646
Views
0
CrossRef citations to date
0
Altmetric
Review

Pharmacogenetics of Drug Transporters in the Enterohepatic Circulation

&
Pages 611-631 | Published online: 27 May 2011

Bibliography

  • Ho RH , KimRB: Transporters and drug therapy: implications for drug disposition and disease.Clin. Pharmacol. Ther.78(3) , 260–277 (2005).
  • