361
Views
0
CrossRef citations to date
0
Altmetric
Review

10 Years of Oral Anticoagulant Pharmacogenomics: What Difference will it Make? a Critical Appraisal

, , , &
Pages 1955-1965 | Published online: 03 Dec 2009

Bibliography

  • Aithal GP , DayCP, KestevenPJ, DalyAK: Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications.Lancet353(9154) , 717–719 (1999).
  • Roden DM , SteinCM: Clopidogrel and the concept of high-risk pharmacokinetics.Circulation119(16) , 2127–2130 (2009).
  • Ansell J , HirshJ, HylekE et al.: Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition).Chest133(Suppl. 6) , S160–S198 (2008).
  • Wysowski DK , NourjahP, SwartzL: Bleeding complications with warfarin use: a prevalent adverse effect resulting in regulatory action.Arch. Intern. Med.167(13) , 1414–1419 (2007).
  • Linkins LA , ChoiPT, DouketisJD: Clinical impact of bleeding in patients taking oral anticoagulant therapy for venous thromboembolism: a meta-analysis.Ann. Intern. Med.139(11) , 893–900 (2003).
  • Cios DA , BakerWL, SanderSD, PhungOJ, ColemanCI: Evaluating the impact of study-level factors on warfarin control in U.S.-based primary studies: a meta-analysis.Am. J. Health Syst. Pharm.66(10) , 916–925 (2009).
  • Hylek EM , GoAS, ChangY et al.: Effect of intensity of oral anticoagulation on stroke severity and mortality in atrial fibrillation.N. Engl. J. Med.349(11) , 1019–1026 (2003).
  • Klein TE , AltmanRB, ErikssonN et al.: Estimation of the warfarin dose with clinical and pharmacogenetic data.N. Engl. J. Med.360(8) , 753–764 (2009).
  • Wadelius M , ChenLY, LindhJD et al.: The largest prospective warfarin-treated cohort supports genetic forecasting.Blood113(4) , 784–792 (2009).
  • Landefeld CS , GoldmanL: Major bleeding in outpatients treated with warfarin: incidence and prediction by factors known at the start of outpatient therapy.Am. J. Med.87(2) , 144–152 (1989).
  • Breckenridge A , OrmeM, WesselingH, LewisRJ, GibbonsR: Pharmacokinetics and pharmacodynamics of the enantiomers of warfarin in man.Clin. Pharmacol. Ther.15(4) , 424–430 (1974).
  • Rettie AE , KorzekwaKR, KunzeKL et al.: Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: a role for P-4502C9 in the etiology of (S)-warfarin-drug interactions.Chem. Res. Toxicol.5(1) , 54–59 (1992).
  • Kaminsky LS , ZhangZY: Human P450 metabolism of warfarin.Pharmacol. Ther.73(1) , 67–74 (1997).
  • Takahashi H , EchizenH: Pharmacogenetics of CYP2C9 and interindividual variability in anticoagulant response to warfarin.Pharmacogenomics J.3(4) , 202–214 (2003).
  • Scordo MG , PengoV, SpinaE et al.: Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance.Clin. Pharmacol. Ther.72(6) , 702–710 (2002).
  • Loebstein R , YonathH, PelegD et al.: Interindividual variability in sensitivity to warfarin – nature or nurture?Clin. Pharmacol. Ther.70(2) , 159–164 (2001).
  • Kirchheiner J , BrockmollerJ: Clinical consequences of cytochrome P450 2C9 polymorphisms.Clin. Pharmacol. Ther.77(1) , 1–16 (2005).
  • Lindh JD , HolmL, AnderssonML, RaneA: Influence of CYP2C9 genotype on warfarin dose requirements – a systematic review and meta-analysis.Eur. J. Clin. Pharmacol.65(4) , 365–375 (2009).
  • Sanderson S , EmeryJ, HigginsJ: CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients: a HuGEnet systematic review and meta-analysis.Genet. Med.7(2) , 97–104 (2005).
  • Meckley LM , WittkowskyAK, RiederMJ, RettieAE, VeenstraDL: An analysis of the relative effects of VKORC1 and CYP2C9 variants on anticoagulation related outcomes in warfarin-treated patients.Thromb. Haemost.100(2) , 229–239 (2008).
