658
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Genetic Determinants of Warfarin Dosing in the Han-Chinese Population

, , , , , , , , , & show all
Pages 1905-1913 | Published online: 03 Dec 2009

Bibliography

  • Hirsh J : Antithrombotic therapy in deep vein thrombosis and pulmonary embolism.Am. Heart J.123 , 1115–1122 (1992).
  • Hirsh J , DalenJ, AndersonDR et al.: Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutic range.Chest119 , S8–S21 (2001).
  • Laupacis A , AlbersG, DalenJ, DunnM, FeinbergW, JacobsonA: Antithrombotic therapy in atrial fibrillation.Chest108 , S352–S359 (1995).
  • Stein PD , AlpertJS, CopelandJ, DalenJE, GoldmanS, TurpieAG: Antithrombotic therapy in patients with mechanical and biological prosthetic heart valves.Chest108 , S371–S379 (1995).
  • Loebstein R , YonathH, PelegD et al.: Interindividual variability in sensitivity to warfarin – nature or nurture?Clin. Pharmacol. Ther.70 , 159–164 (2001).
  • Takahashi H , WilkinsonGR, CaracoY et al.: Population differences in S-warfarin metabolism between CYP2C9 genotype-matched Caucasian and Japanese patients.Clin. Pharmacol. Ther.73 , 253–263 (2003).
  • Zhao F , LokeC, RankinSC et al.: Novel CYP2C9 genetic variants in Asian subjects and their influence on maintenance warfarin dose.Clin. Pharmacol. Ther.76 , 210–219 (2004).
  • Bogousslavsky J , RegliF: Anticoagulant-induced intracerebral bleeding in brain ischemia. Evaluation in 200 patients with TIAs, emboli from the heart, and progressing stroke.Acta Neurol. Scand.71 , 464–471 (1985).
  • Gullov AL , KoefoedBG, PetersenP: Bleeding complications to long-term oral anticoagulant therapy.J. Thromb. Thrombolysis1 , 17–25 (1994).
  • Landefeld CS , BeythRJ: Anticoagulant-related bleeding: clinical epidemiology, prediction, and prevention.Am. J. Med.95 , 315–328 (1993).
  • Miners JO , BirkettDJ: Cytochrome P4502C9: an enzyme of major importance in human drug metabolism.Br. J. Clin. Pharmacol.45 , 525–538 (1998).
  • Rettie AE , KorzekwaKR, KunzeKL et al.: Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: a role for P-4502C9 in the etiology of (S)-warfarin-drug interactions.Chem. Res. Toxicol.5 , 54–59 (1992).
  • Takahashi H , EchizenH: Pharmacogenetics of warfarin elimination and its clinical implications.Clin. Pharmacokinet.40 , 587–603 (2001).
  • Furuya H , Fernandez-SalgueroP, GregoryW et al.: Genetic polymorphism of CYP2C9 and its effect on warfarin maintenance dose requirement in patients undergoing anticoagulation therapy.Pharmacogenetics5 , 389–392 (1995).
  • Nasu K , KubotaT, IshizakiT: Genetic analysis of CYP2C9 polymorphism in a Japanese population.Pharmacogenetics7 , 405–409 (1997).
  • Xie HG , PrasadHC, KimRB, SteinCM: CYP2C9 allelic variants: ethnic distribution and functional significance.Adv. Drug Deliv. Rev.54 , 1257–1270 (2002).
  • Ngow HA , Wan Khairina WM, Teh LK et al.: CYP2C9 polymorphism: prevalence in healthy and warfarin-treated Malay and Chinese in Malaysia. Singapore Med. J.50 , 490–493 (2009).
  • Bell RG , MatschinerJT: Warfarin and the inhibition of vitamin K activity by an oxide metabolite.Nature237 , 32–33 (1972).
  • Wallin R , MartinLF: Vitamin K-dependent carboxylation and vitamin K metabolism in liver. Effects of warfarin.J. Clin. Invest.76 , 1879–1884 (1985).
  • D‘Andrea G , D‘AmbrosioRL, Di Perna Pet al.: A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood105 , 645–649 (2005).
  • Rieder MJ , ReinerAP, GageBF et al.: Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose.N. Engl. J. Med.352 , 2285–2293 (2005).
  • Wadelius M , ChenLY, DownesK et al.: Common VKORC1 and GGCXpolymorphisms associated with warfarin dose.Pharmacogenomics J.5 , 262–270 (2005).
  • Yuan HY , ChenJJ, LeeMT et al.: A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity.Hum. Mol. Genet.14 , 1745–1751 (2005).
  • Wen MS , LeeM, ChenJJ et al.: Prospective study of warfarin dosage requirements based on CYP2C9 and VKORC1 genotypes.Clin. Pharmacol. Ther.84 , 83–89 (2008).
  • Wu AH , WangP, SmithA et al.: Dosing algorithm for warfarin using CYP2C9 and VKORC1 genotyping from a multi-ethnic population: comparison with other equations.Pharmacogenomics9 , 169–178 (2008).
  • Gage BF , EbyC, JohnsonJA et al.: Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin.Clin. Pharmacol. Ther.84 , 326–331 (2008).
