638
Views
0
CrossRef citations to date
0
Altmetric
Review

Pharmacogenetic Influences on Mycophenolate Therapy

, &
Pages 369-390 | Published online: 17 Mar 2010

Bibliography

  • European Mycophenolate Mofetil Cooperative Study Group: Placebo-controlled study of mycophenolate mofetil combined with cyclosporin and corticosteroids for prevention of acute rejection. Lancet345(8961) , 1321–1325 (1995).
  • A blinded, randomized clinical trial of mycophenolate mofetil for the prevention of acute rejection in cadaveric renal transplantation. The Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group. Transplantation61(7) , 1029–1037 (1996).
  • Sollinger HW : Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. U.S. Renal Transplant Mycophenolate Mofetil Study group.Transplantation60(3) , 225–232 (1995).
  • Meier-Kriesche HU , LiS, GruessnerRW et al.: Immunosuppression: evolution in practice and trends, 1994–2004.Am. J. Transplant.6(5 Pt 2) , 1111–1131 (2006).
  • Shaw LM , KaplanB, DenofrioD, KoreckaM, Brayman Kl: Pharmacokinetics and concentration-control investigations of mycophenolic acid in adults after transplantation. Ther. Drug Monit.22(1) , 14–19 (2000).
  • van Gelder T , SilvaH, De Fijter H et al.: Comparing mycophenolate mofetil regimens for de novo renal transplant recipients: the fixed-dose concentration-controlled trial. Transplantation86 , 1043–1051 (2008).
  • Le Meur Y , BuchlerM, ThierryA et al.: Individualized mycophenolate mofetil dosing based on drug exposure significantly improves patient outcomes after renal transplantation.Am. J. Transplant.7(11) , 2496–2503 (2007).
  • van Gelder T , HilbrandsLB, VanrenterghemY et al.: A randomized double-blind, multicenter plasma concentration controlled study of the safety and efficacy of oral mycophenolate mofetil for the prevention of acute rejection after kidney transplantation.Transplantation68(2) , 261–266 (1999).
  • Weber LT , ShipkovaM, ArmstrongVW et al.: The pharmacokinetic-pharmacodynamic relationship for total and free mycophenolic acid in pediatric renal transplant recipients: a report of the German study group on mycophenolate mofetil therapy.J. Am. Soc. Nephrol.13(3) , 759–768 (2002).
  • Kiberd BA , LawenJ, FraserAD, Keough-RyanT, BelitskyP: Early adequate mycophenolic acid exposure is associated with less rejection in kidney transplantation.Am. J. Transplant.4(7) , 1079–1083 (2004).
  • Kuypers DR , ClaesK, EvenepoelP, MaesB, VanrenterghemY: Clinical efficacy and toxicity profile of tacrolimus and mycophenolic acid in relation to combined long-term pharmacokinetics in de novo renal allograft recipients.Clin. Pharmacol. Ther.75(5) , 434–447 (2004).
  • Atcheson BA , TaylorPJ, MudgeDW et al.: Mycophenolic acid pharmacokinetics and related outcomes early after renal transplant.Br. J. Clin. Pharmacol.59(3) , 271–280 (2005).
  • Gaston RS , KaplanB, ShahT et al.: Fixed- or controlled-dose mycophenolate mofetil with standard- or reduced-dose calcineurin inhibitors: the opticept trial.Am. J. Transplant.9(7) , 1607–1619 (2009).
  • Weimert NA , DerotteM, AllowayRR, WoodleES, VinksAA: Monitoring of inosine monophosphate dehydrogenase activity as a biomarker for mycophenolic acid effect: potential clinical implications.Ther. Drug Monit.29(2) , 141–149 (2007).
  • Glander P , HambachP, BraunKP et al.: Pre-transplant inosine monophosphate dehydrogenase activity is associated with clinical outcome after renal transplantation.Am. J. Transplant.4(12) , 2045–2051 (2004).
