1,256
Views
17
CrossRef citations to date
0
Altmetric
Perspective

Realities and Expectations of Pharmacogenomics and Personalized Medicine: Impact of Translating Genetic Knowledge into Clinical Practice

, , , , , , , & show all
Pages 1149-1167 | Published online: 12 Aug 2010

Bibliography

  • Spear BB , Heath-ChiozziM, HuffJ: Clinical application of pharmacogenetics.Trends Mol. Med.7 , 201–204 (2001).
  • Davies EC , GreenCF, MottramDR, PirmohamedM: Adverse drug reactions in hospitals: a narrative review.Curr. Drug Saf.2 , 79–87 (2007).
  • Patrinos GP , GrosveldFG: Pharmacogenomics and therapeutics of hemoglobinopathies.Hemoglobin32 , 229–236 (2008).
  • Severino G , Del Zompo M: Adverse drug reactions: role of pharmacogenomics. Pharmacol. Res.49 , 363–373 (2004).
  • Manolopoulos VG : Pharmacogenomics and adverse drug reactions in diagnostic and clinical practice.Clin. Chem. Lab. Med.45 , 801–814 (2007).
  • Roden DM , AltmanRB, BenowitzNL et al.: Pharmacogenomics: challenges and opportunities.Ann. Intern. Med.145 , 749–757 (2006).
  • Giacomini KM , BrettCM, AltmanRB et al.: The pharmacogenetics research network: from SNP discovery to clinical drug response.Clin. Pharmacol. Ther.81 , 328–345 (2007).
  • Piquette-Miller M , GrantDM: The art and science of personalized medicine.Clin. Pharmacol. Ther.81 , 311–315 (2007).
  • Delisi C : Meetings that changed the world: Santa Fe 1986: human genome baby-steps.Nature455 , 876–877 (2008).
  • Shin J , KayserSR, LangaeeTY: Pharmacogenetics: from discovery to patient care.Am. J. Health Syst. Pharm.66 , 625–637 (2009).
  • de Koning P , KeirnsJ: Clinical pharmacology, biomarkers and personalized medicine: education please.Biomark. Med.3 , 685–700 (2009).
  • Roses AD : Pharmacogenetics and drug development: the path to safer and more effective drugs.Nat. Rev. Genet.5 , 645–656 (2004).
  • Biomarkers Definitions Working Group: Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther.69 , 89–95 (2001).
  • Jain KK : Role of oncoproteomics in the personalized management of cancer.Expert. Rev. Proteomics1(1) , 49–55 (2004).
  • Mok TS , WuYL, ThongprasertS et al.: Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma.N. Engl. J. Med.361 , 947–957 (2009).
  • Rosell R , MoranT, QueraltC et al.: Screening for epidermal growth factor receptor mutations in lung cancer.N. Engl. J. Med.361 , 958–967 (2009).
  • Lievre A , BachetJB, Le Corre D et al.: KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res.66 , 3992–3995 (2006).
  • Di Fiore F , BlanchardF, CharbonnierF et al.: Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by cetuximab plus chemotherapy.Br. J. Cancer96 , 1166–1169 (2007).
  • Lievre A , BachetJB, BoigeV et al.: KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab.J. Clin. Oncol.26 , 374–379 (2008).
  • Amado RG , WolfM, PeetersM et al.: Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer.J. Clin. Oncol.26 , 1626–1634 (2008).
  • Sartore-Bianchi A , MoroniM, VeroneseS et al.: Epidermal growth factor receptor gene copy number and clinical outcome of metastatic colorectal cancer treated with panitumumab.J. Clin. Oncol.25 , 3238–3245 (2007).
  • Iyer L , DasS, JanischL et al.: UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity.Pharmacogenomics J.2 , 43–47 (2002).
  • Artac M , BozcukH, PehlivanS et al.: The value of XPD and XRCC1 genotype polymorphisms to predict clinical outcome in metastatic colorectal carcinoma patients with irinotecan-based regimens.J. Cancer Res. Clin. Oncol.136 , 803–809 (2010).
  • Hoskins JM , MarcuelloE, AltesA et al.: Irinotecan pharmacogenetics: influence of pharmacodynamic genes.Clin. Cancer Res.14 , 1788–1796 (2008).
