130
Views
0
CrossRef citations to date
0
Altmetric
Research Article

MirSNPs in Clopidogrel Metabolism Genes Predict Cardiovascular Disease Risk: A Case–Control Study And Meta-Analysis

ORCID Icon, , , , , & ORCID Icon show all
Pages 99-113 | Received 28 Jul 2020, Accepted 29 Oct 2020, Published online: 24 Dec 2020

References

  • World Health Organization . Fact sheet: cardiovascular diseases (CVDs). (2017). https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1
  • Pearson TA . Public policy approaches to the prevention of heart disease and stroke. Circulation124(23), 2560–2571 (2011).
  • Shukla H , MasonJL , SabyahA. Identifying genetic markers associated with susceptibility to cardiovascular diseases. Future Sci. OA5(1), FSO350 (2019).
  • Bjornsson HT , DanieleFallin M , FeinbergAP. An integrated epigenetic and genetic approach to common human disease. Trends Genet.20(8), 350–358 (2004).
  • Moosavi A , ArdekaniAM. Role of epigenetics in biology and human diseases. Biomed. J. 20( 6), Iran, 246–258 (2016).
  • Ha M , KimVN. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol.15(8), 509–524 (2014).
  • Duursma AM , KeddeM , SchrierM , LeSage C , AgamiR. miR-148 targets human DNMT3b protein coding region. RNA14(5), 872–877 (2008).
  • Place RF , LiLC , PookotD , NoonanEJ , DahiyaR. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc. Natl Acad. Sci. USA105(5), 1608–1613 (2008).
  • Ørom UA , NielsenFC , LundAH. MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol. Cell30(4), 460–471 (2008).
  • Kozomara A , BirgaoanuM , Griffiths-JonesS. MiRBase: from microRNA sequences to function. Nucleic Acids Res.47(D1), D155–D162 (2019).
  • Miranda KC , HuynhT , TayYet al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell126(6), 1203–1217 (2006).
  • He S , OuH , ZhaoC , ZhangJ. Clustering pattern and functional effect of SNPs in human miRNA seed regions. Int. J. Genomics2018, 2456076 (2018).
  • Liu C , ZhangF , LiTet al. MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs. BMC Genomics13(1), 661 (2012).
  • Gong J , TongY , ZhangHMet al. Genome-wide identification of SNPs in MicroRNA genes and the SNP effects on MicroRNA target binding and biogenesis. Hum. Mutat.33(1), 254–263 (2012).
  • Petriella D , DeSumma S , LacalamitaRet al. miRNA profiling in serum and tissue samples to assess noninvasive biomarkers for NSCLC clinical outcome. Tumor Biol.37(4), 5503–5513 (2016).
  • Sharma AR , VohraM , ShuklaVet al. Coding SNPs in hsa-miR-1343-3p and hsa-miR-6783-3p target sites of CYP2C19 modulates clopidogrel response in individuals with cardiovascular diseases. Life Sci.245, 117364 (2020).
  • Lange T , StrackeS , RettigRet al. Identification of miR-16 as an endogenous reference gene for the normalization of urinary exosomal miRNA expression data from CKD patients. PLoS ONE12(8), e0183435 (2017).
  • Ordovás JM , SmithCE. Epigenetics and cardiovascular disease. Nat. Rev. Cardiol.7(9), 510–519 (2010).
  • Metzinger L , DeFranciscis S , SerraR. The management of cardiovascular risk through epigenetic biomarkers. Biomed Res. Int.2017, 9158572 (2017).
  • Shukla V , VargheseVK , KabekkoduSPet al. Enumeration of deregulated miRNAs in liquid and tissue biopsies of cervical cancer. Gynecol. Oncol.155(1), 135–14 (2019).
  • Jiménez-Lucena R , Rangel-ZúñigaOA , Alcalá-DíazJFet al. Circulating miRNAs as predictive biomarkers of Type 2 diabetes mellitus development in coronary heart disease patients from the CORDIOPREV study. Mol. Ther. Nucleic Acids12, 146–157 (2018).
  • De Franciscis S , MetzingerL , SerraR. The discovery of novel genomic, transcriptomic, and proteomic biomarkers in cardiovascular and peripheral vascular disease: the state of the art. Biomed. Res. Int.2016, (2016).
  • Li D , TollesonWH , YuDet al. Regulation of cytochrome P450 expression by microRNAs and long non coding RNAs: epigenetic mechanisms in environmental toxicology and carcinogenesis. J. Environ. Sci. Heal. Part C Environ. Carcinog. Ecotoxicol. Rev.37(3), 180–214 (2019).