  • De Winter BC , MathotRA, van Hest RM, van Gelder T: Therapeutic drug monitoring of mycophenolic acid: does it improve patient outcome? Expert Opin. Drug Metab. Toxicol.3(2) , 251–261 (2007).
  • Knight SR , MorrisPJ: Does the evidence support the use of mycophenolate mofetil therapeutic drug monitoring in clinical practice? A systematic review.Transplantation85(12) , 1675–1685 (2008).
  • Barraclough KA , StaatzCE, IsbelNM, JohnsonDW: Therapeutic monitoring of mycophenolate in transplantation: is it justified?Curr. Drug Metab.10(2) , 179–187 (2009).
  • Evans WE , McleodHL: Pharmacogenomics – drug disposition, drug targets, and side effects.N. Engl. J. Med.348(6) , 538–549 (2003).
  • Staatz CE , GoodmanLK, TettSE: Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of the calcineurin inhibitors: part 1.Clin. Pharmacokinet. (In press).
  • Kiang TK , EnsomMH, ChangTK: UDP-glucuronosyltransferases and clinical drug–drug interactions.Pharmacol. Ther.106(1) , 97–132 (2005).
  • Girard H , CourtMH, BernardO et al.: Identification of common polymorphisms in the promoter of the UGT1A9 gene: evidence that UGT1A9 protein and activity levels are strongly genetically controlled in the liver.Pharmacogenetics14(8) , 501–515 (2004).
  • Picard N , RatanasavanhD, PremaudA, Le Meur Y, Marquet P: Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab. Dispos.33(1) , 139–146 (2005).
  • Bernard O , GuillemetteC: The main role of UGT1A9 in the hepatic metabolism of mycophenolic acid and the effects of naturally occurring variants.Drug Metab. Dispos.32(8) , 775–778 (2004).
  • Schutz E , ShipkovaM, ArmstrongVW, WielandE, OellerichM: Identification of a pharmacologically active metabolite of mycophenolic acid in plasma of transplant recipients treated with mycophenolate mofetil.Clin. Chem.45(3) , 419–422 (1999).
  • Shipkova M , ArmstrongVW, WielandE et al.: Identification of glucoside and carboxyl-linked glucuronide conjugates of mycophenolic acid in plasma of transplant recipients treated with mycophenolate mofetil.Br. J. Pharmacol.126(5) , 1075–1082 (1999).
  • Shipkova M , ArmstrongVW, KuypersD et al.: Effect of cyclosporine withdrawal on mycophenolic acid pharmacokinetics in kidney transplant recipients with deteriorating renal function: preliminary report.Ther. Drug Monit.23(6) , 717–721 (2001).
  • Shipkova M , ArmstrongVW, OellerichM, WielandE: Acyl glucuronide drug metabolites: toxicological and analytical implications.Ther. Drug Monit.25(1) , 1–16 (2003).
  • Kuypers DR , ClaesK, EvenepoelP et al.: Long-term changes in mycophenolic acid exposure in combination with tacrolimus and corticosteroids are dose dependent and not reflected by trough plasma concentration: a prospective study in 100 de novo renal allograft recipients.J. Clin. Pharmacol.43(8) , 866–880 (2003).
  • van Gelder T , Gafner N; on Behalf of All FDCC Investigators: Mycophenolic acid plasma concentrations and acute rejection rate in high risk versus low risk renal transplant patients receiving mycophenolate mofetil. Transplantation86(2S) , 39 (2008) (Abstract 109).
  • Djebli N , PicardN, Rerolle Jp, Le Meur Y, Marquet P: Influence of the UGT2B7 promoter region and exon 2 polymorphisms and comedications on acyl-MPAG production in vitro and in adult renal transplant patients. Pharmacogenet. Genomics17(5) , 321–330 (2007).
  • Guillemette C : Pharmacogenomics of human udp-glucuronosyltransferase enzymes.Pharmacogenomics J.3(3) , 136–158 (2003).