  • Relling MV , HancockML, RiveraGK et al.: Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus.J. Natl Cancer Inst.91 , 2001–2008 (1999).
  • Pirmohamed M : Warfarin: almost 60 years old and still causing problems.Br. J. Clin. Pharmacol.62 , 509–511 (2006).
  • James AH , BrittRP, RaskinoCL, ThompsonSG: Factors affecting the maintenance dose of warfarin.J. Clin. Pathol.45 , 704–706 (1992).
  • Bodin L , VerstuyftC, TregouetDA et al.: Cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase (VKORC1) genotypes as determinants of acenocoumarol sensitivity.Blood106 , 135–140 (2005).
  • Schalekamp T , BrasseBP, RoijersJF et al.: VKORC1 and CYP2C9 genotypes and phenprocoumon anticoagulation status: interaction between both genotypes affects dose requirement.Clin. Pharmacol. Ther.81 , 185–193 (2007).
  • Wadelius M , ChenLY, LindhJD et al.: The largest prospective warfarin-treated cohort supports genetic forecasting.Blood113 , 784–792 (2009).
  • Stehle S , KirchheinerJ, LazarA, FuhrU: Pharmacogenetics of oral anticoagulants: a basis for dose individualization.Clin. Pharmacokinet.47 , 565–594 (2008).
  • Sconce EA , KhanTI, WynneHA et al.: The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen.Blood106 , 2329–2333 (2005).
  • Gage BF , EbyC, JohnsonJA et al.: Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin.Clin. Pharmacol. Ther.84 , 326–331 (2008).
  • Klein TE , AltmanRB, ErikssonN et al.: Estimation of the warfarin dose with clinical and pharmacogenetic data.N. Engl. J. Med.360 , 753–764 (2009).
  • Hillman MA , WilkeRA, YaleSH et al.: A prospective, randomized pilot trial of model-based warfarin dose initiation using CYP2C9 genotype and clinical data.Clin. Med. Res.3 , 137–145 (2005).
  • Caraco Y , BlotnickS, MuszkatM: CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation: a prospective randomized controlled study.Clin. Pharmacol. Ther.83 , 460–470 (2008).
  • Anderson JL , HorneBD, StevensSM et al.: Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation.Circulation116 , 2563–2570 (2007).
  • Schwarz UI , RitchieMD, BradfordY et al.: Genetic determinants of response to warfarin during initial anticoagulation.N. Engl. J. Med.358 , 999–1008 (2008).
  • van Schie RM , WadeliusMI, KamaliF et al.: Genotype-guided dosing of coumarin derivatives: the European pharmacogenetics of anticoagulant therapy (EU-PACT) trial design.Pharmacogenomics10 , 1687–1695 (2009).
  • Ansell J , HirshJ, HylekE, JacobsonA, CrowtherM, PalaretiG: Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition).Chest133 , S160–S198 (2008).
  • Thomas D , GiuglianoRP: Antiplatelet therapy in early management of non-ST-segment elevation acute coronary syndrome: the 2002 and 2007 guidelines from North America and Europe.J. Cardiovasc. Pharmacol.51 , 425–433 (2008).
  • Reaume KT , RegalRE, DorschMP: Indications for dual antiplatelet therapy with aspirin and clopidogrel: evidence-based recommendations for use.Ann. Pharmacother.42 , 550–557 (2008).
  • Simon DI , JozicJ: Drug-eluting stents and antiplatelet resistance.Am. J. Cardiol.102 , J29–J37 (2008).
  • Gladding P , WebsterM, OrmistonJ, OlsenS, WhiteH: Antiplatelet drug nonresponsiveness.Am. Heart J.155 , 591–599 (2008).
  • Gurbel PA , TantryUS: Aspirin and clopidogrel resistance: consideration and management.J. Interv. Cardiol.19 , 439–448 (2006).
  • Geisler T , SchaeffelerE, DipponJ et al.: CYP2C19 and nongenetic factors predict poor responsiveness to clopidogrel loading dose after coronary stent implantation.Pharmacogenomics9(9) , 1251–1259 (2008).
  • Chen BL , ZhangW, LiQ et al.: Inhibition of ADP-induced platelet aggregation by clopidogrel is related to CYP2C19 genetic polymorphisms.Clin. Exp. Pharmacol. Physiol35 , 904–908 (2008).
