466
Views
0
CrossRef citations to date
0
Altmetric
Review

Molecular Pathogenesis of Hereditary Lung Cancer: a Literature Review

, , , , , ORCID Icon & show all
Pages 791-803 | Received 04 Oct 2020, Accepted 22 Jul 2021, Published online: 19 Aug 2021

References

  • Bray F , FerlayJ , SoerjomataramI , SiegelRL , TorreLA , JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin.68(6), 394–424 (2018).
  • Musolf AM , SimpsonCL , de AndradeMet al. Familial lung cancer: a brief history from the earliest work to the most recent studies. Genes (Basel)8(1), 36 (2017).
  • Kanwal M , DingX-J , CaoY. Familial risk for lung cancer. Oncol Lett.13(2), 535–542 (2017).
  • Dai J , LvJ , ZhuM , WangY , QinN , MaHet al. Identification of risk loci and a polygenic risk score for lung cancer: a large-scale prospective cohort study in Chinese populations. Lancet Respir. Med.7(10), 881–891 (2019).
  • Gazdar A , RobinsonL , OliverDet al. Hereditary lung cancer syndrome targets never smokers with germline EGFR gene T790M mutations. J. Thorac. Oncol.9(4), 456–463 (2014).
  • Tokuhata GK , LilienfeldAM. Familial aggregation of lung cancer among hospital patients. Public Health Rep.78, 277–283 (1963).
  • Coté ML , LiuM , BonassiSet al. Increased risk of lung cancer in individuals with a family history of the disease: a pooled analysis from the International Lung Cancer Consortium. Eur. J. Cancer48(13), 1957–1968 (2012).
  • Timofeeva MN , McKayJD , SmithGDet al. Genetic polymorphisms in 15q25 and 19q13 loci, cotinine levels, and risk of lung cancer in EPIC. Cancer Epidemiol. Biomarkers Prev.20(10), 2250–2261 (2011).
  • Yamamoto H , YatabeY , ToyookaS. Inherited lung cancer syndromes targeting never smokers. Transl. Lung Cancer Res.7(4), 498–504 (2018).
  • Wang Y , BroderickP , MatakidouA , EisenT , HoulstonRS. Role of 5p15.33 (TERT-CLPTM1L), 6p21.33 and 15q25.1 (CHRNA5-CHRNA3) variation and lung cancer risk in never-smokers. Carcinogenesis31(2), 234–238 (2010).
  • Lan Q , HsiungCA , MatsuoKet al. Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia. Nat. Genet.44(12), 1330–1335 (2012).
  • Hung RJ , SpitzMR , HoulstonRSet al. Lung cancer risk in never-smokers of european descent is associated with genetic variation in the 5p15.33 TERT-CLPTM1Ll region. J. Thorac. Oncol.14(8), 1360–1369 (2019).
  • Seow WJ , MatsuoK , HsiungCAet al. Association between GWAS-identified lung adenocarcinoma susceptibility loci and EGFR mutations in never-smoking Asian women, and comparison with findings from Western populations. Hum. Mol. Genet.26(2), 454–465 (2017).
  • Hu Z , WuC , ShiYet al. A genome-wide association study identifies two new lung cancer susceptibility loci at 13q12.12 and 22q12.2 in Han Chinese. Nat. Genet.43(8), 792–796 (2011).
  • Shao L , ZuoX , YangYet al. The inherited variations of a p53-responsive enhancer in 13q12.12 confer lung cancer risk by attenuating TNFRSF19 expression. Genome Biol.20(1), 103 (2019).
  • G Fehringer , PKraft , PD Pharoahet al. Cross-cancer genome-wide analysis of lung, ovary, breast, prostate, and colorectal cancer reveals novel pleiotropic associations. Cancer Res. Cancer Res.76(17), 5103–5114 (2016).
  • Wang Y , McKayJD , RafnarTet al. Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer. Nat. Genet.46(7), 736–741 (2014).