  • Rosso Felipe C , de Sandes TV, Sampaio EL, Park SI, Silva HT Jr, Medina Pestana JO: Clinical impact of polymorphisms of transport proteins and enzymes involved in the metabolism of immunosuppressive drugs. Transplant. Proc.41(5) , 1441–1455 (2009).
  • Li YQ , PrenticeDA, HowardML, MashfordML, DesmondPV: The effect of hormones on the expression of five isoforms of udp-glucuronosyltransferase in primary cultures of rat hepatocytes.Pharm. Res.16(2) , 191–197 (1999).
  • Courtois A , PayenL, GuillouzoA, FardelO: Up-regulation of multidrug resistance-associated protein 2 (MRP2) expression in rat hepatocytes by dexamethasone.FEBS Lett.459(3) , 381–385 (1999).
  • Turncliff RZ , MeierPJ, BrouwerKL: Effect of dexamethasone treatment on the expression and function of transport proteins in sandwich-cultured rat hepatocytes.Drug Metab. Dispos.32(8) , 834–839 (2004).
  • Pulaski L , KaniaK, RatajewskiM, UchiumiT, KuwanoM, BartoszG: Differential regulation of the human MRP2 and MRP3 gene expression by glucocorticoids.J. Steroid Biochem. Mol. Biol.96(3–4) , 229–234 (2005).
  • Gregoor PJ , De Sevaux RG, Hene RJ et al.: Effect of cyclosporine on mycophenolic acid trough levels in kidney transplant recipients. Transplantation68(10) , 1603–1606 (1999).
  • Cattaneo D , PericoN, GaspariF, GottiE, RemuzziG: Glucocorticoids interfere with mycophenolate mofetil bioavailability in kidney transplantation.Kidney Int.62(3) , 1060–1067 (2002).
  • van Hest RM , MathotRA, PescovitzMD Gordon R, Mamelok RD, van Gelder T: Explaining variability in mycophenolic acid exposure to optimize mycophenolate mofetil dosing: a population pharmacokinetic meta-analysis of mycophenolic acid in renal transplant recipients. J. Am. Soc. Nephrol.17(3) , 871–880 (2006).
  • Kuypers DRJ , VerledenG, NaesensM, VanrenterghemY: Drug interaction between mycophenolate mofetil and rifampin: possible induction of uridine diposphate-glucuronosyltransferase.Clin. Pharmacol. Ther.78(1) , 81–88 (2005).
  • Naesens M , KuypersDR, StreitF et al.: Rifampicin induces alterations in mycophenolic acid glucuronidation and elimination: implications for drug exposure in renal allograft recipients.Clin. Pharmacol. Ther.80(5) , 509–521 (2006).
  • Cattaneo D , BittoA, BaldelliS, CortinovisM: Pharmacokinetic/pharmacodynamic drug interaction between rosiglitazone and mycophenolate mofetil in kidney transplantation: a case report.Transplantation85(6) , 921–922 (2008).
  • Konig J , SeithelA, GradhandU, FrommMF: Pharmacogenomics of human OATP transporters.Naunyn. Schmiedebergs Arch. Pharmacol.372(6) , 432–443 (2006).
  • Miura M , SatohS, InoueK et al.: Influence of SLCO1B1, 1B3, 2B1 and ABCC2 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients.Eur. J. Clin. Pharmacol.63(12) , 1161–1169 (2007).
  • Miura M , KagayaH, SatohS et al.: Influence of drug transporters and ugt polymorphisms on pharmacokinetics of phenolic glucuronide metabolite of mycophenolic acid in Japanese renal transplant recipients.Ther. Drug Monit.30(5) , 559–564 (2008).
  • Picard N , YeeSW, WoillardJB et al.: The role of organic anion-transporting polypeptides and their common genetic variants in mycophenolic acid pharmacokinetics.Clin. Pharmacol. Ther.87(1) , 100–108 (2009).
