(4), 361–372 (2015).
  • Vulsteke C , PfeilAM , MaggenCet al. Clinical and genetic risk factors for epirubicin-induced cardiac toxicity in early breast cancer patients. Breast Cancer Res. Treat.152(1), 67–76 (2015).
  • Bock KW , KohleC. UDP-glucuronosyltransferase 1A6: structural, functional, and regulatory aspects. Methods Enzymol.400, 57–75 (2005).
  • Krishnaswamy S , HaoQ , Al-RohaimiAet al. UDP glucuronosyltransferase (UGT) 1A6 pharmacogenetics: II. Functional impact of the three most common nonsynonymous UGT1A6 polymorphisms (S7A, T181A, and R184S). J. Pharmacol. Exp. Ther.313(3), 1340–1346 (2005).
  • Nagar S , ZalatorisJJ , BlanchardRL. Human UGT1A6 pharmacogenetics: identification of a novel SNP, characterization of allele frequencies and functional analysis of recombinant allozymes in human liver tissue and in cultured cells. Pharmacogenetics14(8), 487–499 (2004).
  • PharmGKB . Drug label annotations for daunorubicin, doxorubicin and RARG, SLC28A3, UGT1A6. (2020). https://www.pharmgkb.org/chemical/PA449412/labelAnnotation
  • Pasternak AL , LuzumJA , EllingrodVL , WardKM , HertzDL. Germline genetic variants with implications for disease risk and therapeutic outcomes. Physiol. Genomics49(10), 567–581 (2017).
  • Barbarino JM , HaidarCE , KleinTE , AltmanRB. PharmGKB summary: very important pharmacogene information for UGT1A1. Pharmacogenet. Genomics24(3), 177–183 (2014).
  • The Royal Dutch Pharmacists Association - Pharmacogenetics Working Group . DPWG Guideline for irinotecan and UGT1A1 [Internet]. https://www.pharmgkb.org/guidelineAnnotation/PA166104951
  • Guo C , GuoQ , GongYet al. The C677T mutation in the methylenetetrahydrofolate reductase gene and its association with deep vein thrombophilia in Shandong Hans. Chinese J. Med. Genet.19(4), 295–297 (2002).
  • PharmGKB . Drug label annotations for irinotecan and UGT1A1. https://www.pharmgkb.org/chemical/PA450085/labelAnnotation/PA166104831
  • Goetz MP , SangkuhlK , GuchelaarH-Jet al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 and tamoxifen therapy. Clin. Pharmacol. Ther.103(5), 770–777 (2018).
  • Cole MP , JonesCT , ToddID. A new anti-oestrogenic agent in late breast cancer. An early clinical appraisal of ICI46474. Br. J. Cancer25(2), 270–275 (1971).
  • Davies C , GodwinJ , GrayRet al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet (London, England).378(9793), 771–784 (2011).
  • Jordan VC . Metabolites of tamoxifen in animals and man: identification, pharmacology, and significance. Breast Cancer Res. Treat.2(2), 123–138 (1982).
  • Barginear MF , JaremkoM , PeterIet al. Increasing tamoxifen dose in breast cancer patients based on CYP2D6 genotypes and endoxifen levels: effect on active metabolite isomers and the antiestrogenic activity score. Clin. Pharmacol. Ther.90(4), 605–611 (2011).
  • van Schaik RHN . Cancer treatment and pharmacogenetics of cytochrome P450 enzymes. Invest. New Drugs23(6), 513–522 (2005).
  • Drogemoller BI , WrightGEB , ShihJet al. CYP2D6 as a treatment decision aid for ER-positive non-metastatic breast cancer patients: a systematic review with accompanying clinical practice guidelines. Breast Cancer Res. Treat.173(3), 521–532 (2019).
  • The Royal Dutch Pharmacists Association - Pharmacogenetics Working Group . DPWG guideline for tamoxifen and CYP2D6. (2020). https://www.pharmgkb.org/guidelineAnnotation/PA166104966
  • PharmGKB . Drug label annotations for tamoxifen and CYP2D6. (2020). https://www.pharmgkb.org/chemical/PA451581/labelAnnotation
  • Caudle KE , SangkuhlK , Whirl-CarrilloMet al. Standardizing CYP2D6 genotype to phenotype translation: consensus recommendations from the Clinical Pharmacogenetics Implementation Consortium and Dutch Pharmacogenetics Working Group. Clin. Transl. Sci.1–9 (2019). http://www.ncbi.nlm.nih.gov/pubmed/31647186

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.