312
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Genetic Variation in Three Candidate Genes and Nicotine Dependence, Withdrawal and Smoking Cessation in Hospitalized Patients

, , , , , , , & show all
Pages 1053-1063 | Published online: 12 Aug 2010

Bibliography

  • Armour BS , WoolleryT, MalarcherA, PechacekTF, HustenC: Annual smoking-attributable mortality, years of potential life lost, and productivity losses – United States, 1997–2001.MMWR Morb. Mortal. Wkly Rep.54 , 625–628 (2005).
  • True WR , HeathAC, ScherrerJF et al.: Genetic and environmental contributions to smoking.Addiction92(10) , 1277–1287 (1997).
  • Lerman C , CaporasoNE, AudrainJ et al.: Evidence suggesting the role of specific genetic factors in cigarette smoking.Health Psychol.18(1) , 14–20 (1999).
  • Sullivan PF , KendlerKS: The genetic epidemiology of smoking.Nicotine Tob. Res.1(Suppl. 2) , S51–S57 (1999).
  • Li MD , ChengR, MaJZ, SwanGE: A meta-analysis of estimated genetic and environmental effects on smoking behavior in male and female adult twins.Addiction98(1) , 23–31 (2003).
  • Munafo MR , ClarkT, JohnstoneE, MurphyMFG, WaltonRT: The genetic basis for smoking behavior: a systematic review and meta-analysis.Nicotine Tob. Res.6(4) , 583–597 (2004).
  • Uhl GR , LiuQ, DrgonT, JohnsonC, WaltherD, RoseJE: Molecular genetics of nicotine dependence and abstinence: whole genome association using 520,000 SNPs.BMC Genet.8(10) , 10 (2007).
  • Uhl GR , LiuQ, DrgonT et al.: Molecular genetics of successful smoking cessation – convergent genome-wide association study results.Arch. Gen. Psychiatry65(6) , 683–693 (2008).
  • Berrettini W , YuanX, TozziF et al.: α-5/α-3 Nicotinic Receptor Subunit Alleles Increase Risk for Heavy Smoking.Mol. Psychiatry13(4) , 368–373 (2008).
  • Cahill K , SteadLF, LancasterT: Nicotine receptor partial agonists for smoking cessation.Cochrane Database Syst. Rev.3 , CD006103 (2007).
  • Zeiger JS , HaberstickBC, SchlaepferI et al.: The neuronal nicotinic receptor subunit genes (CHRNA6 and CHRNB3) are associated with subjective responses to tobacco.Hum. Mol. Genet.17(5) , 724–734 (2008).
  • Mwenifiumbo JC , TyndaleRF: Genetic variability in CYP2A6 and the pharmacogenetics of nicotine.Pharmacogenomics8(10) , 1385–1402 (2007).
  • Rossing MA : Genetic influences on smoking: candidate genes.Environ. Health Perspect.106(5) , 231–238 (1998).
  • Galzi JL , ChangeuxJP: Neuronal nicotinic receptors – molecular organization and regulations.Neuropharmacology34(6) , 563–582 (1995).
  • Bierut LJ , MaddenPAF, BreslauN et al.: Novel genes identified in a high-density genome wide association study for nicotine dependence.Hum. Mol. Genet.16(1) , 24–35 (2007).
  • Weiss RB , BakerTB, CannonDS et al.: A candidate gene approach identifies the CHRNA5–A3–B4 region as a risk factor for age dependent nicotine addiction.PLoS Genet.4(7) , E1000125 (2008).
  • Saccone SF , HinrichsAL, SacconeNL et al.: Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs.Hum. Mol. Genet.16(1) , 36–49 (2007).
  • Thorgeirsson TE , GellerF, SulemP et al.: A variant associated with nicotine dependence, lung cancer and peripheral arterial disease.Nature452(7187) , 638–642 (2008).
  • Chen XN , ChenJC, WilliamsonVS et al.: Variants in nicotinic acetylcholine receptors α5 and α3 increase risks to nicotine dependence.Am. J. Med. Genet. B150B(7) , 926–933 (2009).
  • Saccone NL , WangJC, BreslauN et al.: The CHRNA5–CHRNA3–CHRNB4 nicotinic receptor subunit gene cluster affects risk for nicotine dependence in African–Americans and in European–Americans.Cancer Res.69(17) , 6848–6856 (2009).
  • Stevens VL , BierutLJ, TalbotJT et al.: Nicotinic receptor gene variants influence susceptibility to heavy smoking.Cancer Epidemiol. Biomarkers Prev.17(12) , 3517–3525 (2008).
  • Spitz MR , AmosCI, DongQ, LinJ, WuX: The CHRNA5–A3 region on chromosome 15q24–25.1 is a risk factor both for nicotine dependence and for lung cancer.J. Natl Cancer Inst.100(21) , 1552–1556 (2008).