  • Fehrenbach T , CuiY, FaulstichH, KepplerD: Characterization of the transport of the bicyclic peptide phalloidin by human hepatic transport proteins.Naunyn. Schmiedebergs Arch. Pharmacol.368(5) , 415–420 (2003).
  • Yu XQ , XueCC, WangG, ZhouSF: Multidrug resistance associated proteins as determining factors of pharmacokinetics and pharmacodynamics of drugs.Curr. Drug Metab.8(8) , 787–802 (2007).
  • Mottino AD , HoffmanT, JennesL, VoreM: Expression and localization of multidrug resistant protein MRP2 in rat small intestine.J. Pharmacol. Exp. Ther.293(3) , 717–723 (2000).
  • Naesens M , KuypersDR, VerbekeK, VanrenterghemY: Multidrug resistance protein 2 genetic polymorphisms influence mycophenolic acid exposure in renal allograft recipients.Transplantation82(8) , 1074–1084 (2006).
  • Bullingham RE , NichollsA, HaleM: Pharmacokinetics of mycophenolate mofetil (rs61443): a short review.Transplant. Proc.28(2) , 925–929 (1996).
  • Bullingham RE , NichollsAJ, KammBR: Clinical pharmacokinetics of mycophenolate mofetil.Clin. Pharmacokinet.34(6) , 429–455 (1998).
  • Uwai Y , MotohashiH, TsujiY, UeoH, KatsuraT, InuiK: Interaction and transport characteristics of mycophenolic acid and its glucuronide via human organic anion transporters hoat1 and hoat3.Biochem. Pharmacol.74(1) , 161–168 (2007).
  • Hesselink DA , van Hest RM, Mathot RA et al.: Cyclosporine interacts with mycophenolic acid by inhibiting the multidrug resistance-associated protein 2. Am. J. Transplant.5(5) , 987–994 (2005).
  • Paulusma CC , BosmaPJ, ZamanGJ et al.: Congenital jaundice in rats with a mutation in a multidrug resistance-associated protein gene.Science271(5252) , 1126–1128 (1996).
  • Smak Gregoor PJ , van Gelder T, Hesse CJ, van Der Mast BJ, van Besouw NM, Weimar W: Mycophenolic acid plasma concentrations in kidney allograft recipients with or without cyclosporin: a cross-sectional study. Nephrol. Dial. Transplant.14(3) , 706–708 (1999).
  • Staatz CE , TettSE: Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients.Clin. Pharmacokinet.46(1) , 13–58 (2007).
  • Wolff NA , BurckhardtBC, BurckhardtG, OellerichM, ArmstrongVW: Mycophenolic acid (MPA) and its glucuronide metabolites interact with transport systems responsible for excretion of organic anions in the basolateral membrane of the human kidney.Nephrol. Dial. Transplant.22(9) , 2497–2503 (2007).
  • Allison AC : Mechanisms of action of mycophenolate mofetil.Lupus14(Suppl. 1) , S2–S8 (2005).
  • Jain J , AlmquistSJ, FordPJ et al.: Regulation of inosine monophosphate dehydrogenase type I and type II isoforms in human lymphocytes.Biochem. Pharmacol.67(4) , 767–776 (2004).
  • Sombogaard F , PeetersAM, BaanCC et al.: Inosine monophosphate dehydrogenase messenger rna expression is correlated to clinical outcomes in mycophenolate mofetil-treated kidney transplant patients, whereas inosine monophosphate dehydrogenase activity is not.Ther. Drug Monit.31(5) , 549–556 (2009).
  • Senda M , NatsumedaY: Tissue-differential expression of two distinct genes for human IMP dehydrogenase (e.C.1.1.1.205).Life Sci.54(24) , 1917–1926 (1994).
  • Carr SF , PappE, WuJC, NatsumedaY: Characterization of human type I and type II IMP dehydrogenases.J. Biol. Chem.268(36) , 27286–27290 (1993).