  • Wei Z , JiangS , ZhangYet al. The effect of microRNAs in the regulation of human CYP3A4: a systematic study using a mathematical model. Sci. Rep.4, 4283 (2014).
  • Maree AO , FitzgeraldDJ. Variable platelet response to aspirin and clopidogrel in atherothrombotic disease. Circulation115(16), 2196–2207 (2007).
  • Dannenberg L , MourikisP , NaguibDet al. Antiplatelet effects of aspirin and clopidogrel after left atrial appendage (LAA) occluder implantation. Int. J. Cardiol.275, 95–100 (2019).
  • Busch L , SternM , DannenbergLet al. Impact of high on-treatment platelet reactivity after angioplasty in patients with peripheral arterial disease. Platelets doi: 10.1080/09537104.2020.1742314 (2020).
  • Phani NM , VohraM , AdhikariPet al. Genetic variants identified from GWAS for predisposition to Type 2 diabetes predict sulfonylurea drug response. Curr. Mol. Med.17(8), 580–586 (2018).
  • Kowalska K , SochaE , MilnerowiczH. Review: the role of paraoxonase in cardiovascular diseases. Ann. Clin. Lab. Sci.45(2), 226–233 (2015).
  • Chen Y , HuangX , TangY , XieY , ZhangY. Both PON1 Q192R and CYP2C19*2 influence platelet response to clopidogrel and ischemic events in Chinese patients undergoing percutaneous coronary intervention. Int. J. Clin. Exp. Med.8(6), 9266–9274 (2015).
  • Ho H , PintoA , HallSDet al. Association between the CYP3A5 genotype and blood pressure. Hypertension45(2), 294–298 (2005).
  • Givens RC , LinYS , DowlingALSet al. CYP3A5 genotype predicts renal CYP3A activity and blood pressure in healthy adults. J. Appl. Physiol.95(3), 1297–1300 (2003).
  • Yurchenco PD . Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb. Perspect. Biol.3(2), 1–27 (2011).
  • Katsuda S , OkadaY , MinamotoT , OdaY , MatsuiY , NakanishiI. Collagens in human atherosclerosis: immunohistochemical analysis using collagen type-specific antibodies. Arterioscler. Thromb.12(4), 494–502 (1992).
  • Ross R . The pathogenesis of atherosclerosis – an update. N. Engl. J. Med.314(8), 488–500 (1986).
  • Arehart E , StithamJ , AsselbergsFWet al. Acceleration of cardiovascular disease by a dysfunctional prostacyclin receptor mutation: potential implications for cyclooxygenase-2 inhibition. Circ. Res.102(8), 986–993 (2008).
  • Zhou K , YueP , MaFet al. Interpreting the various associations of MiRNA polymorphisms with susceptibilities of cardiovascular diseases: current evidence based on a systematic review and meta-analysis. Med. (USA)97(21), e10712 (2018).
  • Zhou SS , JinJP , WangJQet al. MiRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges review-article. Acta Pharmacol. Sin.39(7), 1073–1084 (2018).
  • Võsa U , EskoT , KaselaS , AnniloT. Altered gene expression associated with microRNA binding site polymorphisms. PLoS ONE10(10), e0141351 (2015).
  • Bouman HJ , SchömigE , Van WerkumJWet al. Paraoxonase-1 is a major determinant of clopidogrel efficacy. Nat. Med.17(1), 110–116 (2011).
  • Miller CL , HaasU , DiazRet al. Coronary heart disease-associated variation in TCF21 disrupts a miR-224 binding site and miRNA-mediated regulation. PLoS Genet.10(3), e1004263 (2014).
  • Lee WH , TsaiMJ , ChangWAet al. Deduction of novel genes potentially involved in hypoxic AC16 human cardiomyocytes using next-generation sequencing and bioinformatics approaches. Int. J. Mol. Med.42(5), 2489–2502 (2018).
  • Antikainen M , MurtomäkiS , SyvänneMet al. The Gln-Arg191 polymorphism of the human paraoxonase gene (HUMPONA) is not associated with the risk of coronary artery disease in Finns. J. Clin. Invest.98(4), 883–885 (1996).
  • Hassan MA , Al-AttasOS , HussainTet al. The Q192R polymorphism of the paraoxonase 1 gene is a risk factor for coronary artery disease in Saudi subjects. Mol. Cell. Biochem.380(1–2), 121–128 (2013).