  • Rocca B , PatronoC: Determinants of the interindividual variability in response to antiplatelet drugs.J. Thromb. Haemost.3 , 1597–1602 (2005).
  • Hulot JS , BuraA, VillardE et al.: Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects.Blood108 , 2244–2247 (2006).
  • Mega JL , CloseSL, WiviottSD et al.: Cytochrome P450 genetic polymorphisms and the response to prasugrel: relationship to pharmacokinetic, pharmacodynamic, and clinical outcomes.Circulation119 , 2553–2560 (2009).
  • Mega JL , CloseSL, WiviottSD et al.: Cytochrome P-450 polymorphisms and response to clopidogrel.N. Engl. J. Med.360 , 354–362 (2009).
  • Trenk D , HochholzerW, FrommMF et al.: Cytochrome P450 2C19 681G>A polymorphism and high on-clopidogrel platelet reactivity associated with adverse 1-year clinical outcome of elective percutaneous coronary intervention with drug-eluting or bare-metal stents.J. Am. Coll. Cardiol.51 , 1925–1934 (2008).
  • Sibbing D , KochW, GebhardD et al.: Cytochrome 2C19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement.Circulation121 , 512–518 (2010).
  • Giusti B , GoriAM, MarcucciR, AbbateR: Relation of CYP2C19 loss-of-function polymorphism to the occurrence of stent thrombosis.Expert. Opin. Drug Metab. Toxicol.6(4) , 393–407 (2010).
  • Collet JP , HulotJS, PenaA et al.: Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: a cohort study.Lancet373 , 309–317 (2009).
  • Ellis KJ , StoufferGA, McLeodHL, LeeCR: Clopidogrel pharmacogenomics and risk of inadequate platelet inhibition: US FDA recommendations.Pharmacogenomics10(11) , 1799–1817 (2009).
  • Sim SC , RisingerC, DahlML et al.: A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants.Clin. Pharmacol. Ther.79 , 103–113 (2006).
  • Ragia G , ArvanitidisKI, TavridouA, ManolopoulosVG: Need for reassessment of reported CYP2C19 allele frequencies in various populations in view of CYP2C19*17 discovery: the case of Greece.Pharmacogenomics10 , 43–49 (2009).
  • Arranz MJ , DawsonE, ShaikhS et al.: Cytochrome P4502D6 genotype does not determine response to clozapine.Br. J. Clin. Pharmacol.39 , 417–420 (1995).
  • Riedel M , SchwarzMJ, StrassnigM et al.: Risperidone plasma levels, clinical response and side-effects.Eur. Arch. Psychiatry Clin. Neurosci.255 , 261–268 (2005).
  • de Leon J , SusceMT, PanRM, FairchildM, KochWH, WedlundPJ: The CYP2D6 poor metabolizer phenotype may be associated with risperidone adverse drug reactions and discontinuation.J. Clin. Psychiatry66 , 15–27 (2005).
  • Kakihara S , YoshimuraR, ShinkaiK et al.: Prediction of response to risperidone treatment with respect to plasma concencentrations of risperidone, catecholamine metabolites, and polymorphism of cytochrome P450 2D6.Int. Clin. Psychopharmacol.20 , 71–78 (2005).
  • Kirchheiner J , NickchenK, BauerM et al.: Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response.Mol. Psychiatry9 , 442–473 (2004).
  • Murayama N , SoyamaA, SaitoY et al.: Six novel nonsynonymous CYP1A2 gene polymorphisms: catalytic activities of the naturally occurring variant enzymes.J. Pharmacol. Exp. Ther.308 , 300–306 (2004).
  • Kootstra-Ros JE , SmallegoorW, van der WJ: The cytochrome P450 CYP1A2 genetic polymorphisms *1F and *1D do not affect clozapine clearance in a group of schizophrenic patients. Ann. Clin. Biochem.42 , 216–219 (2005).
  • Charlier C , BrolyF, LhermitteM, PintoE, AnsseauM, PlomteuxG: Polymorphisms in the CYP2D6 gene: association with plasma concentrations of fluoxetine and paroxetine.Ther. Drug Monit.25 , 738–742 (2003).