  • Limdi NA , McGwinG, GoldsteinJA et al.: Influence of CYP2C9 and VKORC1 1173C/T genotype on the risk of hemorrhagic complications in African–American and European–American patients on warfarin.Clin. Pharmacol. Ther.83(2) , 312–321 (2008).
  • Tai G , FarinF, RiederMJ et al.: In-vitro and in-vivo effects of the CYP2C9*11 polymorphism on warfarin metabolism and dose.Pharmacogenet. Genomics15(7) , 475–481 (2005).
  • Scott SA , JaremkoM, LubitzSA et al.: CYP2C9*8 is prevalent among African–Americans: implications for pharmacogenetic dosing.Pharmacogenomics10(8) , 1243–1255 (2009).
  • Veenstra DL , BloughDK, HigashiMK et al.: CYP2C9 haplotype structure in European American warfarin patients and association with clinical outcomes.Clin. Pharmacol. Ther.77(5) , 353–364 (2005).
  • King BP , KhanTI, AithalGP, KamaliF, DalyAK: Upstream and coding region CYP2C9 polymorphisms: correlation with warfarin dose and metabolism.Pharmacogenetics14(12) , 813–822 (2004).
  • Beinema M , BrouwersJR, SchalekampT, WilffertB: Pharmacogenetic differences between warfarin, acenocoumarol and phenprocoumon.Thromb. Haemost.100(6) , 1052–1057 (2008).
  • Teichert M , EijgelsheimM, RivadeneiraF et al.: A genome-wide association study of acenocoumarol maintenance dosage.Hum. Mol. Genet.18(19) , 3758–3768 (2009).
  • Stehle S , KirchheinerJ, LazarA, FuhrU: Pharmacogenetics of oral anticoagulants: a basis for dose individualization.Clin. Pharmacokinet.47(9) , 565–594 (2008).
  • Teichert M , van Schaik RH, Hofman A et al.: Genotypes associated with reduced activity of VKORC1 and CYP2C9 and their modification of acenocoumarol anticoagulation during the initial treatment period. Clin. Pharmacol. Ther.85(4) , 379–386 (2009).
  • Rost S , FreginA, IvaskeviciusV et al.: Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2.Nature427(6974) , 537–541 (2004).
  • Li T , ChangCY, JinDY et al.: Identification of the gene for vitamin K epoxide reductase.Nature427(6974) , 541–544 (2004).
  • D‘Andrea G , D‘AmbrosioRL, Di Perna P et al.: A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood105(2) , 645–649 (2005).
  • Rieder MJ , ReinerAP, GageBF et al.: Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose.N. Engl. J. Med.352(22) , 2285–2293 (2005).
  • Geisen C , WatzkaM, SittingerK et al.: VKORC1 haplotypes and their impact on the inter-individual and inter-ethnical variability of oral anticoagulation.Thromb. Haemost.94(4) , 773–779 (2005).
  • Wang D , ChenH, MomaryKM et al.: Regulatory polymorphism in vitamin K epoxide reductase complex subunit 1 (VKORC1) affects gene expression and warfarin dose requirement.Blood112(4) , 1013–1021 (2008).
  • Limdi NA , BeasleyTM, CrowleyMR et al.: VKORC1 polymorphisms, haplotypes and haplotype groups on warfarin dose among African–Americans and European–Americans.Pharmacogenomics9(10) , 1445–1458 (2008).
  • Schwarz UI , RitchieMD, BradfordY et al.: Genetic determinants of response to warfarin during initial anticoagulation.N. Engl. J. Med.358(10) , 999–1008 (2008).
  • Wadelius M , PirmohamedM: Pharmacogenetics of warfarin: current status and future challenges.Pharmacogenomics J.7(2) , 99–111 (2007).
  • Cooper GM , JohnsonJA, LangaeeTY et al.: A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose.Blood112(4) , 1022–1027 (2008).
  • Takeuchi F , McGinnisR, BourgeoisS et al.: A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose.PLoS Genet.5(3) , E1000433 (2009).
  • Caldwell MD , AwadT, JohnsonJA et al.: CYP4F2 genetic variant alters required warfarin dose.Blood111(8) , 4106–4112 (2008).
  • Borgiani P , CiccacciC, ForteV et al.: CYP4F2 genetic variant (rs2108622) significantly contributes to warfarin dosing variability in the Italian population.Pharmacogenomics10(2) , 261–266 (2009).