  • Munshi R , PanchalF , ChaurasiaA , RajadhyakshaG. Association between paraoxonase 1 (PON1) gene polymorphisms and PON1 enzyme activity in indian patients with coronary artery disease (CAD). Curr. Pharmacogenomics Person. Med.16(3), 219–229 (2018).
  • Bhattacharyya T , NichollsSJ , TopolEJet al. Relationship of paraoxonase 1 (PON1) gene polymorphisms and functional activity with systemic oxidative stress and cardiovascular risk. JAMA299(11), 1265–1276 (2008).
  • Oliveira SA , MansurAP , RibeiroCC , RamiresJAF , Annichino-BizzacchiJM. PON1 M/L55 mutation protects high-risk patients against coronary artery disease. Int. J. Cardiol.94(1), 73–77 (2004).
  • Fridman O , GariglioL , RiviereS , PorcileR , FuchsA , PotenzoniM. Polimorfismos en el gen de la paraoxonasa 1 y sus actividades enzimáticas en la enfermedad coronaria. Su relación con el perfil lipídico y la glucemia. Arch. Cardiol. Mex.86(4), 350–357 (2016).
  • Bounafaa A , BerrouguiH , GhalimNet al. Association between paraoxonase 1 (PON1) polymorphisms and the risk of acute coronary syndrome in a North African population. PLoS ONE10(8), e0133719 (2015).
  • Kerkeni M , AddadF , ChauffertMet al. Hyperhomocysteinemia, paraoxonase activity and risk of coronary artery disease. Clin. Biochem.39(8), 821–825 (2006).
  • Koubaa N , NakbiA , HammamiSet al. Association of homocysteine thiolactonase activity and PON1 polymorphisms with the severity of acute coronary syndrome. Clin. Biochem.42(9), 771–776 (2009).
  • Mohamed RH , MohamedRH , KaramRA , AbdEl-Aziz TA. The relationship between paraoxonase1–192 polymorphism and activity with coronary artery disease. Clin. Biochem.43(6), 553–558 (2010).
  • Swellam M , MahmoudMS , AliAAF , HefnyMM , HashimM. Clinical implications of PON1 gene polymorphism in patients with coronary artery disease. Int. J. Toxicol. Pharmacol. Res.8(1), 7–12 (2016).
  • Gardemann A , PhilippM , HeßK , KatzN , TillmannsH , HaberboschW. The paraoxonase Leu-Met54 and Gln-Arg191 gene polymorphisms are not associated with the risk of coronary heart disease. Atherosclerosis152(2), 421–431 (2000).
  • Balcerzyk A , ZakI , KrauzeJ. Protective effect of R allele of PON1 gene on the coronary artery disease in the presence of specific genetic background. Dis. Markers24(2), 81–88 (2008).
  • Ilea I , LupanI , LeucutaDC , DunceaCR , DroncaM. The number of PON1 mutant alleles, but not PON1 phenotype, is associated with Gensini score of coronary damage. Rom. Rev. Lab. Med.21(4), 391–398 (2014).
  • Garin MCB , MorenX , JamesRW. Paraoxonase-1 and serum concentrations of HDL-cholesterol and apoA-I. J. Lipid Res.47(3), 515–520 (2006).
  • Hasselwander O , SavageDA , McmasterDet al. Paraoxonase polymorphisms are not associated with cardiovascular risk in renal transplant recipients. Kidney Int.56(1), 289–298 (1999).
  • James RW , LevievI , RuizJ , PassaP , FroguelP , GarinMCB. Promoter polymorphism T(-107)C of the paraoxonase PON1 gene is a risk factor for coronary heart disease in Type 2 diabetic patients. Diabetes49(8), 1390–1393 (2000).
  • Martinelli N , GirelliD , OlivieriOet al. Interaction between metabolic syndrome and PON1 polymorphisms as a determinant of the risk of coronary artery disease. Clin. Exp. Med.5(1), 20–30 (2005).
  • Martinelli N , GirelliD , OlivieriOet al. Novel serum paraoxonase activity assays are associated with coronary artery disease. Clin. Chem. Lab. Med.47(4), 432–440 (2009).
  • Najafi M , GohariLH , FiroozraiM. Paraoxonase 1 gene promoter polymorphisms are associated with the extent of stenosis in coronary arteries. Thromb. Res.123(3), 503–510 (2009).
  • Ombres D , PannitteriG , MontaliAet al. The Gln-Arg192 polymorphism of human paraoxonase gene is not associated with coronary artery disease in Italian patients. Arterioscler. Thromb. Vasc. Biol.18(10), 1611–1616 (1998).