  • Scordo MG , SpinaE, DahlML, GattiG, PeruccaE: Influence of CYP2C9, 2C19 and 2D6 genetic polymorphisms on the steady-state plasma concentrations of the enantiomers of fluoxetine and norfluoxetine.Basic Clin. Pharmacol. Toxicol.97 , 296–301 (2005).
  • Shams ME , ArnethB, HiemkeC et al.: CYP2D6 polymorphism and clinical effect of the antidepressant venlafaxine.J. Clin. Pharm. Ther.31 , 493–502 (2006).
  • Guzey C , SpigsetO: Low serum concentrations of paroxetine in CYP2D6 ultrarapid metabolizers.J. Clin. Psychopharmacol.26 , 211–212 (2006).
  • Hinrichs JW , LooversHM, ScholtenB, van der Weide J: Semi-quantitative CYP2D6 gene doses in relation to metabolic ratios of psychotropics. Eur. J. Clin. Pharmacol.64 , 979–986 (2008).
  • Rodriguez-Antona C , GurwitzD, de Leon J et al.: CYP2D6 genotyping for psychiatric patients treated with risperidone: considerations for cost–effectiveness studies. Pharmacogenomics10 , 685–699 (2009).
  • Bertilsson L , DahlML, SjoqvistF et al.: Molecular basis for rational megaprescribing in ultrarapid hydroxylators of debrisoquine.Lancet341 , 63 (1993).
  • Meyer UA : Pharmacogenetics and adverse drug reactions.Lancet356 , 1667–1671 (2000).
  • Howes OD , EgertonA, AllanV, McGuireP, StokesP, KapurS: Mechanisms underlying psychosis and antipsychotic treatment response in schizophrenia: insights from PET and SPECT imaging.Curr. Pharm. Des15 , 2550–2559 (2009).
  • Dahmen N , MullerMJ, GermeyerS et al.: Genetic polymorphisms of the dopamine D2 and D3 receptor and neuroleptic drug effects in schizophrenic patients.Schizophr. Res.49 , 223–225 (2001).
  • Szekeres G , KeriS, JuhaszA et al.: Role of dopamine D3 receptor (DRD3) and dopamine transporter (DAT) polymorphism in cognitive dysfunctions and therapeutic response to atypical antipsychotics in patients with schizophrenia.Am. J. Med. Genet. B Neuropsychiatr. Genet.124B , 1–5 (2004).
  • Adams DH , CloseS, FarmenM, DowningAM, BreierA, HoustonJP: Dopamine receptor D3 genotype association with greater acute positive symptom remission with olanzapine therapy in predominately Caucasian patients with chronic schizophrenia or schizoaffective disorder.Hum. Psychopharmacol.23 , 267–274 (2008).
  • Schafer M , RujescuD, GieglingI et al.: Association of short-term response to haloperidol treatment with a polymorphism in the dopamine D2 receptor gene.Am. J. Psychiatry158 , 802–804 (2001).
  • Arranz MJ , de Leon J: Pharmacogenetics and pharmacogenomics of schizophrenia: a review of last decade of research. Mol. Psychiatry12 , 707–747 (2007).
  • Smeraldi E , ZanardiR, BenedettiF, Di Bella D, Perez J, Catalano M: Polymorphism within the promoter of the serotonin transporter gene and antidepressant efficacy of fluvoxamine. Mol. Psychiatry3 , 508–511 (1998).
  • Pollock BG , FerrellRE, MulsantBH et al.: Allelic variation in the serotonin transporter promoter affects onset of paroxetine treatment response in late-life depression.Neuropsychopharmacology23 , 587–590 (2000).
  • Zanardi R , SerrettiA, RossiniD et al.: Factors affecting fluvoxamine antidepressant activity: influence of pindolol and 5-HTTLPR in delusional and nondelusional depression.Biol. Psychiatry50 , 323–330 (2001).
  • Yu YW , TsaiSJ, ChenTJ, LinCH, HongCJ: Association study of the serotonin transporter promoter polymorphism and symptomatology and antidepressant response in major depressive disorders.Mol. Psychiatry7 , 1115–1119 (2002).
