2,439
Views
0
CrossRef citations to date
0
Altmetric
Review

Transporter-Mediated Drug–Drug Interactions

&
Pages 1017-1037 | Published online: 25 Jul 2011

Bibliography

  • Ho RH , KimRB. Transporters and drug therapy: Implications for drug disposition and disease. Clin. Pharmacol. Ther.78(3) , 260–277 (2005).
  • Shitara Y , SatoH, SugiyamaY. Evaluation of drug–drug interaction in the hepatobiliary and renal transport of drugs. Annu. Rev. Pharmacol. Toxicol.45 , 689–723 (2005).
  • Girennavar B , JayaprakashaGK, PatilBS. Potent inhibition of human cytochrome P450 3A4, 2D6, and 2C9 isoenzymes by grapefruit juice and its furocoumarins. J. Food Sci.72(8) , C417–C421 (2007).
  • Bressler R . Grapefruit juice and drug interactions. Exploring mechanisms of this interaction and potential toxicity for certain drugs. Geriatrics61(11) , 12–18 (2006).
  • Dresser GK , BaileyDG, LeakeBF et al. Fruit juices inhibit organic anion transporting polypeptide-mediated drug uptake to decrease the oral availability of fexofenadine. Clin. Pharmacol. Ther. 71(1) , 11–20 (2002).
  • Cvetkovic M , LeakeB, FrommMF, WilkinsonGR, KimRB. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab. Dispos.27(8) , 866–871 (1999).
  • Kullak-Ublick GA , HagenbuchB, StiegerB et al. Molecular and functional characterization of an organic anion transporting polypeptide cloned from human liver. Gastroenterology 109(4) , 1274–1282 (1995).
  • Glaeser H , BaileyDG, DresserGK et al. Intestinal drug transporter expression and the impact of grapefruit juice in humans. Clin. Pharmacol. Ther. 81(3) , 362–370 (2007).
  • Bailey DG , DresserGK, LeakeBF, KimRB. Naringin is a major and selective clinical inhibitor of organic anion-transporting polypeptide 1A2 (OATP1A2) in grapefruit juice. Clin. Pharmacol. Ther.81(4) , 495–502 (2007).
  • Kobayashi D , NozawaT, ImaiK, NezuJ, TsujiA, TamaiI. Involvement of human organic anion transporting polypeptide OATP-B (SLC21A9) in pH-dependent transport across intestinal apical membrane. J. Pharmacol. Exp. Ther.306(2) , 703–708 (2003).
  • Shimizu M , FuseK, OkudairaK et al. Contribution of OATP (organic anion-transporting polypeptide) family transporters to the hepatic uptake of fexofenadine in humans. Drug Metab. Dispos. 33(10) , 1477–1481 (2005).
  • Imanaga J , KotegawaT, ImaiH et al. The effects of the SLCO2B1 c.1457C>T polymorphism and apple juice on the pharmacokinetics of fexofenadine and midazolam in humans. Pharmacogenet. Genomics 21(2) , 84–93 (2011).
  • Lilja JJ , BackmanJT, LaitilaJ, LuurilaH, NeuvonenPJ. Itraconazole increases but grapefruit juice greatly decreases plasma concentrations of celiprolol. Clin. Pharmacol. Ther.73(3) , 192–198 (2003).
  • Lilja JJ , Juntti-PatinenL, NeuvonenPJ. Orange juice substantially reduces the bioavailability of the β-adrenergic-blocking agent celiprolol. Clin. Pharmacol. Ther.75(3) , 184–190 (2004).
  • Lilja JJ , RaaskaK, NeuvonenPJ. Effects of orange juice on the pharmacokinetics of atenolol. Eur. J. Clin. Pharmacol.61(5–6) , 337–340 (2005).
  • Neuhofel AL , WiltonJH, VictoryJM, HejmanowskLG, AmsdenGW. Lack of bioequivalence of ciprofloxacin when administered with calcium-fortified orange juice: a new twist on an old interaction. J. Clin. Pharmacol.42(4) , 461–466 (2002).
  • Waldmeier F , GlaenzelU, WirzB et al. Absorption, distribution, metabolism, and elimination of the direct renin inhibitor aliskiren in healthy volunteers. Drug Metab. Dispos. 35(8) , 1418–1428 (2007).
  • Vaidyanathan S , JarugulaV, DieterichHA, HowardD, DoleWP. Clinical pharmacokinetics and pharmacodynamics of aliskiren. Clin. Pharmacokinet.47(8) , 515–531 (2008).
  • Tapaninen T , NeuvonenPJ, NiemiM. Orange and apple juices greatly reduce the plasma concentrations of the OATP2B1 substrate aliskiren. Br. J. Clin. Pharmacol.71(5) , 718–726 (2011).
  • Vaidyanathan S , CamenischG, SchuetzH et al. Pharmacokinetics of the oral direct renin inhibitor aliskiren in combination with digoxin, atorvastatin, and ketoconazole in healthy subjects: the role of P-glycoprotein in the disposition of aliskiren. J. Clin. Pharmacol. 48(11) , 1323–1338 (2008).
  • Buczko W , HermanowiczJM. Pharmacokinetics and pharmacodynamics of aliskiren, an oral direct renin inhibitor. Pharmacol. Rep.60(5) , 623–631 (2008).
  • Tapaninen T , BackmanJT, KurkinenK, NeuvonenPJ, NiemiM. Itraconazole, a P-glycoprotein and CYP3A4 inhibitor, markedly raises the plasma concentrations and enhances the renin-inhibiting effect of aliskiren. J. Clin. Pharmacol.51(3) , 359–367 (2011).
  • Tapaninen T , NeuvonenPJ, NiemiM. Rifampicin reduces the plasma concentrations and the renin-inhibiting effect of aliskiren. Eur. J. Clin. Pharmacol.66(5) , 497–502 (2010).
  • Tapaninen T , NeuvonenPJ, NiemiM. Grapefruit juice greatly reduces the plasma concentrations of the OATP2B1 and CYP3A4 substrate aliskiren. Clin. Pharmacol. Ther.88(3) , 339–342 (2010).
  • Paine MF , CrissAB, WatkinsPB. Two major grapefruit juice components differ in time to onset of intestinal CYP3A4 inhibition. J. Pharmacol. Exp. Ther.312(3) , 1151–1160 (2005).
  • Takanaga H , OhnishiA, MatsuoH, SawadaY. Inhibition of vinblastine efflux mediated by P-glycoprotein by grapefruit juice components in Caco-2 cells. Biol. Pharm. Bull.21(10) , 1062–1066 (1998).
  • Satoh H , YamashitaF, TsujimotoM et al. Citrus juices inhibit the function of human organic anion-transporting polypeptide OATP-B. Drug Metab. Dispos. 33(4) , 518–523 (2005).
  • Mandery K , BujokK, SchmidtI et al. Influence of the flavonoids apigenin, kaempferol, and quercetin on the function of organic anion transporting polypeptides 1A2 and 2B1. Biochem. Pharmacol. 80(11) , 1746–1753 (2010).
  • Cascorbi I . P-glycoprotein: tissue distribution, substrates, and functional consequences of genetic variations. Handb. Exp. Pharmacol.201 , 261–283 (2011).
  • Thiebaut F , TsuruoT, HamadaH, GottesmanMM, PastanI, WillinghamMC. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl Acad. Sci. USA84(21) , 7735–7738 (1987).
