212
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Association Analysis of CYP2A6 Genotypes and Haplotypes with 5-Fluorouracil Formation from Tegafur in Human Liver Microsomes

, , , , , & show all
Pages 481-492 | Published online: 26 Apr 2011

Bibliography

  • Blokhina NG , VoznyEK, GarinAM: Results of treatment of malignant tumors with ftorafur.Cancer30(2) , 390–392 (1972).
  • El Sayed YM , SadeeW: Metabolic activation of ftorafur [R,S-1-(tetrahydro-2-furanyl)-5-fluorouracil]: the microsomal oxidative pathway.Biochem. Pharmacol.31(18) , 3006–3008 (1982).
  • Ikeda K , YoshisueK, MatsushimaE et al.: Bioactivation of tegafur to 5-fluorouracil is catalyzed by cytochrome P-450 2A6 in human liver microsomes in vitro.Clin. Cancer Res.6(11) , 4409–4415 (2000).
  • Takiuchi H , AjaniJA: Uracil–tegafur in gastric carcinoma: a comprehensive review.J. Clin. Oncol.16(8) , 2877–2885 (1998).
  • Hoff PM : The tegafur-based dihydropyrimidine dehydrogenase inhibitory fluoropyrimidines, UFT/leucovorin (ORZEL) and S-1: a review of their clinical development and therapeutic potential.Invest. New Drugs18(4) , 331–342 (2000).
  • Maehara Y : S-1 in gastric cancer: a comprehensive review.Gastric Cancer6(Suppl. 1) , 2–8 (2003).
  • Koizumi W , NaraharaH, HaraT et al.: S-1 plus cisplatin versus S-1 alone for first-line treatment of advanced gastric cancer (SPIRITS trial): a Phase III trial.Lancet Oncol.9(3) , 215–221 (2008).
  • Liu AW , WangSJ, AiCH: Clinical observation on compound tegafur for advanced gastric cancer.Prac. J. Cancer23(1) , 56–58 (2008).
  • Jin M , LuH, LiJ et al.: Ramdomized 3-armed Phase III study of S-1 monotherapy versus S-1/CDDP (SP) versus 5-FU/CDDP (FP) in patients (pts) with advanced gastric cancer (AGC): SC-101 study.J. Clin. Oncol.26 (2008) (Abstract 4533).
  • Hirata K , HorikoshiN, AibaK et al.: Pharmacokinetic study of S-1, a novel oral fluorouracil antitumor drug.Clin. Cancer Res.5(8) , 2000–2005 (1999).
  • van Groeningen CJ , PetersGJ, SchornagelJH et al.: Phase I clinical and pharmacokinetic study of oral S-1 in patients with advanced solid tumors.J. Clin. Oncol.18(14) , 2772–2779 (2000).
  • Hoff PM , SaadED, AjaniJA et al.: Phase I study with pharmacokinetics of S-1 on an oral daily schedule for 28 days in patients with solid tumors.Clin. Cancer Res.9(1) , 134–142 (2003).
  • Ajani JA , FaustJ, IkedaK et al.: Phase I pharmacokinetic study of S-1 plus cisplatin in patients with advanced gastric carcinoma.J. Clin. Oncol.23(28) , 6957–6965 (2005).
  • Kaida Y , InuiN, SudaT, NakamuraH, WatanabeH, ChidaK: The CYP2A6*4 allele is determinant of S-1 pharmacokinetics in Japanese patients with non-small-cell lung cancer.Clin. Pharmacol. Ther.83(4) , 589–594 (2008).
  • Koizumi W , TanabeS, SaigenjiK et al.: Phase I/II study of S-1 combined with cisplatin in patients with advanced gastric cancer.Br. J. Cancer89(12) , 2207–2212 (2003).
  • Lee JL , KangHJ, KangYK et al.: Phase I/II study of 3-week combination of S-1 and cisplatin chemotherapy for metastatic or recurrent gastric cancer.Cancer Chemother. Pharmacol.61(5) , 837–845 (2008).
  • Komatsu T , YamazakiH, ShimadaN et al.: Involvement of microsomal cytochrome P450 and cytosolic thymidine phosphorylase in 5-fluorouracil formation from tegafur in human liver.Clin. Cancer Res.7(3) , 675–681 (2001).