  • Arias B , CatalanR, GastoC, GutierrezB, FananasL: 5-HTTLPR polymorphism of the serotonin transporter gene predicts non-remission in major depression patients treated with citalopram in a 12-weeks follow up study.J. Clin. Psychopharmacol.23 , 563–567 (2003).
  • Perlis RH , MischoulonD, SmollerJW et al.: Serotonin transporter polymorphisms and adverse effects with fluoxetine treatment.Biol. Psychiatry54 , 879–883 (2003).
  • Hong CJ , ChenTJ, YuYW, TsaiSJ: Response to fluoxetine and serotonin 1A receptor (C-1019G) polymorphism in Taiwan Chinese major depressive disorder.Pharmacogenomics J.6 , 27–33 (2006).
  • Mrazek DA , RushAJ, BiernackaJM et al.: SLC6A4 variation and citalopram response.Am. J. Med. Genet. B Neuropsychiatr. Genet.150B , 341–351 (2009).
  • Cusin C , SerrettiA, ZanardiR et al.: Influence of monoamine oxidase A and serotonin receptor 2A polymorphisms in SSRI antidepressant activity.Int. J. Neuropsychopharmacol.5 , 27–35 (2002).
  • McMahon FJ , BuervenichS, CharneyD et al.: Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antidepressant treatment.Am. J. Hum. Genet.78 , 804–814 (2006).
  • Kato M , FukudaT, WakenoM et al.: Effect of 5-HT1A gene polymorphisms on antidepressant response in major depressive disorder.Am. J. Med. Genet. B Neuropsychiatr. Genet.150B , 115–123 (2009).
  • Uher R , Huezo-DiazP, PerroudN et al.: Genetic predictors of response to antidepressants in the GENDEP project.Pharmacogenomics J.9 , 225–233 (2009).
  • Kato M , FukudaT, WakenoM et al.: Effects of the serotonin type 2A, 3A and 3B receptor and the serotonin transporter genes on paroxetine and fluvoxamine efficacy and adverse drug reactions in depressed Japanese patients.Neuropsychobiology53 , 186–195 (2006).
  • Ising M , LucaeS, BinderEB et al.: A genomewide association study points to multiple loci that predict antidepressant drug treatment outcome in depression.Arch. Gen. Psychiatry66 , 966–975 (2009).
  • Shyn SI , ShiJ, KraftJB et al.: Novel loci for major depression identified by genome-wide association study of Sequenced Treatment Alternatives to Relieve Depression and meta-analysis of three studies.Mol. Psychiatry DOI: 10.1038/mp.2009.125 (2009) (Epub ahead of print).
  • Uher R , PerroudN, NgMY et al.: Genome-wide pharmacogenetics of antidepressant response in the GENDEP project.Am. J. Psychiatry167 , 555–564 (2010).
  • Aral H , Vecchio-SadusA: Toxicity of lithium to humans and the environment – a literature review.Ecotoxicol. Environ. Saf.70 , 349–356 (2008).
  • Cruceanu C , AldaM, TureckiG: Lithium: a key to the genetics of bipolar disorder.Genome Med.1 , 79 (2009).
  • Rybakowski JK , SuwalskaA, CzerskiPM, Dmitrzak-WeglarzM, Leszczynska-RodziewiczA, HauserJ: Prophylactic effect of lithium in bipolar affective illness may be related to serotonin transporter genotype.Pharmacol. Rep.57 , 124–127 (2005).
  • Serretti A , LilliR, MandelliL, LorenziC, SmeraldiE: Serotonin transporter gene associated with lithium prophylaxis in mood disorders.Pharmacogenomics J.1 , 71–77 (2001).
  • Serretti A , MalitasPN, MandelliL et al.: Further evidence for a possible association between serotonin transporter gene and lithium prophylaxis in mood disorders.Pharmacogenomics J.4 , 267–273 (2005).
  • Perlis RH , SmollerJW, FerreiraMA et al.: A genomewide association study of response to lithium for prevention of recurrence in bipolar disorder.Am. J. Psychiatry166 , 718–725 (2009).
  • Schulze TG , AldaM, AdliM et al.: The International Consortium on Lithium Genetics (ConLiGen): an initiative by the NIMH and IGSLI to study the genetic basis of response to lithium treatment.Neuropsychobiology62 , 72–78 (2010).