  • Caporaso N , GuFY, ChatterjeeN et al.: Genome-wide and candidate gene association study of cigarette smoking behaviors.PLoS ONE4(2) , E4653 (2009).
  • Bierut LJ : Convergence of genetic findings for nicotine dependence and smoking related diseases with chromosome 15q24–25.Trends Pharmacol. Sci.31(1) , 46–51 (2010).
  • Le Foll B , GalloA, Le Strat Y, Lu L, Gorwood P: Genetics of dopamine receptors and drug addiction: a comprehensive review. Behav. Pharmacol.20(1) , 1–17 (2009).
  • Munafo MR , TimpsonNJ, DavidSP, EbrahimS, LawlorDA: Association of the DRD2 gene Taq1A polymorphism and smoking behavior: a meta-analysis and new data.Nicotine Tob. Res.11(1) , 64–76 (2009).
  • Neville MJ , JohnstoneEC, WaltonRT: Identification and characterization of ANKK1: a novel kinase gene closely linked to DRD2 on chromosome band 11q23.Hum. Mutat.23(6) , 540–545 (2004).
  • Arinami T , GaoM, HamaguchiH, ToruM: A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia.Hum. Mol. Genet.6(4) , 577–582 (1997).
  • Duan JB , WainwrightMS, ComeronJM et al.: Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor.Hum. Mol. Genet.12(3) , 205–216 (2003).
  • Hauge XY , GrandyDK, EubanksJH, EvansGA, CivelliO, LittM: Detection and characterization of additional DNA polymorphisms in the dopamine D2 receptor gene.Genomics10(3) , 527–530 (1991).
  • Huang WH , PayneTJ, MaJZ et al.: Significant association of ANKK1 and detection of a functional polymorphism with nicotine dependence in an African–American sample.Neuropsychopharmacology34(2) , 319–330 (2009).
  • Connor JP , YoungRM, LawfordBR, SaundersJB, RitchieTL, NobleEP: Heavy nicotine and alcohol use in alcohol dependence is associated with D2 dopamine receptor (DRD2) polymorphism.Addict. Behav.32(2) , 310–319 (2007).
  • Timberlake DS , HaberstickBC, LessemJM et al.: An association between the DAT1 polymorphism and smoking behavior in young adults from the national longitudinal study of adolescent health.Health Psychol.25(2) , 190–197 (2006).
  • Swan GE , ValdesAM, RingHZ et al.: Dopamine receptor DRD2 genotype and smoking cessation outcome following treatment with bupropion.Pharmacogenomics J.5(1) , 21–29 (2005).
  • Johnstone EC , YudkinP, GriffithsSE, FullerA, MurphyM, WaltonR: The dopamine D2 receptor C32806T polymorphism (DRD2 Taq1A RFLP) exhibits no association with smoking behaviour in a healthy UK population.Addict. Biol.9(3–4) , 221–226 (2004).
  • Batra A , GelfortG, BartelsM et al.: The dopamine D2 receptor (DRD2) gene – a genetic risk factor in heavy smoking?Addict. Biol.5(4) , 429–436 (2000).
  • Singleton AB , ThomsonJR, MorrisCM, CourtJA, LloydS, CholertonS: Lack of association between the dopamine D2 receptor gene allele DRD2*A1 and cigarette smoking in a United Kingdom population.Pharmacogenetics8(2) , 125–128 (1998).
  • Spitz MR , ShiHH, YangF et al.: Case–control study of the D2 dopamine receptor gene and smoking status in lung cancer patients.J. Natl Cancer Inst.90(5) , 358–363 (1998).
  • Gilbert DG , ZuoYT, RabinovichNE, RiiseH, NeedhamR, HuggenvikJI: Neurotransmission-related genetic polymorphisms, negative affectivity traits, and gender predict tobacco abstinence symptoms across 44 days with and without nicotine patch.J. Abnormal Psychol.118(2) , 322–334 (2009).
  • Munafo MR , JohnstoneEC, MurphyMFG, AveyardP: Lack of association of DRD2 rs1800497 (Taq1A) polymorphism with smoking cessation in a nicotine replacement therapy randomized trial.Nicotine Tob. Res.11(4) , 404–407 (2009).
  • Johnstone EC , YudkinPL, HeyK et al.: Genetic variation in dopaminergic pathways and short-term effectiveness of the nicotine patch.Pharmacogenetics14(2) , 83–90 (2004).
  • Yudkin P , MunafoM, HeyK et al.: Effectiveness of nicotine patches in relation to genotype in women versus men: randomised controlled trial.BMJ328(7446) , 989–990 (2004).