  • Robertson KS , HaweE , MillerGJ , TalmudPJ , HumphriesSE. Human paraoxonase gene cluster polymorphisms as predictors of coronary heart disease risk in the prospective Northwick Park Heart Study II. Biochim. Biophys. Acta - Mol. Basis Dis.1639(3), 203–212 (2003).
  • Bhaskar S , GanesanM , ChandakGRet al. Association of PON1 and APOA5 gene polymorphisms in a cohort of indian patients having coronary artery disease with and without Type 2 diabetes. Genet. Test. Mol. Biomarkers15(7–8), 507–512 (2011).
  • Agrawal S , TripathiG , PrajnyaRet al. Paraoxonase 1 gene polymorphisms contribute to coronary artery disease risk among north Indians. Indian J. Med. Sci.63(8), 335–344 (2009).
  • Deshpande CS , SinghalRS , MukherjeeMS. Association of paraoxonase1 gene Q192R polymorphism and apolipoprotein B in Asian Indian women with coronary artery disease risk. Genet. Test. Mol. Biomarkers17(2), 140–146 (2013).
  • Gupta N , BinuKBK , SinghSet al. Low serum PON1 activity: an independent risk factor for coronary artery disease in North-West Indian Type 2 diabetics. Gene498(1), 13–19 (2012).
  • Gupta N , SinghS , MaturuVN , SharmaYP , GillKD. Paraoxonase 1 (PON1) polymorphisms, haplotypes and activity in predicting CAD risk in North-West Indian Punjabis. PLoS ONE6(5), e17805 (2011).
  • Kaur S , BhattiGK , VijayvergiyaRet al. Paraoxonase 1 gene polymorphisms (Q192R and L55M) are associated with coronary artery disease susceptibility in Asian Indians. Int. J. Diabetes Metab.24, 38–47 (2018).
  • Pati N , PatiU. Paraoxonase gene polymorphism and coronary artery disease in Indian subjects. Int. J. Cardiol.66(2), 165–168 (1998).
  • Matam K , KhanIA , HasanQ , RaoP. Coronary artery disease and the frequencies of MTHFR and PON1 gene polymorphism studies in a varied population of Hyderabad, Telangana region in south India. J. King Saud Univ. Sci.27(2), 143–150 (2015).
  • Shabana NA , AshiqS , IjazAet al. Genetic risk score (GRS) constructed from polymorphisms in the PON1, IL-6, ITGB3, and ALDH2 genes is associated with the risk of coronary artery disease in Pakistani subjects. Lipids Health Dis.17, 224 (2018).
  • Hazar A , DilmeçF , GözM , KoçarslanA , AydinMS , DemirkolAH. The paraoxonase 1 (PON1) gene polymorphisms in coronary artery disease in the southeastern Turkish population. Turkish J. Med. Sci.41(5), 895–902 (2011).
  • Kaman D , IlhanN , MetinK , AkbulutM , ÜstündaǧB. A preliminary study of human paraoxonase and PON 1 L/M 55-PON 1 Q/R 192 polymorphisms in Turkish patients with coronary artery disease. Cell Biochem. Funct.27(2), 88–92 (2009).
  • Tanrikulu Küçük S , AdemoǧluE , TürkoǧluÜM , BilgeAK. Distribution of PON1 L/M55 and Q/R192 genotypes in Turkish patients with angiographically-defined coronary artery disease: effects on serum lipids. Turkiye Klin. J. Med. Sci.33(3), 769–776 (2013).
  • Aydin M , GokkusuC , OzkokEet al. Association of genetic variants in methylenetetrahydrofolate reductase and paraoxonase-1 genes with homocysteine, folate and vitamin B12 in coronary artery disease. Mol. Cell. Biochem.325(1–2), 199–208 (2009).
  • Abdolahpour S , BakhshandehA , FarazmandfarT , RayatnavazM , ShahbaziM. Association assessment of paraoxonase 1 gene polymorphism with coronary artery disease in Golestan, Iran. Int. Cardiovasc. Res. J.11(4), 148–152 (2017).
  • Amini M , Esmaeilzadeh-bahabadiS , AvanAet al. Paraoxonase-1 Q192R polymorphism and its association with hs-CRP and fasting blood glucose levels and risk of coronary artery disease. Diabetes Metab. Syndr. Clin. Res. Rev.13(2), 1053–1057 (2019).
  • Vaisi-Raygani A , GhaneialvarH , RahimiZet al. Paraoxonase Arg 192 allele is an independent risk factor for three-vessel stenosis of coronary artery disease. Mol. Biol. Rep.38(8), 5421–5428 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.