  • Byun J , SchwartzAG , LuskCet al. Genome-wide association study of familial lung cancer. Carcinogenesis39(9), 1135–1140 (2018).
  • Musolf AM , MoizBA , SunHet al. Whole exome sequencing of highly aggregated lung cancer families reveals linked loci for increased cancer risk on chromosomes 12q, 7p, and 4q. Cancer Epidemiol. Biomarkers Prev.29(2), 434–442 (2020).
  • Musolf AM , SimpsonCL , de AndradeM et al. Parametric linkage analysis identifies five novel genome-wide significant loci for familial lung cancer. Hum. Hered.82(1–2), 64–74 (2016).
  • Jiang X , FinucaneHK , SchumacherFRet al. Shared heritability and functional enrichment across six solid cancers. Nat. Commun.10(1), 431 (2019).
  • Lou Y , PecotCV , TranHTet al. Germline mutation of T790M and dual/multiple EGFR mutations in patients with lung adenocarcinoma. Clin. Lung Cancer17(2), e5–e11 (2016).
  • Ikeda K , NomoriH , MoriT , SasakiJ , KobayashiT. Novel germline mutation: EGFR V843I in patient with multiple lung adenocarcinomas and family members with lung cancer. Ann. Thorac. Surg.85(4), 1430–1432 (2008).
  • Matsushima S , OhtsukaK , OhnishiHet al. V843I, a lung cancer predisposing EGFR mutation, is responsible for resistance to EGFR tyrosine kinase inhibitors. J. Thorac. Oncol.9(9), 1377–1384 (2014).
  • Prim N , LegrainM , GuerinEet al. Germ-line exon 21 EGFR mutations, V843I and P848L, in non-small-cell lung cancer patients. Eur. Respir. Rev.23(133), 390–392 (2014).
  • Tibaldi C , GiovannettiE , VasileEet al. Inherited germline T790M mutation and somatic epidermal growth factor receptor mutations in non-small cell lung cancer patients. J. Thoracic Oncol.6(2), 395–396 (2011).
  • Thomas A , XiL , CarterCA et al. Concurrent molecular alterations in tumors with germ line epidermal growth factor receptor T790M mutations. Clin. Lung Cancer14(4), 452–456 (2013).
  • Yu HA , ArcilaME , HarlanFleischut Met al. Germline EGFR T790M mutation found in multiple members of a familial cohort. J. Thorac. Oncol.9(4), 554–558 (2014).
  • Centeno I , BlayP , SantamaríaIet al. Germ-line mutations in epidermal growth factor receptor (EGFR) are rare but may contribute to oncogenesis: a novel germ-line mutation in EGFR detected in a patient with lung adenocarcinoma. BMC Cancer11, 172 (2011).
  • van Noesel J , vander Ven WH , van OsTAMet al. Activating germline R776H mutation in the epidermal growth factor receptor associated with lung cancer with squamous differentiation. JCO.31(10), e161–164 (2013).
  • Lu S , YuY , LiZet al. EGFR and ERBB2 germline mutations in Chinese lung cancer patients and their roles in genetic susceptibility to cancer. J. Thorac. Oncol.14(4), 732–736 (2019).
  • Hu Y , AldenRS , OdegaardJIet al. Discrimination of germline EGFR T790M mutations in plasma cell-free DNA allows study of prevalence across 31,414 cancer patients. Clin. Cancer Res.23(23), 7351–7359 (2017).
  • Liu T-C , JinX , WangY , WangK. Role of epidermal growth factor receptor in lung cancer and targeted therapies. Am. J. Cancer Res.7(2), 187–202 (2017).
  • Pros E , SaigiM , AlamedaDet al. Genome-wide profiling of non-smoking-related lung cancer cells reveals common RB1 rearrangements associated with histopathologic transformation in EGFR-mutant tumors. Ann. Oncol.31(2), 274–282 (2020).