  • Baquero F : Antibiotic resistance in Spain: what can be done? Task Force of the General Direction for Health Planning of the Spanish Ministry of Health.Clin. Infect. Dis.23 , 819–823 (1996).
  • McCaig LF , HughesJM: Trends in antimicrobial drug prescribing among office-based physicians in the United States.JAMA273 , 214–219 (1995).
  • Picard FJ , BergeronMG: Rapid molecular theranostics in infectious diseases.Drug Discov. Today7 , 1092–1101 (2002).
  • Zhang R , ZhangCT: The impact of comparative genomics on infectious disease research.Microbes Infect.8 , 1613–1622 (2006).
  • Behr MA , WilsonMA, GillWP et al.: Comparative genomics of BCG vaccines by whole-genome DNA microarray.Science284 , 1520–1523 (1999).
  • d‘Arminio MA , LepriAC, RezzaG et al.: Insights into the reasons for discontinuation of the first highly active antiretroviral therapy (HAART) regimen in a cohort of antiretroviral naive patients. I.CO.N.A. Study Group. Italian Cohort of Antiretroviral-Naive Patients.AIDS14 , 499–507 (2000).
  • Mallal S , PhillipsE, CarosiG et al.: HLA-B*5701 screening for hypersensitivity to abacavir.N. Engl. J. Med.358 , 568–579 (2008).
  • Young B , SquiresK, PatelP et al.: First large, multicenter, open-label study utilizing HLA-B*5701 screening for abacavir hypersensitivity in North America.AIDS22 , 1673–1675 (2008).
  • Haas DW , RibaudoHJ, KimRB et al.: Pharmacogenetics of efavirenz and central nervous system side effects: an Adult AIDS Clinical Trials Group study.AIDS18 , 2391–2400 (2004).
  • Brumme ZL , DongWW, ChanKJ et al.: Influence of polymorphisms within the CX3CR1 and MDR-1 genes on initial antiretroviral therapy response.AIDS17 , 201–208 (2003).
  • Rodriguez-Novoa S , LabargaP, SorianoV: Pharmacogenetics of tenofovir treatment.Pharmacogenomics10 , 1675–1685 (2009).
  • Chung WH , HungSI, HongHS et al.: Medical genetics: a marker for Stevens–Johnson syndrome.Nature428 , 486 (2004).
  • Hung SI , ChungWH, JeeSH et al.: Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions.Pharmacogenet. Genomics16 , 297–306 (2006).
  • Man CB , KwanP, BaumL et al.: Association between HLA-B*1502 allele and antiepileptic drug-induced cutaneous reactions in Han Chinese.Epilepsia48 , 1015–1018 (2007).
  • Sissung TM , EnglishBC, VenzonD, FiggWD, DeekenJF: Clinical pharmacology and pharmacogenetics in a genomics era: the DMET platform.Pharmacogenomics11 , 89–103 (2010).
  • Ruano G , GoetheJW, CaleyC et al.: Physiogenomic comparison of weight profiles of olanzapine- and risperidone-treated patients.Mol. Psychiatry12 , 474–482 (2007).
  • de Leon J , CorreaJC, RuanoG, WindemuthA, ArranzMJ, DiazFJ: Exploring genetic variations that may be associated with the direct effects of some antipsychotics on lipid levels.Schizophr. Res.98 , 40–46 (2008).
  • Arranz MJ , MunroJ, BirkettJ et al.: Pharmacogenetic prediction of clozapine response.Lancet355 , 1615–1616 (2000).
  • Pace BS , ZeinS: Understanding mechanisms of γ-globin gene regulation to develop strategies for pharmacological fetal hemoglobin induction.Dev. Dyn.235 , 1727–1737 (2006).
  • Steinberg MH , LuZH, BartonFB, TerrinML, CharacheS, DoverGJ: Fetal hemoglobin in sickle cell anemia: determinants of response to hydroxyurea. Multicenter Study of Hydroxyurea.Blood89 , 1078–1088 (1997).
  • Yavarian M , KarimiM, BakkerE, HarteveldCL, GiordanoPC: Response to hydroxyurea treatment in Iranian transfusion-dependent β-thalassemia patients.Haematologica89 , 1172–1178 (2004).