  • Langman LJ , LegattDF, HalloranPF, YatscoffRW: Pharmacodynamic assessment of mycophenolic acid-induced immunosuppression in renal transplant recipients.Transplantation62(5) , 666–672 (1996).
  • Glander P , HambachP, BraunKP et al.: Effect of mycophenolate mofetil on imp dehydrogenase after the first dose and after long-term treatment in renal transplant recipients.Int. J. Clin. Pharmacol. Ther.41(10) , 470–476 (2003).
  • Marfo K , GreensteinS: Antiretroviral and immunosuppressive drug–drug interactions in human immunodeficiency virus-infected liver and kidney transplant recipients.Transplant. Proc.41 , 3796–3799 (2009).
  • Girard H , VilleneuveL, CourtMH et al.: The novel UGT1A9 intronic I399 polymorphism appears as a predictor of 7-ethyl-10-hydroxycamptothecin glucuronidation levels in the liver.Drug Metab. Dispos.34(7) , 1220–1228 (2006).
  • Cheng Z , Radominska-PandyaA, TephlyTR: Cloning and expression of human UDP-glucuronosyltransferase (UGT) 1A8.Arch. Biochem. Biophys.356(2) , 301–305 (1998).
  • Mojarrabi B , MackenziePI: Characterization of two udp glucuronosyltransferases that are predominantly expressed in human colon.Biochem. Biophys. Res. Commun.247(3) , 704–709 (1998).
  • Bernard O , TojcicJ, JournaultK, PerusseL, GuillemetteC: Influence of nonsynonymous polymorphisms of UGT1A8 and UGT2B7 metabolizing enzymes on the formation of phenolic and acyl glucuronides of mycophenolic acid.Drug Metab. Dispos.34(9) , 1539–1545 (2006).
  • Huang YH , GalijatovicA, NguyenN et al.: Identification and functional characterization of UDP-glucuronosyltransferases UGT1A8*1, UGT1A8*2 and UGT1A8*3.Pharmacogenetics12(4) , 287–297 (2002).
  • Bhasker CR , MckinnonW, StoneA et al.: Genetic polymorphism of UDP-glucuronosyltransferase 2B7 (UGT2B7) at amino acid 268: ethnic diversity of alleles and potential clinical significance.Pharmacogenetics10(8) , 679–685 (2000).
  • Sawyer MB , InnocentiF, DasS et al.: A pharmacogenetic study of uridine diphosphate-glucuronosyltransferase 2B7 in patients receiving morphine.Clin. Pharmacol. Ther.73(6) , 566–574 (2003).
  • Thibaudeau J , LepineJ, TojcicJ et al.: Characterization of common UGT1A8, UGT1A9, and UGT2B7 variants with different capacities to inactivate mutagenic 4-hydroxylated metabolites of estradiol and estrone.Cancer Res.66(1) , 125–133 (2006).
  • Holthe M , KlepstadP, ZahlsenK et al.: Morphine glucuronide-to-morphine plasma ratios are unaffected by the UGT2B7 H268Y and UGT1A1*28 polymorphisms in cancer patients on chronic morphine therapy.Eur. J. Clin. Pharmacol.58(5) , 353–356 (2002).
  • Coffman BL , KingCD, RiosGR, TephlyTR: The glucuronidation of opioids, other xenobiotics, and androgens by human UGT2B7Y(268) and UGT2B7H(268).Drug Metab. Dispos.26(1) , 73–77 (1998).
  • Court MH , KrishnaswamyS, HaoQ et al.: Evaluation of 3´-azido-3´-deoxythymidine, morphine, and codeine as probe substrates for UDP-glucuronosyltransferase 2B7 (UGT2B7) in human liver microsomes: specificity and influence of the UGT2B7*2 polymorphism.Drug Metab. Dispos.31(9) , 1125–1133 (2003).