  • Haddad FG , KourieHR , KattanJ. Targeting EGFR mutation in non-small-cell lung cancer: challenges and future perspectives. Future Oncol.13(3), 201–204 (2017).
  • Cedrés S , FelipE , CruzCet al. Activity of HSP90 inhibiton in a metastatic lung cancer patient with a germline BRCA1 mutation. J. Natl Cancer Inst.110(8), 914–917 (2018).
  • Cytryn S , MoreiraA , ChachouaA , SabariJ. Common germline mutations in a patient with multiple primary lung cancers. Clin. Lung Cancer21(3), e212–215 (2020).
  • Sanchis-Borja M , FalletV , BenusiglioPet al. Mutations germinales de BRCA et cancer bronchopulmonaire (CBP): à propos de 9 cas. Revue des Maladies Respiratoires Actualités.12(1), 48 (2020).
  • Canney A , SheahanK , KeeganD , TolanM , HylandJ , GreenA. Synchronous lung tumours in a patient with metachronous colorectal carcinoma and a germline MSH2 mutation. J. Clin. Pathol.62(5), 471–473 (2009).
  • Fang W , QiuF , ZhangLet al. The functional polymorphism of NBS1 p.Glu185Gln is associated with an increased risk of lung cancer in Chinese populations: case-control and a meta-analysis. Mutat. Res.770, 61–68 (2014).
  • Helgadottir H , HöiomV , JönssonGet al. High risk of tobacco-related cancers in CDKN2A mutation-positive melanoma families. J. Med. Genet.51(8), 545–552 (2014).
  • Chen H-Y , YuS-L , HoB-Cet al. R331W missense mutation of oncogene YAP1 is a germline risk allele for lung adenocarcinoma with medical actionability. J. Clin. Oncol.33(20), 2303–2310 (2015).
  • Xiong D , WangY , KupertEet al. A recurrent mutation in PARK2 is associated with familial lung cancer. Am. J. Hum. Genet.96(2), 301–308 (2015).
  • Nathan N , GiraudV , PicardCet al. Germline SFTPA1 mutation in familial idiopathic interstitial pneumonia and lung cancer. Hum. Mol. Genet.25(8), 1457–1467 (2016).
  • Tode N , KikuchiT , SakakibaraTet al. Exome sequencing deciphers a germline MET mutation in familial epidermal growth factor receptor-mutant lung cancer. Cancer Sci.108(6), 1263–1270 (2017).
  • Krishnaswamy S , KantetiR , Duke-CohanJSet al. Ethnic differences and functional analysis of MET mutations in lung cancer. Clin. Cancer Res.15(18), 5714–5723 (2009).
  • T Wang , HLiu , SXiao , RMao , RLin . MUC16 germline mutations may predispose inherited cancer family members to lung adenocarcinomas. J. Clin. Oncol.37(Suppl. 15), e13039 (2020).
  • Parry EM , GableDL , StanleySEet al. Germline mutations in DNA repair genes in lung adenocarcinoma. J. Thorac. Oncol.12(11), 1673–1678 (2017).
  • Ji X , MukherjeeS , LandiMTet al. Protein-altering germline mutations implicate novel genes related to lung cancer development. Nat. Commun.11(1), 2220 (2020).
  • Tian P , ChengX , ZhaoZet al. Spectrum of pathogenic germline mutations in chinese lung cancer patients through next-generation sequencing. Pathol. Oncol. Res.26(1), 109–114 (2020).
  • Zhang Z-L , WangN-N , MaQ-Let al. Somatic and germline mutations in the tumor suppressor gene PARK2 impair PINK1/Parkin-mediated mitophagy in lung cancer cells. Acta Pharmacol. Sin.41(1), 93–100 (2020).
  • Kanwal M , DingX-J , MaZ-Het al. Characterization of germline mutations in familial lung cancer from the Chinese population. Gene641, 94–104 (2018).
  • Donner I , KatainenR , SipiläLJ , AavikkoM , PukkalaE , AaltonenLA. Germline mutations in young non-smoking women with lung adenocarcinoma. Lung Cancer122, 76–82 (2018).