  • Ma Q , WyszynskiDF, FarrellJJ et al.: Fetal hemoglobin in sickle cell anemia: genetic determinants of response to hydroxyurea.Pharmacogenomics J.7 , 386–394 (2007).
  • Scheuner MT , SieverdingP, ShekellePG: Delivery of genomic medicine for common chronic adult diseases: a systematic review.JAMA299 , 1320–1334 (2008).
  • Gurwitz D , LunshofJE, DedoussisG et al.: Pharmacogenomics education: International Society of Pharmacogenomics recommendations for medical, pharmaceutical, and health schools deans of education.Pharmacogenomics J.5 , 221–225 (2005).
  • Gurwitz D , WeizmanA, RehaviM: Education: teaching pharmacogenomics to prepare future physicians and researchers for personalized medicine.Trends Pharmacol. Sci.24 , 122–125 (2003).
  • Frueh FW , GurwitzD: From pharmacogenetics to personalized medicine: a vital need for educating health professionals and the community.Pharmacogenomics5 , 571–579 (2004).
  • Higgs JE , AndrewsJ, GurwitzD, PayneK, NewmanW: Pharmacogenetics education in British medical schools.Genomic. Med.2 , 101–105 (2008).
  • Julian-Reynier C , NippertI, CalefatoJM et al.: Genetics in clinical practice: general practitioners‘ educational priorities in European countries.Genet. Med.10 , 107–113 (2008).
  • Fargher EA , EddyC, NewmanW et al.: Patients‘ and healthcare professionals‘ views on pharmacogenetic testing and its future delivery in the NHS.Pharmacogenomics8 , 1511–1519 (2007).
  • Tamaoki M , GushimaH, TsutaniK: Awareness survey of parties involved in pharmacogenomics in Japan.Pharmacogenomics8 , 275–286 (2007).
  • Mrazek M , KoenigB, SkimeM et al.: Assessing attitudes about genetic testing as a component of continuing medical education.Acad. Psychiatry31 , 447–451 (2007).
  • Deverka PA , VernonJ, McLeodHL: Economic opportunities and challenges for pharmacogenomics.Annu. Rev. Pharmacol. Toxicol.50 , 423–437 (2010).
  • Perlis RH , PatrickA, SmollerJW, WangPS: When is pharmacogenetic testing for antidepressant response ready for the clinic? A cost–effectiveness analysis based on data from the STAR*D study.Neuropsychopharmacology34 , 2227–2236 (2009).
  • Carlson JJ , GarrisonLP, RamseySD, VeenstraDL: The potential clinical and economic outcomes of pharmacogenomic approaches to EGFR-tyrosine kinase inhibitor therapy in non-small-cell lung cancer.Value Health12 , 20–27 (2009).
  • Priest VL , BeggEJ, GardinerSJ et al.: Pharmacoeconomic analyses of azathioprine, methotrexate and prospective pharmacogenetic testing for the management of inflammatory bowel disease.Pharmacoeconomics.24 , 767–781 (2006).
  • Ginsburg GS , WillardHF: Genomic and personalized medicine: foundations and applications.Transl. Res.154 , 277–287 (2009).
  • Williams MS : Insurance coverage for pharmacogenomics testing in the USA.Pers. Med.4 , 479–487 (2007).
  • Deverka PA , McLeodHL: Harnessing economic drivers for successful clinical implementation of pharmacogenetic testing.Clin. Pharmacol. Ther.84 , 191–193 (2008).
  • Flowers CR , VeenstraD: The role of cost–effectiveness analysis in the era of pharmacogenomics.Pharmacoeconomics22 , 481–493 (2004).
  • Garrison LP Jr, Carlson RJ, Carlson JJ, Kuszler PC, Meckley LM, Veenstra DL: A review of public policy issues in promoting the development and commercialization of pharmacogenomic applications: challenges and implications. Drug Metab. Rev.40 , 377–401 (2008).
  • Matloff ET , ShappellH, BrierleyK, BernhardtBA, McKinnonW, PeshkinBN: What would you do? Specialists‘ perspectives on cancer genetic testing, prophylactic surgery, and insurance discrimination.J. Clin. Oncol.18 , 2484–2492 (2000).