  • Komatsu T , YamazakiH, ShimadaN, NakajimaM, YokoiT: Roles of cytochromes P450 1A2, 2A6, and 2C8 in 5-fluorouracil formation from tegafur, an anticancer prodrug, in human liver microsomes.Drug Metab. Dispos.28(12) , 1457–1463 (2000).
  • Kajita J , FuseE, KuwabaraT, KobayashiH: The contribution of cytochrome P450 to the metabolism of tegafur in human liver.Drug Metab. Pharmacokinet.18(5) , 303–309 (2003).
  • Di YM , ChowVD, YangLP, ZhouSF: Structure, function, regulation and polymorphism of human cytochrome P450 2A6.Curr. Drug Metab.10(7) , 754–780 (2009).
  • Shimada T , YamazakiH, MimuraM, InuiY, GuengerichFP: Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians.J. Pharmacol. Exp. Ther.270(1) , 414–423 (1994).
  • Kiyotani K , FujiedaM, YamazakiH et al.: Twenty one novel single nucleotide polymorphisms (SNPs) of the CYP2A6 gene in Japanese and Caucasians.Drug Metab. Pharmacokinet.17(5) , 482–487 (2002).
  • Yoshida R , NakajimaM, NishimuraK, TokudomeS, KwonJT, YokoiT: Effects of polymorphism in promoter region of human CYP2A6 gene (CYP2A6*9) on expression level of messenger ribonucleic acid and enzymatic activity in vivo and in vitro.Clin. Pharmacol. Ther.74(1) , 69–76 (2003).
  • Haberl M , AnwaldB, KleinK et al.: Three haplotypes associated with CYP2A6 phenotypes in Caucasians.Pharmacogenet. Genomics15(9) , 609–624 (2005).
  • Al Koudsi N , HoffmannEB, AssadzadehA, TyndaleRF: Hepatic CYP2A6 levels and nicotine metabolism: impact of genetic, physiological, environmental, and epigenetic factors.Eur. J. Clin. Pharmacol.66(3) , 239–251 (2010).
  • Iscan M , RostamiH, GurayT, PelkonenO, RautioA: Interindividual variability of coumarin 7-hydroxylation in a Turkish population.Eur. J. Clin. Pharmacol.47(4) , 315–318 (1994).
  • Hadidi H , IrshaidY, VagboCB et al.: Variability of coumarin 7- and 3-hydroxylation in a Jordanian population is suggestive of a functional polymorphism in cytochrome P450 CYP2A6.Eur. J. Clin. Pharmacol.54(5) , 437–441 (1998).
  • Xu P , HuangSL, ZhuRH, HanXM, ZhouHH: Phenotypic polymorphism of CYP2A6 activity in a Chinese population.Eur. J. Clin. Pharmacol.58(5) , 333–337 (2002).
  • Nakajima M , FukamiT, YamanakaH et al.: Comprehensive evaluation of variability in nicotine metabolism and CYP2A6 polymorphic alleles in four ethnic populations.Clin. Pharmacol. Ther.80(3) , 282–297 (2006).
  • Ingelman-Sundberg M , SimSC, GomezA, Rodriguez-AntonaC: Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects.Pharmacol. Ther.116(3) , 496–526 (2007).
  • Daigo S , TakahashiY, FujiedaM et al.: A novel mutant allele of the CYP2A6 gene (CYP2A6*11) found in a cancer patient who showed poor metabolic phenotype towards tegafur.Pharmacogenet. Genomics12(4) , 299 (2002).
  • Fujita K , YamamotoW, EndoS et al.: CYP2A6 and the plasma level of 5-chloro-2, 4-dihydroxypyridine are determinants of the pharmacokinetic variability of tegafur and 5-fluorouracil, respectively, in Japanese patients with cancer given S-1.Cancer Sci.99(5) , 1049–1054 (2008).
  • Kong SY , LimHS, NamBH et al.: Association of CYP2A6 polymorphisms with S-1 plus docetaxel therapy outcomes in metastatic gastric cancer.Pharmacogenomics10(7) , 1147–1155 (2009).
  • Court MH , Von Moltke LL, Shader RI, Greenblatt DJ: Biotransformation of chlorzoxazone by hepatic microsomes from humans and ten other mammalian species. Biopharm. Drug Dispos.18(3) , 213–226 (1997).
  • Chen L , QinS, XieJ et al.: Genetic polymorphism analysis of CYP2C19 in Chinese Han populations from different geographic areas of mainland China.Pharmacogenomics9(6) , 691–702 (2008).
  • Oscarson M , McLellanRA, GullstenH et al.: Characterisation and PCR-based detection of a CYP2A6 gene deletion found at a high frequency in a Chinese population.FEBS Lett.448(1) , 105–110 (1999).
  • Rao Y , HoffmannE, ZiaM et al.: Duplications and defects in the CYP2A6 gene: identification, genotyping, and in vivo effects on smoking.Mol. Pharmacol.58(4) , 747–755 (2000).
  • Kanamitsu SI , ItoK, OkudaH et al.: Prediction of in vivo drug–drug interactions based on mechanism-based inhibition from in vitro data: inhibition of 5-fluorouracil metabolism by (E)-5-(2-Bromovinyl)uracil.Drug Metab. Dispos.28(4) , 467–474 (2000).
  • Tatsumi K , FukushimaM, ShirasakaT, FujiiS: Inhibitory effects of pyrimidine, barbituric acid and pyridine derivatives on 5-fluorouracil degradation in rat liver extracts.Jpn J. Cancer Res.78(7) , 748–755 (1987).
  • Stephens M , SmithNJ, DonnellyP: A new statistical method for haplotype reconstruction from population data.Am. J. Hum. Genet.68(4) , 978–989 (2001).
  • Stephens M , ScheetP: Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation.Am. J. Hum. Genet.76(3) , 449–462 (2005).
  • Kiyotani K , YamazakiH, FujiedaM et al.: Decreased coumarin 7-hydroxylase activities and CYP2A6 expression levels in humans caused by genetic polymorphism in CYP2A6 promoter region (CYP2A6*9).Pharmacogenetics13(11) , 689–695 (2003).
  • Nakajima M , KwonJT, TanakaN et al.: Relationship between interindividual differences in nicotine metabolism and CYP2A6 genetic polymorphism in humans.Clin. Pharmacol. Ther.69(1) , 72–78 (2001).
  • Wang J , PitarqueM, Ingelman-SundbergM: 3´-UTR polymorphism in the human CYP2A6 gene affects mRNA stability and enzyme expression.Biochem. Biophys. Res. Commun.340(2) , 491–497 (2006).
  • Mwenifumbo JC , Lessov-SchlaggarCN, ZhouQ et al.: Identification of novel CYP2A6*1B variants: the CYP2A6*1B allele is associated with faster in vivo nicotine metabolism.Clin. Pharmacol. Ther.83(1) , 115–121 (2008).
  • Fukami T , NakajimaM, HigashiE et al.: Characterization of novel CYP2A6 polymorphic alleles (CYP2A6*18 and CYP2A6*19) that affect enzymatic activity.Drug Metab. Dispos.33(8) , 1202–1210 (2005).
  • Mori K , HasegawaM, NishidaM et al.: Expression levels of thymidine phosphorylase and dihydropyrimidine dehydrogenase in various human tumor tissues.Int. J. Oncol.17(1) , 33–38 (2000).
  • Zanger UM , TurpeinenM, KleinK, SchwabM: Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation.Anal. Bioanal. Chem.392(6) , 1093–1108 (2008).
  • Nurfadhlina M , FoongK, TehL, TanS, ZakiS, IsmailR: CYP2A6 polymorphisms in Malays, Chinese and Indians.Xenobiotica36(8) , 684–692 (2006).
  • Yoshida R , NakajimaM, WatanabeY, KwonJ, YokoiT: Genetic polymorphisms in human CYP2A6 gene causing impaired nicotine metabolism.Br. J. Clin. Pharmacol.54(5) , 511–517 (2002).
  • Yusof W , GanSH: High prevalence of CYP2A6*4 and CYP2A6*9 alleles detected among a Malaysian population.Clin. Chim. Acta.403(1–2) , 105–109 (2009).
  • Mwenifumbo JC , Al Koudsi N, Ho MK et al.: Novel and established CYP2A6 alleles impair in vivo nicotine metabolism in a population of Black African descent. Hum. Mutat.29(5) , 679–688 (2008).
  • Schoedel KA , HoffmannEB, RaoY, SellersEM, TyndaleRF: Ethnic variation in CYP2A6 and association of genetically slow nicotine metabolism and smoking in adult Caucasians.Pharmacogenetics14(9) , 615–626 (2004).
  • Xu C , RaoY, XuB et al.: An in vivo pilot study characterizing the new CYP2A6* 7, *8, and *10 alleles.Biochem. Biophys. Res. Commun.290(1) , 318–324 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.