  • Peng L , ZengZ , TengXet al. Genomic profiling of synchronous triple primary tumors of the lung, thyroid and kidney in a young female patient: a case report. Oncol. Lett.16(5), 6089–6094 (2018).
  • Couto PP , Bastos-RodriguesL , SchayekHet al. Spectrum of germline mutations in smokers and nonsmokers in Brazilian non-small-cell lung cancer (NSCLC) patients. Carcinogenesis38(11), 1112–1118 (2017).
  • Yoneda K , ImanishiN , IchikiY , TanakaF. Treatment of non-small cell lung cancer with EGFR-mutations. J. UOEH41(2), 153–163 (2019).
  • Zhao J , XiaY. Targeting HER2 alterations in non–small-cell lung cancer: a comprehensive review. JCO Precision Oncol. (4), 411–25 (2020).
  • Wolf J , SetoT , HanJ-Yet al. Capmatinib in MET exon 14-mutated or MET-amplified non-small-cell lung cancer. N. Engl. J. Med.383(10), 944–957 (2020).
  • Cook SA , TinkerAV. PARP inhibitors and the evolving landscape of ovarian cancer management: a review. BioDrugs33(3), 255–273 (2019).
  • Litton JK , RugoHS , EttlJet al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N. Engl. J. Med.379(8), 753–763 (2018).
  • de Bono J , MateoJ , FizaziKet al. Olaparib for metastatic castration-resistant prostate cancer. N. Engl. J. Med.382(22), 2091–2102 (2020).
  • Golan T , HammelP , ReniMet al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N. Engl. J. Med.381(4), 317–327 (2019).
  • de Bono J , RamanathanRK , MinaLet al. Phase I, dose-escalation, two-part trial of the PARP inhibitor talazoparib in patients with advanced germline BRCA1/2 mutations and selected sporadic cancers. Cancer Discov.7(6), 620–629 (2017).
  • W Ji , XWeng , DXu , SCai , HLou , LDing. Non-small cell lung cancer cells with deficiencies in homologous recombination genes are sensitive to PARP inhibitors. Biochem. Biophys. Res. Commun.522(1), 121–126 (2020).
  • Kadouri L , RottenbergY , ZickAet al. Homologous recombination in lung cancer, germline and somatic mutations, clinical and phenotype characterization. Lung Cancer137, 48–51 (2019).
  • Abdel-Rahman MH , PilarskiR , CebullaCMet al. Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers. J. Med. Genet.48(12), 856–859 (2011).
  • Kobrinski DA , YangH , KittanehM. BAP1: role in carcinogenesis and clinical implications. Transl. Lung Cancer Res.9(Suppl. 1), S60–S66 (2020).
  • Laderian B , MundiP , FojoT , EBates S. Emerging therapeutic implications of STK11 mutation: case series. Oncologist25(9), 733–737 (2020).
  • Zhuang X , LiY , CaoHet al. Case report of a Li-Fraumeni syndrome-like phenotype with a de novo mutation in CHEK2. Medicine (Baltimore)95(29), e4251 (2016).
  • Wu C , XuB , YuanPet al. Genome-wide examination of genetic variants associated with response to platinum-based chemotherapy in patients with small-cell lung cancer. Pharmacogenet. Genomics20(6), 389–395 (2010).
  • Liu Y , LiuP , WenWet al. Haplotype and cell proliferation analyses of candidate lung cancer susceptibility genes on chromosome 15q24-25.1. Cancer Res.69(19), 7844–7850 (2009).
  • Oudkerk M , DevarajA , VliegenthartRet al. European position statement on lung cancer screening. Lancet Oncol.18(12), e754–766 (2017).
  • Wood DE , KazerooniEA , BaumSLet al. Lung cancer screening, Version 3.2018, NCCN clinical practice guidelines in oncology. J. National Comprehensive Cancer Network16(4), 412–441 (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.