  • Huizenga CR , LowstuterK, BanksKC, LagosVI, VandergonVO, WeitzelJN: Evolving perspectives on genetic discrimination in health insurance among health care providers.Fam. Cancer9(2) , 253–260 (2009).
  • Robertson JA : Consent and privacy in pharmacogenetic testing.Nat. Genet.28 , 207–209 (2001).
  • Issa AM : Ethical perspectives on pharmacogenomic profiling in the drug development process.Nat. Rev. Drug Discov.1 , 300–308 (2002).
  • Morley KI , HallWD: Using pharmacogenetics and pharmacogenomics in the treatment of psychiatric disorders: some ethical and economic considerations.J. Mol. Med.82 , 21–30 (2004).
  • Rothstein MA , EppsPG: Ethical and legal implications of pharmacogenomics.Nat. Rev. Genet.2 , 228–231 (2001).
  • Godard B , CardinalG: Ethical implications in genetic counseling and family studies of the epilepsies.Epilepsy Behav.5 , 621–626 (2004).
  • Vaszar LT , ChoMK, RaffinTA: Privacy issues in personalized medicine.Pharmacogenomics4 , 107–112 (2003).
  • Buchanan A , CalifanoA, KahnJ, McPhersonE, RobertsonJ, BrodyB: Pharmacogenetics: ethical issues and policy options.Kennedy. Inst. Ethics J.12 , 1–15 (2002).
  • Smart A , MartinP, ParkerM: Tailored medicine: whom will it fit? The ethics of patient and disease stratification.Bioethics.18 , 322–342 (2004).
  • Slaughter LM : The Genetic Information Nondiscrimination Act: why your personal genetics are still vulnerable to discrimination.Surg. Clin. North Am.88 , 723–38, vi (2008).
  • Braff JP , ChatterjeeB, HochmanM et al.: Patient-tailored medicine, part two: personalized medicine and the legal landscape.J. Health Life Sci. Law2 , 1–43 (2009).
  • Obama B : The Genomics and Personalized Medicine Act of 2006.Clin. Adv. Hematol. Oncol.5 , 39–40 (2007).
  • Dressler LG , TerrySF: How will GINA influence participation in pharmacogenomics research and clinical testing?Clin. Pharmacol. Ther.86 , 472–475 (2009).
  • Lee SS , MudaliarA: Medicine. Racing forward: the Genomics and Personalized Medicine Act.Science323 , 342 (2009).
  • van Rijn MJ , van Duijn CM, Slooter AJ: Impact of genetic testing on complex diseases. Eur. J. Epidemiol.20 , 383–388 (2005).
  • Manolio TA , CollinsFS, CoxNJ et al.: Finding the missing heritability of complex diseases.Nature461 , 747–753 (2009).
  • Pierce BL , AhsanH: Case-only genome-wide interaction study of disease risk, prognosis and treatment.Genet. Epidemiol.34 , 7–15 (2010).
  • Pacheu-Grau D , Gomez-DuranA, Lopez-PerezMJ, MontoyaJ, Ruiz-PesiniE: Mitochondrial pharmacogenomics: barcode for antibiotic therapy.Drug Discov. Today15 , 33–39 (2010).
  • Blanc H , AdamsCW, WallaceDC: Different nucleotide changes in the large rRNA gene of the mitochondrial DNA confer chloramphenicol resistance on two human cell lines.Nucleic Acids Res.9 , 5785–5795 (1981).
  • King MP , AttardiG: Injection of mitochondria into human cells leads to a rapid replacement of the endogenous mitochondrial DNA.Cell52 , 811–819 (1988).
  • Luca CC , LamBL, MoraesCT: Erythromycin as a potential precipitating agent in the onset of Leber‘s hereditary optic neuropathy.Mitochondrion4 , 31–36 (2004).
  • Girnita DM , BurckartG, ZeeviA: Effect of cytokine and pharmacogenomic genetic polymorphisms in transplantation.Curr. Opin. Immunol.20 , 614–625 (2008).
  • Abrahams E , GinsburgGS, SilverM: The Personalized Medicine Coalition: goals and strategies.Am. J. Pharmacogenomics5 , 345–355 (2005).
  • Koslow SH , WilliamsLM, GordonE: Personalized medicine for the brain: a call for action.Mol. Psychiatry15(3) , 229–230 (2010).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.