  • McDonald MG , RiederMJ, NakanoM, HsiaCK, RettieAE: CYP4F2 is a vitamin K1 oxidase: an explanation for altered warfarin dose in carriers of the V433M variant.Mol. Pharmacol.75(6) , 1337–1346 (2009).
  • Perez-Andreu V , RoldanV, AntonAI et al.: Pharmacogenetic relevance of CYP4F2 V433M polymorphism on acenocoumarol therapy.Blood113(20) , 4977–4979 (2009).
  • Loebstein R , DvoskinI, HalkinH et al.: A coding VKORC1 Asp36Tyr polymorphism predisposes to warfarin resistance.Blood109(6) , 2477–2480 (2007).
  • Aklillu E , LeongC, LoebsteinR, HalkinH, GakE: VKORC1 Asp36Tyr warfarin resistance marker is common in Ethiopian individuals.Blood111(7) , 3903–3904 (2008).
  • Scott SA , EdelmannL, KornreichR, DesnickRJ: Warfarin pharmacogenetics: CYP2C9 and VKORC1 genotypes predict different sensitivity and resistance frequencies in the Ashkenazi and Sephardi Jewish populations.Am. J. Hum. Genet.82(2) , 495–500 (2008).
  • Takahashi H , WilkinsonGR, NutescuEA et al.: Different contributions of polymorphisms in VKORC1 and CYP2C9 to intra- and inter-population differences in maintenance dose of warfarin in Japanese, Caucasians and African–Americans.Pharmacogenet. Genomics16(2) , 101–110 (2006).
  • Gage BF , EbyC, JohnsonJA et al.: Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin.Clin. Pharmacol. Ther.84(3) , 326–331 (2008).
  • Wu AH : Use of genetic and nongenetic factors in warfarin dosing algorithms.Pharmacogenomics8(7) , 851–861 (2007).
  • Lazo-Langner A , MonkmanK, KovacsMJ: Predicting warfarin maintenance dose in patients with venous thromboembolism based on the response to a standardized warfarin initiation nomogram.J. Thromb. Haemost.7(8) , 1276–1283 (2009).
  • Millican EA , LenziniPA, MilliganPE et al.: Genetic-based dosing in orthopedic patients beginning warfarin therapy.Blood110(5) , 1511–1515 (2007).
  • Michaud V , VanierMC, BrouilletteD et al.: Combination of phenotype assessments and CYP2C9–VKORC1 polymorphisms in the determination of warfarin dose requirements in heavily medicated patients.Clin. Pharmacol. Ther.83(5) , 740–748 (2008).
  • Li C , SchwarzUI, RitchieMD et al.: Relative contribution of CYP2C9 and VKORC1 genotypes and early INR response to the prediction of warfarin sensitivity during initiation of therapy.Blood113(17) , 3925–3930 (2009).
  • Lenzini PA , GriceGR, MilliganPE et al.: Laboratory and clinical outcomes of pharmacogenetic vs. clinical protocols for warfarin initiation in orthopedic patients.J. Thromb. Haemost.6(10) , 1655–1662 (2008).
  • Flockhart DA , O‘KaneD, WilliamsMS et al.: Pharmacogenetic testing of CYP2C9 and VKORC1 alleles for warfarin.Genet. Med.10(2) , 139–150 (2008).
  • Rosove MH , GrodyWW: Should we be applying warfarin pharmacogenetics to clinical practice? No, not now.Ann. Intern. Med.151(4) , 270–273, W95 (2009).
  • Becquemont L : Evidence for a pharmacogenetic adapted dose of oral anticoagulant in routine medical practice.Eur. J. Clin. Pharmacol.64(10) , 953–960 (2008).
  • Caraco Y , BlotnickS, MuszkatM: CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation: a prospective randomized controlled study.Clin. Pharmacol. Ther.83(3) , 460–470 (2008).
  • Anderson JL , HorneBD, StevensSM et al.: Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation.Circulation116(22) , 2563–2570 (2007).
  • Garcia DA , WittDM, HylekE et al.: Delivery of optimized anticoagulant therapy: consensus statement from the Anticoagulation Forum.Ann. Pharmacother.42(7) , 979–988 (2008).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.