  • Igel S , DrescherS, MürdterT et al. Increased absorption of digoxin from the human jejunum due to inhibition of intestinal transporter-mediated efflux. Clin. Pharmacokinet. 46(9) , 777–785 (2007).
  • Drescher S , GlaeserH, MürdterT, HitzlM, EichelbaumM, FrommMF. P-glycoprotein-mediated intestinal and biliary digoxin transport in humans. Clin. Pharmacol. Ther.73(3) , 223–231 (2003).
  • Mouly S , PaineMF. P-glycoprotein increases from proximal to distal regions of human small intestine. Pharm. Res.20(10) , 1595–1599 (2003).
  • Kolars JC , Schmiedlin-RenP, SchuetzJD, FangC, WatkinsPB. Identification of rifampin-inducible P450IIIA4 (CYP3A4) in human small bowel enterocytes. J. Clin. Invest.90(5) , 1871–1878 (1992).
  • Fromm MF . Importance of P-glycoprotein at blood-tissue barriers. Trends Pharmacol. Sci.25(8) , 423–429 (2004).
  • Benet LZ . The drug transporter-metabolism alliance: uncovering and defining the interplay. Mol. Pharm.6(6) , 1631–1643 (2009).
  • Lacarelle B , RahmaniR, de Sousa G, Durand A, Placidi M, Cano JP. Metabolism of digoxin, digoxigenin digitoxosides and digoxigenin in human hepatocytes and liver microsomes. Fundam. Clin. Pharmacol.5(7) , 567–582 (1991).
  • Gheorghiade M , AdamsKF Jr, Colucci WS. Digoxin in the management of cardiovascular disorders. Circulation109(24) , 2959–2964 (2004).
  • Burk O , BrennerSS, HofmannU et al. The impact of thyroid disease on the regulation, expression, and function of ABCB1 (MDR1/P glycoprotein) and consequences for the disposition of digoxin. Clin. Pharmacol. Ther. 88(5) , 685–694 (2010).
  • Birkenfeld AL , JordanJ, HofmannU et al. Genetic influences on the pharmacokinetics of orally and intravenously administered digoxin as exhibited by monozygotic twins. Clin. Pharmacol. Ther. 86(6) , 605–608 (2009).
  • Fenner KS , TroutmanMD, KempshallS et al. Drug–drug interactions mediated through P-glycoprotein: clinical relevance and in vitro–in vivo correlation using digoxin as a probe drug. Clin. Pharmacol. Ther. 85(2) , 173–181 (2009).
  • Giacomini KM , HuangSM, TweedieDJ et al. Membrane transporters in drug development. Nat. Rev. Drug Discov. 9(3) , 215–236 (2010).
  • Glaeser H . Importance of P-glycoprotein for drug–drug interactions. Handb. Exp. Pharmacol.201 , 285–297 (2011).
  • Greiner B , EichelbaumM, FritzP et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J. Clin. Invest. 104(2) , 147–153 (1999).
  • Larsen UL , Hyldahl Olesen L, Guldborg Nyvold C et al. Human intestinal P-glycoprotein activity estimated by the model substrate digoxin. Scand. J. Clin. Lab. Invest.67(2) , 123–134 (2007).
  • Gurley BJ , SwainA, WilliamsDK, BaroneG, BattuSK. Gauging the clinical significance of P-glycoprotein-mediated herb–drug interactions: comparative effects of St. John‘s wort, Echinacea, clarithromycin, and rifampin on digoxin pharmacokinetics. Mol. Nutr. Food Res.52(7) , 772–779 (2008).
  • Schinkel AH , MayerU, WagenaarE et al. Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc. Natl Acad. Sci. USA 94(8) , 4028–4033 (1997).
  • Reitman ML , ChuX, CaiX et al. Rifampin‘s acute inhibitory and chronic inductive drug interactions: experimental and model-based approaches to drug–drug interaction trial design. Clin. Pharmacol. Ther. 89(2) , 234–242 (2011).
  • Fardel O , LecureurV, LoyerP, GuillouzoA. Rifampicin enhances anti-cancer drug accumulation and activity in multidrug-resistant cells. Biochem. Pharmacol.49(9) , 1255–1260 (1995).
  • Furusawa S , NakanoS, WuJ, SasakiK, TakayanagiM, TakayanagiY. Potentiation of pirarubicin activity in multidrug resistant cells by rifampicin. Biol. Pharm. Bull.20(12) , 1303–1306 (1997).
  • Westphal K , WeinbrennerA, ZschiescheM et al. Induction of P-glycoprotein by rifampin increases intestinal secretion of talinolol in human beings: a new type of drug/drug interaction. Clin. Pharmacol. Ther. 68(4) , 345–355 (2000).
  • Dürr D , StiegerB, Kullak-UblickGA et al. St John‘s Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clin. Pharmacol. Ther. 68(6) , 598–604 (2000).
  • Johne A , BrockmöllerJ, BauerS, MaurerA, LangheinrichM, RootsI. Pharmacokinetic interaction of digoxin with an herbal extract from St John‘s wort (Hypericum perforatum). Clin. Pharmacol. Ther.66(4) , 338–345 (1999).
  • Schwarz UI , HansoH, OertelR et al. Induction of intestinal P-glycoprotein by St John‘s wort reduces the oral bioavailability of talinolol. Clin. Pharmacol. Ther. 81(5) , 669–678 (2007).
  • Leahey EB Jr, Reiffel JA, Drusin RE, Heissenbuttel RH, Lovejoy WP, Bigger JT Jr. Interaction between quinidine and digoxin. JAMA240(6) , 533–534 (1978).
  • Fromm MF , KimRB, SteinCM, WilkinsonGR, RodenDM. Inhibition of P-glycoprotein-mediated drug transport: a unifying mechanism to explain the interaction between digoxin and quinidine. Circulation99(4) , 552–557 (1999).
  • Eberl S , RennerB, NeubertA et al. Role of P-glycoprotein inhibition for drug interactions: evidence from in vitro and pharmacoepidemiological studies. Clin. Pharmacokinet. 46(12) , 1039–1049 (2007).
  • Hughes J , CroweA. Inhibition of P-glycoprotein-mediated efflux of digoxin and its metabolites by macrolide antibiotics. J. Pharmacol. Sci.113(4) , 315–324 (2010).
  • Rengelshausen J , GoggelmannC, BurhenneJ et al. Contribution of increased oral bioavailability and reduced nonglomerular renal clearance of digoxin to the digoxin-clarithromycin interaction. Br. J. Clin. Pharmacol. 56(1) , 32–38 (2003).
  • Jonker JW , SmitJW, BrinkhuisRF et al. Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J. Natl Cancer Inst. 92(20) , 1651–1656 (2000).
  • Kruijtzer CM , BeijnenJH, RosingH et al. Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. J. Clin. Oncol. 20(13) , 2943–2950 (2002).
  • Wynne HA , CopeLH, MutchE, RawlinsMD, WoodhouseKW, JamesOF. The effect of age upon liver volume and apparent liver blood flow in healthy man. Hepatology9(2) , 297–301 (1989).
  • Yzet T , BouzerarR, AllartJD et al. Hepatic vascular flow measurements by phase contrast MRI and doppler echography: a comparative and reproducibility study. J. Magn. Reson. Imaging 31(3) , 579–588 (2010).
  • Omori S , IshizakiY, SugoH et al. Direct measurement of hepatic blood flow during living donor liver transplantation in children. J. Pediatr. Surg. 45(3) , 545–548 (2010).