  • Robinson JD , LamCY, MinnixJA et al.: The DRD2 TaqI-B polymorphism and its relationship to smoking abstinence and withdrawal symptoms.Pharmacogenomics J.7(4) , 266–274 (2007).
  • Lerman C , JepsonC, WileytoEP et al.: Role of functional genetic variation in the dopamine D2 receptor (DRD2) in response to bupropion and nicotine replacement therapy for tobacco dependence: results of two randomized clinical trials.Neuropsychopharmacology31(1) , 231–242 (2006).
  • Chen JS , LipskaBK, HalimN et al.: Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain.Am. J. Hum. Genet.75(5) , 807–821 (2004).
  • Beuten J , PayneTJ, MaJZ, LiMD: Significant association of catechol-O-methyltransferase (COMT) haplotypes with nicotine dependence in male and female smokers of two ethnic populations.Neuropsychopharmacology31(3) , 675–684 (2006).
  • Redden DT , ShieldsPG, EpsteinL et al.: Catechol-O-methyl-transferase functional polymorphism and nicotine dependence: an evaluation of nonreplicated results.Cancer Epidemiol. Biomarkers Prev.14(6) , 1384–1389 (2005).
  • Colilla S , LermanC, ShieldsPG et al.: Association of catechol-O-methyltransferase with smoking cessation in two independent studies of women.Pharmacogenet. Genomics15(6) , 393–398 (2005).
  • Munafo MR , JohnstoneEC, GuoB, MurphyMFG, AveyardP: Association of COMT Val(108/158)Met genotype with smoking cessation.Pharmacogenet. Genomics18(2) , 121–128 (2008).
  • Johnstone EC , ElliotKM, DavidSP, MurphyMFG, WaltonRT, MunafoMR: Association of COMT Val(108/158)Met genotype with smoking cessation in a nicotine replacement therapy randomized trial.Cancer Epidemiol. Biomarkers Prev.16(6) , 1065–1069 (2007).
  • Chandler MA , RennardSI: Smoking cessation.Chest137(2) , 428–435 (2010).
  • Perkins KA , LermanC, MercincavageM, FonteCA, BriskiJL: Nicotinic acetylcholine receptor β 2 subunit (CHRNB2) gene and short-term ability to quit smoking in response to nicotine patch.Cancer Epidemiol. Biomarkers Prev.18(10) , 2608–2612 (2009).
  • McKinney EF , WaltonRT, YudkinP et al.: Association between polymorphisms in dopamine metabolic enzymes and tobacco consumption in smokers.Pharmacogenetics10(6) , 483–491 (2000).
  • Heatherton TF , KozlowskiLT, FreckerRC, FagerströmKO: The Fagerström Test for Nicotine Dependence: a revision of the Fagerstrom Tolerance Questionnaire.Br. J. Addict.86 , 1119–1127 (1991).
  • Patten CA , MartinJE: Measuring tobacco withdrawal: a review of self-report questionnaires.J. Subst. Abuse8(1) , 93–113 (1996).
  • Rigotti NA , MunafoMR, SteadLF: Smoking cessation interventions for hospitalized smokers – a systematic review.Arch. Intern. Med.168(18) , 1950–1960 (2008).
  • Noble EP , BlumK, RitchieT, MontgomeryA, SheridanPJ: Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism.Arch. Gen. Psychiatry48(7) , 648–654 (1991).
  • Hirvonen MM , LaaksoA, NagrenK, RinneJO, PohjalainenT, HietalaJ: C957T polymorphism of dopamine D2 receptor gene affects striatal DRD2in vivo availability by changing the receptor affinity.Synapse63(10) , 907–912 (2009).
  • Bierut LJ , StitzelJA, WangJC et al.: Variants in nicotinic receptors and risk for nicotine dependence.Am. J. Psychiat.165(9) , 1163–1171 (2008).
  • Breitling LP , DahmenN, MittelstrassK et al.: Smoking cessation and variations in nicotinic acetylcholine receptor subunits α-5, α-3, and β-4 genes.Biol. Psychiat.65(8) , 691–695 (2009).
  • Conti DV , LeeW, LiDL et al.: Nicotinic acetylcholine receptor β 2 subunit gene implicated in a systems-based candidate gene study of smoking cessation.Hum. Mol. Genet.17(18) , 2834–2848 (2008).
  • Freathy RM , RingSM, ShieldsB et al.: A common genetic variant in the 15q24 nicotinic acetylcholine receptor gene cluster (CHRNA5–CHRNA3–CHRNB4) is associated with a reduced ability of women to quit smoking in pregnancy.Hum. Mol. Genet.18(15) , 2922–2927 (2009).
  • Baker TB , WeissRB, BoltD et al.: Human neuronal acetylcholine receptor A5–A3–B4 haplotypes are associated with multiple nicotine dependence phenotypes.Nicotine Tob. Res.11(7) , 785–796 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.