  • Cain D , HutsonSM, WallinR: Assembly of the warfarin-sensitive vitamin K 2,3-epoxide reductase enzyme complex in the endoplasmic reticulum membrane.J. Biol. Chem.272 , 29068–29075 (1997).
  • Loebstein R , VecslerM, KurnikD et al.: Common genetic variants of microsomal epoxide hydrolase affect warfarin dose requirements beyond the effect of cytochrome P450 2C9.Clin. Pharmacol. Ther.77 , 365–372 (2005).
  • Wajih N , SaneDC, HutsonSM, WallinR: The inhibitory effect of calumenin on the vitamin K-dependent γ-carboxylation system. Characterization of the system in normal and warfarin-resistant rats.J. Biol. Chem.279 , 25276–25283 (2004).
  • Presnell SR , StaffordDW: The vitamin K-dependent carboxylase.Thromb. Haemost.87 , 937–946 (2002).
  • Cha PC , MushirodaT, TakahashiA et al.: High-resolution SNP and haplotype maps of the human γ-glutamyl carboxylase gene (GGCX) and association study between polymorphisms in GGCX and the warfarin maintenance dose requirement of the Japanese population.J. Hum. Genet.52 , 856–864 (2007).
  • Lin PJ , JinDY, TieJK, PresnellSR, StraightDL, StaffordDW: The putative vitamin K-dependent γ-glutamyl carboxylase internal propeptide appears to be the propeptide binding site.J. Biol. Chem.277 , 28584–28591 (2002).
  • Presnell SR , TripathyA, LentzBR, JinDY, StaffordDW: A novel fluorescence assay to study propeptide interaction with γ-glutamyl carboxylase.Biochemistry40 , 11723–11733 (2001).
  • Rieder MJ , ReinerAP, RettieAE: γ-glutamyl carboxylase (GGCX) tagSNPs have limited utility for predicting warfarin maintenance dose.J. Thromb. Haemost.5 , 2227–2234 (2007).
  • Kimura R , MiyashitaK, KokuboY et al.: Genotypes of vitamin K epoxide reductase, γ-glutamyl carboxylase, and cytochrome P450 2C9 as determinants of daily warfarin dose in Japanese patients.Thromb. Res.120 , 181–186 (2007).
  • Chen LY , ErikssonN, GwilliamR, BentleyD, DeloukasP, WadeliusM: γ-glutamyl carboxylase (GGCX) microsatellite and warfarin dosing.Blood106 , 3673–3674 (2005).
  • Shikata E , IeiriI, IshiguroS et al.: Association of pharmacokinetic (CYP2C9) and pharmacodynamic (factors II, VII, IX, and X; proteins S and C; and γ-glutamyl carboxylase) gene variants with warfarin sensitivity.Blood103 , 2630–2635 (2004).
  • Saupe J , ShearerMJ, KohlmeierM: Phylloquinone transport and its influence on γ-carboxyglutamate residues of osteocalcin in patients on maintenance hemodialysis.Am. J. Clin. Nutr.58 , 204–208 (1993).
  • Berkner KL , RungeKW: The physiology of vitamin K nutriture and vitamin K-dependent protein function in atherosclerosis.J. Thromb. Haemost.2 , 2118–2132 (2004).
  • Wadelius M , ChenLY, ErikssonN et al.: Association of warfarin dose with genes involved in its action and metabolism.Hum. Genet.121 , 23–34 (2007).
  • Lal S , SandanarajE, JadaSR et al.: Influence of APOE genotypes and VKORC1 haplotypes on warfarin dose requirements in Asian patients.Br. J. Clin. Pharmacol.65 , 260–264 (2008).
  • Otagiri M , MaruyamaT, ImaiT, SuenagaA, ImamuraY: A comparative study of the interaction of warfarin with human α 1-acid glycoprotein and human albumin.J. Pharm. Pharmacol.39 , 416–420 (1987).
  • Caldwell MD , AwadT, JohnsonJA et al.: CYP4F2 genetic variant alters required warfarin dose.Blood111 , 4106–4112 (2008).
  • Takeuchi F , McGinnisR, BourgeoisS et al.: A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose.PLoS Genet.5 , E1000433 (2009).
  • Tsai MF , LinYJ, ChengYC et al.: PrimerZ: streamlined primer design for promoters, exons and human SNPs.Nucleic Acids Res.35 , W63–W65 (2007).
  • Loebstein R , DvoskinI, HalkinH et al.: A coding VKORC1 Asp36Tyr polymorphism predisposes to warfarin resistance.Blood109 , 2477–2480 (2007).
  • Watala C , GolanskiJ, KardasP: Multivariate relationships between international normalized ratio and vitamin K-dependent coagulation-derived parameters in normal healthy donors and oral anticoagulant therapy patients.Thromb. J.1 , 7 (2003).
  • Yoshizawa M , HayashiH, TashiroY et al.: Effect of VKORC1 -1639 G>A polymorphism, body weight, age, and serum albumin alterations on warfarin response in Japanese patients.Thromb. Res.124 , 161–166 (2009).
  • Cooper GM , JohnsonJA, LangaeeTY et al.: A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose.Blood112 , 1022–1027 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.