  • Duguay Y , BaarC, SkorpenF, GuillemetteC: A novel functional polymorphism in the uridine diphosphate-glucuronosyltransferase 2B7 promoter with significant impact on promoter activity.Clin. Pharmacol. Ther.75(3) , 223–233 (2004).
  • Seithel A , GlaeserH, FrommMF, KonigJ: The functional consequences of genetic variations in transporter genes encoding human organic anion-transporting polypeptide family members.Expert Opin. Drug Metab. Toxicol.4(1) , 51–64 (2008).
  • Moriya Y , NakamuraT, HorinouchiM et al.: Effects of polymorphisms of MDR1, MRP1, and MRP2 genes on their mrna expression levels in duodenal enterocytes of healthy Japanese subjects.Biol. Pharm. Bull.25(10) , 1356–1359 (2002).
  • Meyer Zu Schwabedissen HE , JedlitschkyG, GratzM et al.: Variable expression of MRP2 (ABCC2) in human placenta: influence of gestational age and cellular differentiation.Drug Metab. Dispos.33(7) , 896–904 (2005).
  • Zhou Q , SparreboomA, Tan Eh et al.: Pharmacogenetic profiling across the irinotecan pathway in Asian patients with cancer. Br. J. Clin. Pharmacol.59(4) , 415–424 (2005).
  • Itoda M , SaitoY, SoyamaA et al.: Polymorphisms in the ABCC2 (CMOAT/MRP2) gene found in 72 established cell lines derived from Japanese individuals: an association between single nucleotide polymorphisms in the 5´-untranslated region and exon 28.Drug Metab. Dispos.30(4) , 363–364 (2002).
  • Innocenti F , UndeviaS, ChenPEA: Pharmacogenetic analysis of interindividual irinotecan (cpt-11) pharmacokinetic (PK) variability: evidence for a functional variant of abcc2.J. Clin. Oncol.22 , S2010 (2004) (Abstract).
  • Hirouchi M , SuzukiH, ItodaM et al.: Characterization of the cellular localization, expression level, and function of SNP variants of MRP2/ABCC2.Pharm. Res.21(5) , 742–748 (2004).
  • Wang J , YangJW, ZeeviA et al.: IMPDH1 gene polymorphisms and association with acute rejection in renal transplant patients.Clin. Pharmacol. Ther.83(5) , 711–717 (2008).
  • Winnicki W , WeigelG, Sunder-PlassmannG, BajariT, WinterB, HerknerH, SengoelgeG. An inosine 5-monophosphate dehydrogenase 2 single-nucleotide polymorphism impairs the effect of mycophenolic acid. Pharmacogenomics J.10(1) , 70–76 (2009).
  • Wang J , ZeeviA, WebberS et al.: A novel variant l263F in human inosine 5´-monophosphate dehydrogenase 2 is associated with diminished enzyme activity.Pharmacogenet. Genomics17(4) , 283–290 (2007).
  • Garat A , CauffiezC, Hamdan-KhalilR et al.: IMPDH2 genetic polymorphism: a promoter single-nucleotide polymorphism disrupts a cyclic adenosine monophosphate response element.Genet. Test Mol. Biomarkers13(6) , 841–784 (2009).
  • Kuypers DR , NaesensM, VermeireS, VanrenterghemY: The impact of uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T on early mycophenolic acid dose-interval exposure in de novo renal allograft recipients.Clin. Pharmacol. Ther.78(4) , 351–361 (2005).
  • Kuypers DR , De Jonge H, Naesens M et al.: Current target ranges of mycophenolic acid exposure and drug-related adverse events: a 5-year, open-label, prospective, clinical follow-up study in renal allograft recipients. Clin. Ther.30(4) , 673–683 (2008).
  • Sanchez-Fructuoso AI , MaestroML, CalvoN et al.: The prevalence of uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T and its influence on mycophenolic acid pharmacokinetics in stable renal transplant patients.Transplant. Proc.41(6) , 2313–2316 (2009).
  • Levesque E , DelageR, Benoit-BiancamanoMO et al.: The impact of ugt1a8, UGT1A9, and UGT2B7 genetic polymorphisms on the pharmacokinetic profile of mycophenolic acid after a single oral dose in healthy volunteers.Clin. Pharmacol. Ther.81(3) , 392–400 (2007).
  • van Schaik RH , van Agteren M, De Fijter JW et al.: UGT1A9 -275T>A/-2152C>T polymorphisms correlate with low MPA exposure and acute rejection in MMF/tacrolimus-treated kidney transplant patients. Clin. Pharmacol. Ther.86(3) , 319–327 (2009).
  • Johnson LA , OettingWS, BasuS, PrausaS, MatasA, JacobsonPA: Pharmacogenetic effect of the UGT polymorphisms on mycophenolate is modified by calcineurin inhibitors.Eur. J. Clin. Pharmacol.64(11) , 1047–1056 (2008).
  • van Gelder T , Le Meur Y, Shaw LM et al.: Therapeutic drug monitoring of mycophenolate mofetil in transplantation. Ther. Drug Monit.28(2) , 145–154 (2006).
  • Baldelli S , MerliniS, PericoN et al.: C-440t/t-331C polymorphisms in the UGT1A9 gene affect the pharmacokinetics of mycophenolic acid in kidney transplantation.Pharmacogenomics8(9) , 1127–1141 (2007).
  • Jiao Z , DingJJ, ShenJ et al.: Population pharmacokinetic modelling for enterohepatic circulation of mycophenolic acid in healthy Chinese and the influence of polymorphisms in UGT1A9.Br. J. Clin. Pharmacol.65(6) , 893–907 (2008).
  • Inoue K , MiuraM, SatohS et al.: Influence of UGT1A7 and UGT1A9 intronic I399 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients.Ther. Drug Monit.29(3) , 299–304 (2007).
  • Kagaya H , InoueK, MiuraM et al.: Influence of UGT1A8 and UGT2B7 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients.Eur. J. Clin. Pharmacol.63(3) , 279–288 (2007).
  • Zhang WX , ChenB, JinZ et al.: Influence of uridine diphosphate (UDP)-glucuronosyltransferases and ABCC2 genetic polymorphisms on the pharmacokinetics of mycophenolic acid and its metabolites in Chinese renal transplant recipients.Xenobiotica38(11) , 1422–1436 (2008).
  • Yang JW , LeePH, HutchinsonIV, PravicaV, ShahT, MinDI: Genetic polymorphisms of MRP2 and UGT2B7 and gastrointestinal symptoms in renal transplant recipients taking mycophenolic acid.Ther. Drug. Monit.31(5) , 542–548 (2009).
  • van Agteren M , ArmstrongVW, van Schaik RH et al.: AcylMPAG plasma concentrations and mycophenolic acid-related side effects in patients undergoing renal transplantation are not related to the ugt2b7 -840g>a gene polymorphism. Ther. Drug Monit.30(4) , 439–444 (2008).
  • Sombogaard F , van Schaik RH, Mathot RA et al.: Interpatient variability in IMPDH activity in mmf-treated renal transplant patients is correlated with impdh type II 3757T>C polymorphism. Pharmacogenet. Genomics19(8) , 626–634 (2009).
  • Grinyo J , VanrenterghemY, NashanB et al.: Association of four DNA polymorphisms with acute rejection after kidney transplantation.Transpl. Int.21(9) , 879–891 (2008).
  • Suzuki H , SugiyamaY: Single nucleotide polymorphisms in multidrug resistance associated protein 2 (MRP2/ABCC2): its impact on drug disposition.Adv. Drug Deliv. Rev.54(10) , 1311–1331 (2002).
  • Williams JA , JohnsonK, PaulauskisJ, CookJ: So many studies, too few subjects: establishing functional relevance of genetic polymorphisms on pharmacokinetics.J. Clin. Pharmacol.46(3) , 258–264 (2006).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.