  • Walser EM , DeLa Pena R, Villanueva-Meyer J, Ozkan O, Soloway R. Hepatic perfusion before and after the transjugular intrahepatic portosystemic shunt procedure: impact on survival. J. Vasc. Interv. Radiol.11(7) , 913–918 (2000).
  • Zhong L , WangWJ, XuJR. Clinical application of hepatic CT perfusion. World J. Gastroenterol.15(8) , 907–911 (2009).
  • Kulik A , BrookhartMA, LevinR, RuelM, SolomonDH, ChoudhryNK. Impact of statin use on outcomes after coronary artery bypass graft surgery. Circulation118(18) , 1785–1792 (2008).
  • Ballantyne CM , RaichlenJS, NichollsSJ et al. Effect of rosuvastatin therapy on coronary artery stenoses assessed by quantitative coronary angiography: a study to evaluate the effect of rosuvastatin on intravascular ultrasound-derived coronary atheroma burden. Circulation 117(19) , 2458–2466 (2008).
  • Berriche O , AmroucheC, JamoussiH, BlouzaS. Efficacy and safety of statins in the treatment of diabetic dyslipidemia. Tunis. Med.88(2) , 80–84 (2010).
  • Stein EA , AmerenaJ, BallantyneCM et al. Long-term efficacy and safety of rosuvastatin 40 mg in patients with severe hypercholesterolemia. Am. J. Cardiol. 100(9) , 1387–1396 (2007).
  • Hippisley -Cox J, Coupland C. Unintended effects of statins in men and women in England and Wales: population based cohort study using the QResearch database. BMJ340 , c2197 (2010).
  • Graham DJ , StaffaJA, ShatinD et al. Incidence of hospitalized rhabdomyolysis in patients treated with lipid-lowering drugs. JAMA 292(21) , 2585–2590 (2004).
  • Hedenmalm K , AlvanG, ÖhagenP, DahlML. Muscle toxicity with statins. Pharmacoepidemiol. Drug Saf.19(3) , 223–231 (2010).
  • Keskitalo JE , KurkinenKJ, NeuvonenM, BackmanJT, NeuvonenPJ, NiemiM. No significant effect of ABCB1 haplotypes on the pharmacokinetics of fluvastatin, pravastatin, lovastatin, and rosuvastatin. Br. J. Clin. Pharmacol.68(2) , 207–213 (2009).
  • Neuvonen PJ . Drug interactions with HMG-CoA reductase inhibitors (statins): the importance of CYP enzymes, transporters and pharmacogenetics. Curr. Opin. Investig. Drugs11(3) , 323–332 (2010).
  • K önig J. Uptake transporters of the human OATP family: molecular characteristics, substrates, their role in drug–drug interactions, and functional consequences of polymorphisms. Handb. Exp. Pharmacol.201 , 1–28 (2011).
  • Voora D , ShahSH, SpasojevicI et al. The SLCO1B1*5 genetic variant is associated with statin-induced side effects. J. Am. Coll. Cardiol. 54(17) , 1609–1616 (2009).
  • Link E , ParishS, ArmitageJ et al. SLCO1B1 variants and statin-induced myopathy – a genomewide study. N. Engl. J. Med.359(8) , 789–799 (2008).
  • Pasanen MK , NeuvonenM, NeuvonenPJ, NiemiM. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet. Genomics16(12) , 873–879 (2006).
  • Peters BJ , RodinAS, KlungelOH et al. Pharmacogenetic interactions between ABCB1 and SLCO1B1 tagging SNPs and the effectiveness of statins in the prevention of myocardial infarction. Pharmacogenomics 11(8) , 1065–1076 (2010).
  • Niemi M , PasanenMK, NeuvonenPJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol. Rev.63(1) , 157–181 (2011).
  • Seithel A , EberlS, SingerK et al. The influence of macrolide antibiotics on the uptake of organic anions and drugs mediated by OATP1B1 and OATP1B3. Drug Metab. Dispos. 35(5) , 779–786 (2007).
  • Kitamura S , MaedaK, WangY, SugiyamaY. Involvement of multiple transporters in the hepatobiliary transport of rosuvastatin. Drug Metab. Dispos.36(10) , 2014–2023 (2008).
  • Ho RH , TironaRG, LeakeBF et al. Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology 130(6) , 1793–1806 (2006).
  • Shirasaka Y , SuzukiK, NakanishiT, TamaiI. Intestinal absorption of HMG-CoA reductase inhibitor pravastatin mediated by organic anion transporting polypeptide. Pharm. Res.27(10) , 1241–2149 (2010).
  • Choi MK , ShinHJ, ChoiYL, DengJW, ShinJG, SongIS. Differential effect of genetic variants of Na+-taurocholate co-transporting polypeptide (NTCP) and organic anion-transporting polypeptide 1B1 (OATP1B1) on the uptake of HMG-CoA reductase inhibitors. Xenobiotica41(1) , 24–34 (2011).
  • Dawson PA , LanT, RaoA. Bile acid transporters. J. Lipid. Res.50(12) , 2340–2357 (2009).
  • Nakagomi-Hagihara R , NakaiD, TokuiT, AbeT, IkedaT. Gemfibrozil and its glucuronide inhibit the hepatic uptake of pravastatin mediated by OATP1B1. Xenobiotica37(5) , 474–486 (2007).
  • Hirano M , MaedaK, ShitaraY, SugiyamaY. Drug–drug interaction between pitavastatin and various drugs via OATP1B1. Drug Metab. Dispos.34(7) , 1229–1236 (2006).
  • Noé J , PortmannR, BrunME, FunkC. Substrate-dependent drug–drug interactions between gemfibrozil, fluvastatin and other organic anion-transporting peptide (OATP) substrates on OATP1B1, OATP2B1, and OATP1B3. Drug Metab. Dispos.35(8) , 1308–1314 (2007).
  • Kyrklund C , BackmanJT, NeuvonenM, NeuvonenPJ. Gemfibrozil increases plasma pravastatin concentrations and reduces pravastatin renal clearance. Clin. Pharmacol. Ther.73(6) , 538–544 (2003).
  • Schneck DW , BirminghamBK, ZalikowskiJA et al. The effect of gemfibrozil on the pharmacokinetics of rosuvastatin. Clin. Pharmacol. Ther. 75(5) , 455–463 (2004).
  • Bergman E , MatssonEM, HedelandM, BondessonU, KnutsonL, LennernäsH. Effect of a single gemfibrozil dose on the pharmacokinetics of rosuvastatin in bile and plasma in healthy volunteers. J. Clin. Pharmacol.50(9) , 1039–1049 (2010).
  • Backman JT , KyrklundC, KivistöKT, WangJS, NeuvonenPJ. Plasma concentrations of active simvastatin acid are increased by gemfibrozil. Clin. Pharmacol. Ther.68(2) , 122–129 (2000).
  • Whitfield LR , PorcariAR, AlveyC, AbelR, BullenW, HartmanD. Effect of gemfibrozil and fenofibrate on the pharmacokinetics of atorvastatin. J. Clin. Pharmacol.51(3) , 378–388 (2011).
  • Backman JT , KyrklundC, NeuvonenM, NeuvonenPJ. Gemfibrozil greatly increases plasma concentrations of cerivastatin. Clin. Pharmacol. Ther.72(6) , 685–691 (2002).
  • Staffa JA , ChangJ, GreenL. Cerivastatin and reports of fatal rhabdomyolysis. N. Engl. J. Med.346(7) , 539–540 (2002).
  • Wang JS , NeuvonenM, WenX, BackmanJT, NeuvonenPJ. Gemfibrozil inhibits CYP2C8-mediated cerivastatin metabolism in human liver microsomes. Drug Metab. Dispos.30(12) , 1352–1356 (2002).
  • Shitara Y , HiranoM, SatoH, SugiyamaY. Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug–drug interaction between cerivastatin and gemfibrozil. J. Pharmacol. Exp. Ther.311(1) , 228–236 (2004).
  • Hermann M , ÅsbergA, ChristensenH, HoldaasH, HartmannA, ReubsaetJL. Substantially elevated levels of atorvastatin and metabolites in cyclosporine-treated renal transplant recipients. Clin. Pharmacol. Ther.76(4) , 388–391 (2004).
  • Olbricht C , WannerC, EisenhauerT et al. Accumulation of lovastatin, but not pravastatin, in the blood of cyclosporine-treated kidney graft patients after multiple doses. Clin. Pharmacol. Ther. 62(3) , 311–321 (1997).
  • Park JW , SiekmeierR, MerzM et al. Pharmacokinetics of pravastatin in heart-transplant patients taking cyclosporin A. Int. J. Clin. Pharmacol. Ther. 40(10) , 439–450 (2002).
  • Hedman M , NeuvonenPJ, NeuvonenM, HolmbergC, AntikainenM. Pharmacokinetics and pharmacodynamics of pravastatin in pediatric and adolescent cardiac transplant recipients on a regimen of triple immunosuppression. Clin. Pharmacol. Ther.75(1) , 101–109 (2004).
  • Lasocki A , VoteB, FassettR, ZamirE. Simvastatin-induced rhabdomyolysis following cyclosporine treatment for uveitis. Ocul. Immunol. Inflamm.15(4) , 345–346 (2007).
  • Tong J , LaportG, LowskyR. Rhabdomyolysis after concomitant use of cyclosporine and simvastatin in a patient transplanted for multiple myeloma. Bone Marrow Transplant36(8) , 739–740 (2005).
  • Wong WM , Wai-Hung Shek T, Chan KH, Chau E, Lai KC. Rhabdomyolysis triggered by cytomegalovirus infection in a heart transplant patient on concomitant cyclosporine and atorvastatin therapy. J. Gastroenterol. Hepatol.19(8) , 952–953 (2004).
  • Maltz HC , BalogDL, CheighJS. Rhabdomyolysis associated with concomitant use of atorvastatin and cyclosporine. Ann. Pharmacother.33(11) , 1176–1179 (1999).
  • Rifkin SI . Multiple drug interactions in a renal transplant patient leading to simvastatin-induced rhabdomyolysis: a case report. Medscape J. Med.10(11) , 264 (2008).
  • Schreiber DH , AndersonTR. Statin-induced rhabdomyolysis. J. Emerg. Med.31(2) , 177–180 (2006).
  • Chu XY , BleasbyK, YabutJ et al. Transport of the dipeptidyl peptidase-4 inhibitor sitagliptin by human organic anion transporter 3, organic anion transporting polypeptide 4C1, and multidrug resistance P-glycoprotein. J. Pharmacol. Exp. Ther. 321(2) , 673–683 (2007).
  • Kamisako T , LeierI, CuiY et al. Transport of monoglucuronosyl and bisglucuronosyl bilirubin by recombinant human and rat multidrug resistance protein 2. Hepatology 30(2) , 485–490 (1999).
  • Niwa T , YamamotoS, SaitoM, ShiragaT, TakagiA. Effect of cyclosporine and tacrolimus on cytochrome p450 activities in human liver microsomes. Yakugaku Zasshi127(1) , 209–216 (2007).
  • Haehner T , RefaieMO, Müller-EnochD. Drug–drug interactions evaluated by a highly active reconstituted native human cytochrome P4503A4 and human NADPH-cytochrome P450 reductase system. Arzneimittelforschung54(1) , 78–83 (2004).
  • Simonson SG , RazaA, MartinPD et al. Rosuvastatin pharmacokinetics in heart transplant recipients administered an antirejection regimen including cyclosporine. Clin. Pharmacol. Ther. 76(2) , 167–177 (2004).
  • Bergman E , LundahlA, FridblomP et al. Enterohepatic disposition of rosuvastatin in pigs and the impact of concomitant dosing with cyclosporine and gemfibrozil. Drug Metab. Dispos. 37(12) , 2349–2358 (2009).
  • Klotz U , AntoninKH. Biliary excretion studies with digoxin in man. Int J. Clin. Pharmacol. Biopharm.15(7) , 332–334 (1977).
  • Hedman A , AngelinB, ArvidssonA, DahlqvistR, NilssonB. Interactions in the renal and biliary elimination of digoxin: stereoselective difference between quinine and quinidine. Clin. Pharmacol. Ther.47(1) , 20–26 (1990).
  • Angelin B , ArvidssonA, DahlqvistR, HedmanA, Schenck-GustafssonK. Quinidine reduces biliary clearance of digoxin in man. Eur. J. Clin. Invest.17(3) , 262–265 (1987).
  • Hedman A , AngelinB, ArvidssonA et al. Digoxin-verapamil interaction: reduction of biliary but not renal digoxin clearance in humans. Clin. Pharmacol. Ther. 49(3) , 256–262 (1991).
  • Suzuyama N , KatohM, TakeuchiT et al. Species differences of inhibitory effects on P-glycoprotein-mediated drug transport. J. Pharm. Sci. 96(6) , 1609–1618 (2007).
  • Wang EJ , LewK, CascianoCN, ClementRP, JohnsonWW. Interaction of common azole antifungals with P glycoprotein. Antimicrob. Agents Chemother.46(1) , 160–165 (2002).
  • Nishihara K , HibinoJ, KotakiH, SawadaY, IgaT. Effect of itraconazole on the pharmacokinetics of digoxin in guinea pigs. Biopharm. Drug Dispos.20(3) , 145–149 (1999).
  • Funakoshi S , MurakamiT, YumotoR, KiribayashiY, TakanoM. Role of P-glycoprotein in pharmacokinetics and drug interactions of digoxin and β-methyldigoxin in rats. J. Pharm. Sci.92(7) , 1455–1463 (2003).
  • Koren G , KleinJ, GiesbrechtE et al. Effects of quinidine on the renal tubular and biliary transport of digoxin: in vivo and in vitro studies in the dog. J. Pharmacol. Exp. Ther. 247(3) , 1193–1198 (1988).
  • Ben-Itzhak J , BassanHM, ShorR, LanirA. Digoxin quinidine interaction: a pharmacokinetic study in the isolated perfused rat liver. Life Sci.37(5) , 411–415 (1985).
  • Hewick DS , OstenfeldT. The effect of digoxin dosage on the digoxin-quinidine interaction in the bile duct-cannulated rat. J. Pharm. Pharmacol.39(1) , 64–67 (1987).
  • Lau YY , WuCY, OkochiH, BenetLZ. Ex situ inhibition of hepatic uptake and efflux significantly changes metabolism: hepatic enzyme-transporter interplay. J. Pharmacol. Exp. Ther.308(3) , 1040–1045 (2004).
  • Hedman A , MeijerDK. Stereoselective inhibition by the diastereomers quinidine and quinine of uptake of cardiac glycosides into isolated rat hepatocytes. J. Pharm. Sci.87(4) , 457–461 (1998).
  • Olinga P , MeremaM, HofIH et al. Characterization of the uptake of rocuronium and digoxin in human hepatocytes: carrier specificity and comparison with in vivo data. J. Pharmacol. Exp. Ther. 285(2) , 506–510 (1998).
  • Otsuka M , MatsumotoT, MorimotoR, AriokaS, OmoteH, MoriyamaY. A human transporter protein that mediates the final excretion step for toxic organic cations. Proc. Natl Acad. Sci. USA102(50) , 17923–17928 (2005).
  • Nies AT , KoepsellH, DammeK, SchwabM. Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy. Handb. Exp. Pharmacol.201 , 105–167 (2011).
  • Ito S , KusuharaH, KuroiwaY et al. Potent and specific inhibition of mMate1-mediated efflux of type I organic cations in the liver and kidney by pyrimethamine. J. Pharmacol. Exp. Ther. 333(1) , 341–350 (2010).
  • Tsuda M , TeradaT, MizunoT, KatsuraT, ShimakuraJ, InuiK. Targeted disruption of the multidrug and toxin extrusion 1 (mate1) gene in mice reduces renal secretion of metformin. Mol. Pharmacol.75(6) , 1280–1286 (2009).
  • Russmann S , JetterA, Kullak-UblickGA. Pharmacogenetics of drug-induced liver injury. Hepatology52(2) , 748–761 (2010).
  • Zolk O , FrommMF. Transporter-mediated drug uptake and efflux: important determinants of adverse drug reactions. Clin. Pharmacol. Ther.89(6) , 798–805 (2011).
  • Burckhardt G , BurckhardtBC. In vitro and in vivo evidence of the importance of organic anion transporters (OATs) in drug therapy. Handb. Exp. Pharmacol.201 , 29–104 (2011).
  • Overbosch D , Van Gulpen C, Hermans J, Mattie H. The effect of probenecid on the renal tubular excretion of benzylpenicillin. Br. J. Clin. Pharmacol.25(1) , 51–58 (1988).
  • Tahara H , ShonoM, KusuharaH et al. Molecular cloning and functional analyses of OAT1 and OAT3 from cynomolgus monkey kidney. Pharm. Res. 22(4) , 647–660 (2005).
  • Nozaki Y , KusuharaH, KondoT et al. Species difference in the inhibitory effect of nonsteroidal anti-inflammatory drugs on the uptake of methotrexate by human kidney slices. J. Pharmacol. Exp. Ther. 322(3) , 1162–1170 (2007).
  • Cihlar T , HoES. Fluorescence-based assay for the interaction of small molecules with the human renal organic anion transporter 1. Anal. Biochem.283(1) , 49–55 (2000).
  • Mulato AS , HoES, CihlarT. Nonsteroidal anti-inflammatory drugs efficiently reduce the transport and cytotoxicity of adefovir mediated by the human renal organic anion transporter 1. J. Pharmacol. Exp. Ther.295(1) , 10–15 (2000).
  • Jung KY , TakedaM, KimDK et al. Characterization of ochratoxin A transport by human organic anion transporters. Life Sci. 69(18) , 2123–2135 (2001).
  • Khamdang S , TakedaM, ShimodaM et al. Interactions of human- and rat-organic anion transporters with pravastatin and cimetidine. J. Pharmacol. Sci. 94(2) , 197–202 (2004).
  • Hashimoto T , NarikawaS, HuangXL et al. Characterization of the renal tubular transport of zonampanel, a novel α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist, by human organic anion transporters. Drug Metab. Dispos. 32(10) , 1096–1102 (2004).
  • Odlind B , BeermannB. Renal tubular secretion and effects of furosemide. Clin. Pharmacol. Ther.27(6) , 784–790 (1980).
  • Vree TB , van den Biggelaar-Martea M, Verwey-van Wissen CP. Probenecid inhibits the renal clearance of frusemide and its acyl glucuronide. Br. J. Clin. Pharmacol.39(6) , 692–695 (1995).
  • Smith DE , GeeWL, BraterDC, LinET, BenetLZ. Preliminary evaluation of furosemide-probenecid interaction in humans. J. Pharm. Sci.69(5) , 571–575 (1980).
  • Aherne GW , MarksV, MouldGP, PiallE, WhiteWF. The interaction between methotrexate and probenecid in man. Br. J. Pharmacol.63(2) , 369P (1978).
  • Nakagomi-Hagihara R , NakaiD, TokuiT. Inhibition of human organic anion transporter 3 mediated pravastatin transport by gemfibrozil and the metabolites in humans. Xenobiotica37(4) , 416–426 (2007).
  • Takeda M , NoshiroR, OnozatoML et al. Evidence for a role of human organic anion transporters in the muscular side effects of HMG-CoA reductase inhibitors. Eur. J. Pharmacol. 483(2–3) , 133–138 (2004).
  • Lalezari JP , DrewWL, GlutzerE et al. (S)-1-[3-hydroxy-2-(phosphonylmethoxy)propyl]cytosine (cidofovir): results of a phase I/II study of a novel antiviral nucleotide analogue. J. Infect. Dis. 171(4) , 788–796 (1995).
  • Ortiz A , JustoP, SanzA et al. Tubular cell apoptosis and cidofovir-induced acute renal failure. Antivir. Ther. 10(1) , 185–190 (2005).
  • Izzedine H , Launay-VacherV, DerayG. Antiviral drug-induced nephrotoxicity. Am. J. Kidney Dis.45(5) , 804–817 (2005).
  • Ho ES , LinDC, MendelDB, CihlarT. Cytotoxicity of antiviral nucleotides adefovir and cidofovir is induced by the expression of human renal organic anion transporter 1. J. Am. Soc. Nephrol.11(3) , 383–393 (2000).
  • Cihlar T , LinDC, PritchardJB, FullerMD, MendelDB, SweetDH. The antiviral nucleotide analogs cidofovir and adefovir are novel substrates for human and rat renal organic anion transporter 1. Mol. Pharmacol.56(3) , 570–580 (1999).
  • Uwai Y , IdaH, TsujiY, KatsuraT, InuiK. Renal transport of adefovir, cidofovir, and tenofovir by SLC22A family members (hOAT1, hOAT3, and hOCT2). Pharm. Res.24(4) , 811–815 (2007).
  • Lacy SA , HitchcockMJ, LeeWA, TellierP, CundyKC. Effect of oral probenecid coadministration on the chronic toxicity and pharmacokinetics of intravenous cidofovir in cynomolgus monkeys. Toxicol. Sci.44(2) , 97–106 (1998).
  • Cundy KC , LiZH, LeeWA. Effect of probenecid on the distribution, metabolism, and excretion of cidofovir in rabbits. Drug Metab. Dispos.24(3) , 315–321 (1996).
  • Cundy KC , PettyBG, FlahertyJ et al. Clinical pharmacokinetics of cidofovir in human immunodeficiency virus-infected patients. Antimicrob. Agents Chemother. 39(6) , 1247–1252 (1995).
  • Cesaro S , ZhouX, ManzardoC et al. Cidofovir for cytomegalovirus reactivation in pediatric patients after hematopoietic stem cell transplantation. J. Clin. Virol. 34(2) , 129–132 (2005).
  • Yusuf U , HaleGA, CarrJ et al. Cidofovir for the treatment of adenoviral infection in pediatric hematopoietic stem cell transplant patients. Transplantation 81(10) , 1398–1404 (2006).
  • Busch AE , KarbachU, MiskaD et al. Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol. Pharmacol. 54(2) , 342–352 (1998).
  • Tahara H , KusuharaH, EndouH et al. A species difference in the transport activities of H2 receptor antagonists by rat and human renal organic anion and cation transporters. J. Pharmacol. Exp. Ther. 315(1) , 337–345 (2005).
  • Kimura N , OkudaM, InuiK. Metformin transport by renal basolateral organic cation transporter hOCT2. Pharm. Res.22(2) , 255–259 (2005).
  • Jung N , LehmannC, RubbertA et al. Relevance of the organic cation transporters 1 and 2 for antiretroviral drug therapy in human immunodeficiency virus infection. Drug Metab. Dispos. 36(8) , 1616–1623 (2008).
  • Minuesa G , VolkC, Molina-ArcasM et al. Transport of lamivudine [(-)-β-L-2‘,3‘-dideoxy-3‘-thiacytidine] and high-affinity interaction of nucleoside reverse transcriptase inhibitors with human organic cation transporters 1, 2, and 3. J. Pharmacol. Exp. Ther. 329(1) , 252–261 (2009).
  • Somogyi A , StockleyC, KealJ, RolanP, BochnerF. Reduction of metformin renal tubular secretion by cimetidine in man. Br. J. Clin. Pharmacol.23(5) , 545–551 (1987).
  • van Crugten J , BochnerF, KealJ, SomogyiA. Selectivity of the cimetidine-induced alterations in the renal handling of organic substrates in humans. Studies with anionic, cationic and zwitterionic drugs. J. Pharmacol. Exp. Ther.236(2) , 481–487 (1986).
  • Feng B , ObachRS, BursteinAH, ClarkDJ, de Morais SM, Faessel HM. Effect of human renal cationic transporter inhibition on the pharmacokinetics of varenicline, a new therapy for smoking cessation: an in vitro-in vivo study. Clin. Pharmacol. Ther.83(4) , 567–576 (2008).
  • de Jongh FE , van Veen RN, Veltman SJ et al. Weekly high-dose cisplatin is a feasible treatment option: analysis on prognostic factors for toxicity in 400 patients. Br. J. Cancer88(8) , 1199–1206 (2003).
  • Máthé C , BohácsA, DuffekL et al. Cisplatin nephrotoxicity aggravated by cardiovascular disease and diabetes in lung cancer patients. Eur. Respir. J. 37(4) , 888–894 (2011).
  • Pabla N , DongZ. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int.73(9) , 994–1007 (2008).
  • Rabik CA , DolanME. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat. Rev.33(1) , 9–23 (2007).
  • Ciarimboli G , LudwigT, LangD et al. Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am. J. Pathol. 167(6) , 1477–1484 (2005).
  • Yonezawa A , MasudaS, YokooS, KatsuraT, InuiK. Cisplatin and oxaliplatin, but not carboplatin and nedaplatin, are substrates for human organic cation transporters (SLC22A1–3 and multidrug and toxin extrusion family). J. Pharmacol. Exp. Ther.319(2) , 879–886 (2006).
  • Burger H , Zoumaro-DjayoonA, BoersmaAW et al. Differential transport of platinum compounds by the human organic cation transporter hOCT2 (hSLC22A2). Br. J. Pharmacol. 159(4) , 898–908 (2010).
  • Filipski KK , LoosWJ, VerweijJ, SparreboomA. Interaction of cisplatin with the human organic cation transporter 2. Clin. Cancer Res.14(12) , 3875–3880 (2008).
  • Ciarimboli G , DeusterD, KniefA et al. Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am. J. Pathol. 176(3) , 1169–1180 (2010).
  • Franke RM , KosloskeAM, LancasterCS et al. Influence of Oct1/Oct2-deficiency on cisplatin-induced changes in urinary N-acetyl-β-d-glucosaminidase. Clin. Cancer Res. 16(16) , 4198–4206 (2010).
  • Filipski KK , MathijssenRH, MikkelsenTS, SchinkelAH, SparreboomA. Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin. Pharmacol. Ther.86(4) , 396–402 (2009).
  • Yonezawa A , InuiKI. Organic cation transporter OCT/SLC22A and H+/organic cation antiporter MATE/SLC47A are key molecules for nephrotoxicity of platinum agents. Biochem. Pharmacol.81(5) , 563–568 (2010).
  • Katsuda H , YamashitaM, KatsuraH et al. Protecting cisplatin-induced nephrotoxicity with cimetidine does not affect antitumor activity. Biol. Pharm. Bull. 33(11) , 1867–1871 (2010).
  • Ludwig T , RiethmüllerC, GekleM, SchwerdtG, OberleithnerH. Nephrotoxicity of platinum complexes is related to basolateral organic cation transport. Kidney Int.66(1) , 196–202 (2004).
  • Tanihara Y , MasudaS, KatsuraT, InuiK. Protective effect of concomitant administration of imatinib on cisplatin-induced nephrotoxicity focusing on renal organic cation transporter OCT2. Biochem. Pharmacol.78(9) , 1263–1271 (2009).
  • Meyer zu Schwabedissen HE, Verstuyft C, Kroemer HK, Becquemont L, Kim RB. Human multidrug and toxin extrusion 1 (MATE1/SLC47A1) transporter: functional characterization, interaction with OCT2 (SLC22A2), and single nucleotide polymorphisms. Am. J. Physiol. Renal Physiol.298(4) , F997-F1005 (2010).
  • Tanihara Y , MasudaS, SatoT, KatsuraT, OgawaO, InuiK. Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H+-organic cation antiporters. Biochem. Pharmacol.74(2) , 359–371 (2007).
  • König J , ZolkO, SingerK, HoffmannC, FrommMF. Double-transfected MDCK cells expressing human OCT1/MATE1 or OCT2/MATE1: determinants of uptake and transcellular translocation of organic cations. Br. J. Pharmacol.163(3) , 546–555 (2011).
  • Kimura N , MasudaS, TaniharaY et al. Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab. Pharmacokinet. 20(5) , 379–386 (2005).
  • Terada T , InuiK. Physiological and pharmacokinetic roles of H+/organic cation antiporters (MATE/SLC47A). Biochem. Pharmacol.75(9) , 1689–1696 (2008).
  • Sato T , MasudaS, YonezawaA, TaniharaY, KatsuraT, InuiK. Transcellular transport of organic cations in double-transfected MDCK cells expressing human organic cation transporters hOCT1/hMATE1 and hOCT2/hMATE1. Biochem. Pharmacol.76(7) , 894–903 (2008).
  • Tsuda M , TeradaT, UebaM et al. Involvement of human multidrug and toxin extrusion 1 in the drug interaction between cimetidine and metformin in renal epithelial cells. J. Pharmacol. Exp. Ther. 329(1) , 185–191 (2009).
  • Umehara KI , IwatsuboT, NoguchiK, UsuiT, KamimuraH. Effect of cationic drugs on the transporting activity of human and rat OCT/Oct 1–3 in vitro and implications for drug–drug interactions. Xenobiotica38(9) , 1203–1218 (2008).
  • Pedersen KE , HastrupJ, HvidtS. The effect of quinidine on digoxin kinetics in cardiac patients. Acta Med. Scand.207(4) , 291–295 (1980).
  • Dahlqvist R , EjvinssonG, Schenck-GustafssonK. Effect of quinidine on plasma concentration and renal clearance of digoxin. A clinically important drug interaction. Br. J. Clin. Pharmacol.9(4) , 413–418 (1980).
  • Schenck-Gustafsson K , DahlqvistR. Pharmacokinetics of digoxin in patients subjected to the quinidine-digoxin interaction. Br. J. Clin. Pharmacol.11(2) , 181–186 (1981).
  • Ochs HR , BodemG, GreenblattDJ. Impairment of digoxin clearance by coadministration of quinidine. J. Clin. Pharmacol.21(10) , 396–400 (1981).
  • Ding R , TayrouzY, RiedelKD et al. Substantial pharmacokinetic interaction between digoxin and ritonavir in healthy volunteers. Clin. Pharmacol. Ther. 76(1) , 73–84 (2004).
  • Jalava KM , PartanenJ, NeuvonenPJ. Itraconazole decreases renal clearance of digoxin. Ther. Drug Monit.19(6) , 609–613 (1997).
  • Huls M , BrownCD, WindassAS et al. The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane. Kidney Int. 73(2) , 220–225 (2008).
  • Vlaming ML , PalaZ, van Esch A et al. Functionally overlapping roles of Abcg2 (Bcrp1) and Abcc2 (Mrp2) in the elimination of methotrexate and its main toxic metabolite 7-hydroxymethotrexate in vivo. Clin. Cancer Res.15(9) , 3084–3093 (2009).
  • Woodward OM , KöttgenA, CoreshJ, BoerwinkleE, GugginoWB, KöttgenM. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc. Natl Acad. Sci. USA106(25) , 10338–10342 (2009).
  • Dehghan A , KöttgenA, YangQ et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 372(9654) , 1953–1961 (2008).
  • Kolz M , JohnsonT, SannaS et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 5(6) , e1000504 (2009).
  • Stark K , ReinhardW, GrasslM et al. Common polymorphisms influencing serum uric acid levels contribute to susceptibility to gout, but not to coronary artery disease. PLoS ONE 4(11) , e7729 (2009).
  • Wang B , MiaoZ, LiuS et al. Genetic analysis of ABCG2 gene C421A polymorphism with gout disease in Chinese Han male population. Hum. Genet. 127(2) , 245–246 (2010).
  • Br⊘sen K , HansenJG, NielsenKK, SindrupSH, GramLF. Inhibition by paroxetine of desipramine metabolism in extensive but not in poor metabolizers of sparteine. Eur. J. Clin. Pharmacol.44(4) , 349–355 (1993).
  • Yasui-Furukori N , SaitoM, UnoT, TakahataT, SugawaraK, TateishiT. Effects of fluvoxamine on lansoprazole pharmacokinetics in relation to CYP2C19 genotypes. J. Clin. Pharmacol.44(11) , 1223–1229 (2004).
  • Kajosaari LI , NiemiM, NeuvonenM, LaitilaJ, NeuvonenPJ, BackmanJT. Cyclosporine markedly raises the plasma concentrations of repaglinide. Clin. Pharmacol. Ther.78(4) , 388–399 (2005).
  • Wang ZJ , YinOQ, TomlinsonB, ChowMS. OCT2 polymorphisms and in-vivo renal functional consequence: studies with metformin and cimetidine. Pharmacogenet. Genomics18(7) , 637–645 (2008).
  • Zolk O , SolbachTF, KönigJ, FrommMF. Functional characterization of the human organic cation transporter 2 variant p.270Ala>Ser. Drug Metab. Dispos.37(6) , 1312–1318 (2009).
  • Nozawa T , NakajimaM, TamaiI et al. Genetic polymorphisms of human organic anion transporters OATP-C (SLC21A6) and OATP-B (SLC21A9): allele frequencies in the Japanese population and functional analysis. J. Pharmacol. Exp. Ther. 302(2) , 804–813 (2002).
  • Kato Y , MiyazakiT, KanoT, SugiuraT, KuboY, TsujiA. Involvement of influx and efflux transport systems in gastrointestinal absorption of celiprolol. J. Pharm. Sci.98(7) , 2529–2539 (2009).
  • Maeda T , TakahashiK, OhtsuN et al. Identification of influx transporter for the quinolone antibacterial agent levofloxacin. Mol. Pharm. 4(1) , 85–94 (2007).
  • Lee W , GlaeserH, SmithLH et al. Polymorphisms in human organic anion-transporting polypeptide 1A2 (OATP1A2): implications for altered drug disposition and central nervous system drug entry. J. Biol. Chem. 280(10) , 9610–9617 (2005).
  • Gao B , HuberRD, WenzelA et al. Localization of organic anion transporting polypeptides in the rat and human ciliary body epithelium. Exp. Eye Res. 80(1) , 61–72 (2005).
  • Kullak-Ublick GA , IsmairMG, StiegerB et al. Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology 120(2) , 525–533 (2001).
  • Niessen J , JedlitschkyG, GrubeM et al. Human platelets express organic anion-transporting peptide 2B1, an uptake transporter for atorvastatin. Drug Metab. Dispos. 37(5) , 1129–1137 (2009).
  • Grube M , KöckK, OswaldS et al. Organic anion transporting polypeptide 2B1 is a high-affinity transporter for atorvastatin and is expressed in the human heart. Clin. Pharmacol. Ther. 80(6) , 607–620 (2006).
  • Grube M , ReutherS, Meyer zu Schwabedissen H et al. Organic anion transporting polypeptide 2B1 and breast cancer resistance protein interact in the transepithelial transport of steroid sulfates in human placenta. Drug Metab. Dispos.35(1) , 30–35 (2007).
  • Shirasaka Y , SuzukiK, ShichiriM, NakanishiT, TamaiI. Intestinal absorption of HMG-CoA reductase inhibitor pitavastatin mediated by organic anion transporting polypeptide and P-glycoprotein/multidrug resistance 1. Drug Metab. Pharmacokinet.26(2) , 171–179 (2011).
  • Kraft ME , GlaeserH, ManderyK et al. The prostaglandin transporter OATP2A1 is expressed in human ocular tissues and transports the antiglaucoma prostanoid latanoprost. Invest. Ophthalmol. Vis. Sci. 51(5) , 2504–2511 (2010).
  • König J , CuiY, NiesAT, KepplerD. A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am. J. Physiol. Gastrointest. Liver. Physiol.278(1) , G156–G164 (2000).
  • Annaert P , YeZW, StiegerB, AugustijnsP. Interaction of HIV protease inhibitors with OATP1B1, 1B3, and 2B1. Xenobiotica40(3) , 163–176 (2010).
  • Treiber A , SchneiterR, HäuslerS, StiegerB. Bosentan is a substrate of human OATP1B1 and OATP1B3: inhibition of hepatic uptake as the common mechanism of its interactions with cyclosporin A, rifampicin, and sildenafil. Drug Metab. Dispos.35(8) , 1400–1407 (2007).
  • Vavricka SR , Van Montfoort J, Ha HR, Meier PJ, Fattinger K. Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology36(1) , 164–172 (2002).
  • Yamashiro W , MaedaK, HirouchiM, AdachiY, HuZ, SugiyamaY. Involvement of transporters in the hepatic uptake and biliary excretion of valsartan, a selective antagonist of the angiotensin II AT1-receptor, in humans. Drug Metab. Dispos.34(7) , 1247–1254 (2006).
  • König J , CuiY, NiesAT, KepplerD. Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide. J. Biol. Chem.275(30) , 23161–23168 (2000).
  • Smith NF , AcharyaMR, DesaiN, FiggWD, SparreboomA. Identification of OATP1B3 as a high-affinity hepatocellular transporter of paclitaxel. Cancer Biol. Ther.4(8) , 815–818 (2005).
  • Motohashi H , SakuraiY, SaitoH et al. Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J. Am. Soc. Nephrol. 13(4) , 866–874 (2002).
  • Hilgendorf C , AhlinG, SeithelA, ArturssonP, UngellAL, KarlssonJ. Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab. Dispos.35(8) , 1333–1340 (2007).
  • Nishimura M , NaitoS. Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter superfamilies. Drug Metab. Pharmacokinet.20(6) , 452–477 (2005).
  • Hasannejad H , TakedaM, TakiK et al. Interactions of human organic anion transporters with diuretics. J. Pharmacol. Exp. Ther. 308(3) , 1021–1029 (2004).
  • Uwai Y , MotohashiH, TsujiY, UeoH, KatsuraT, InuiK. Interaction and transport characteristics of mycophenolic acid and its glucuronide via human organic anion transporters hOAT1 and hOAT3. Biochem. Pharmacol.74(1) , 161–168 (2007).
  • Khamdang S , TakedaM, NoshiroR et al. Interactions of human organic anion transporters and human organic cation transporters with nonsteroidal anti-inflammatory drugs. J. Pharmacol. Exp. Ther. 303(2) , 534–539 (2002).
  • Sato M , IwanagaT, MamadaH et al. Involvement of uric acid transporters in alteration of serum uric acid level by angiotensin II receptor blockers. Pharm. Res. 25(3) , 639–646 (2008).
  • Ueo H , MotohashiH, KatsuraT, InuiK. Human organic anion transporter hOAT3 is a potent transporter of cephalosporin antibiotics, in comparison with hOAT1. Biochem. Pharmacol.70(7) , 1104–1113 (2005).
  • Cha SH , SekineT, FukushimaJI et al. Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol. Pharmacol. 59(5) , 1277–1286 (2001).
  • Yamada A , MaedaK, KamiyamaE et al. Multiple human isoforms of drug transporters contribute to the hepatic and renal transport of olmesartan, a selective antagonist of the angiotensin II AT1-receptor. Drug Metab. Dispos. 35(12) , 2166–2176 (2007).
  • Nies AT , HerrmannE, BromM, KepplerD. Vectorial transport of the plant alkaloid berberine by double-transfected cells expressing the human organic cation transporter 1 (OCT1, SLC22A1) and the efflux pump MDR1 P-glycoprotein (ABCB1). Naunyn Schmiedebergs Arch. Pharmacol.376(6) , 449–461 (2008).
  • Lips KS , VolkC, SchmittBM et al. Polyspecific cation transporters mediate luminal release of acetylcholine from bronchial epithelium. Am. J. Respir. Cell. Mol. Biol. 33(1) , 79–88 (2005).
  • Taubert D , GrimbergG, StenzelW, SchömigE. Identification of the endogenous key substrates of the human organic cation transporter OCT2 and their implication in function of dopaminergic neurons. PLoS ONE2(4) , e385 (2007).
  • Bachmakov I , GlaeserH, EndressB, MörlF, KönigJ, FrommMF. Interaction of beta-blockers with the renal uptake transporter OCT2. Diabetes Obes. Metab.11(11) , 1080–1083 (2009).
  • Zolk O , SolbachTF, KönigJ, FrommMF. Structural determinants of inhibitor interaction with the human organic cation transporter OCT2 (SLC22A2). Naunyn Schmiedebergs Arch. Pharmacol.379(4) , 337–348 (2009).
  • Minematsu T , IwaiM, UmeharaK, UsuiT, KamimuraH. Characterization of human organic cation transporter 1 (OCT1/SLC22A1)- and OCT2 (SLC22A2)-mediated transport of 1-(2-methoxyethyl)-2-methyl-4,9-dioxo-3-(pyrazin-2-ylmethyl)- 4,9-dihydro-1H-naphtho[2,3-d]imidazolium bromide (YM155 monobromide), a novel small molecule survivin suppressant. Drug Metab. Dispos.38(1) , 1–4 (2010).
  • Masuda S , TeradaT, YonezawaA et al. Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. J. Am. Soc. Nephrol. 17(8) , 2127–2135 (2006).
  • Ohta KY , InoueK, YasujimaT, IshimaruM, YuasaH. Functional characteristics of two human MATE transporters: kinetics of cimetidine transport and profiles of inhibition by various compounds. J. Pharm. Pharm. Sci.12(3) , 388–396 (2009).
  • Watanabe S , TsudaM, TeradaT, KatsuraT, InuiK. Reduced renal clearance of a zwitterionic substrate cephalexin in MATE1-deficient mice. J. Pharmacol. Exp. Ther.334(2) , 651–656 (2010).
  • Tanigawara Y , OkamuraN, HiraiM et al. Transport of digoxin by human P-glycoprotein expressed in a porcine kidney epithelial cell line (LLC-PK1). J. Pharmacol. Exp. Ther. 263(2) , 840–845 (1992).
  • Wils P , Phung-BaV, WarneryA et al. Polarized transport of docetaxel and vinblastine mediated by P-glycoprotein in human intestinal epithelial cell monolayers. Biochem. Pharmacol. 48(7) , 1528–1530 (1994).
  • Lee CG , GottesmanMM, CardarelliCO et al. HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter. Biochemistry 37(11) , 3594–3601 (1998).
  • Goldberg H , LingV, WongPY, SkoreckiK. Reduced cyclosporin accumulation in multidrug-resistant cells. Biochem. Biophys. Res. Commun.152(2) , 552–558 (1988).
  • Anderle P , NiedererE, RubasW et al. P-Glycoprotein (P-gp) mediated efflux in Caco-2 cell monolayers: the influence of culturing conditions and drug exposure on P-gp expression levels. J. Pharm. Sci. 87(6) , 757–762 (1998).
  • Drewe J , GutmannH, FrickerG, TörökM, BeglingerC, HuwylerJ. HIV protease inhibitor ritonavir: a more potent inhibitor of P-glycoprotein than the cyclosporine analog SDZ PSC 833. Biochem. Pharmacol.57(10) , 1147–1152 (1999).
  • Sugawara I , KataokaI, MorishitaY et al. Tissue distribution of P-glycoprotein encoded by a multidrug-resistant gene as revealed by a monoclonal antibody, MRK 16. Cancer Res. 48(7) , 1926–1929 (1988).
  • Cordon-Cardo C , O‘BrienJP, CasalsD et al. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood–brain barrier sites. Proc. Natl Acad. Sci. USA 86(2) , 695–698 (1989).
  • Abel S , NicholsDJ, BrearleyCJ, EveMD. Effect of cimetidine and ranitidine on pharmacokinetics and pharmacodynamics of a single dose of dofetilide. Br. J. Clin. Pharmacol.49(1) , 64–71 (2000).
  • Somogyi AA , BochnerF, SallustioBC. Stereoselective inhibition of pindolol renal clearance by cimetidine in humans. Clin. Pharmacol. Ther.51(4) , 379–387 (1992).
  • Kosoglou T , RocciML Jr, Vlasses PH. Trimethoprim alters the disposition of procainamide and N-acetylprocainamide. Clin. Pharmacol. Ther.44(4) , 467–477 (1988).
  • Fenster PE , HagerWD, PerrierD, PowellJR, GravesPE, MichaelUF. Digoxin-quinidine interaction in patients with chronic renal failure. Circulation66(6) , 1277–1280 (1982).
  • Leahey EB Jr, Bigger JT Jr, Butler VP Jr et al. Quinidine-digoxin interaction: time course and pharmacokinetics. Am. J. Cardiol.48(6) , 1141–1146 (1981).
  • Fenster PE , HagerWD, GoodmanMM. Digoxin-quinidine-spironolactone interaction. Clin. Pharmacol. Ther.36(1) , 70–73 (1984).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.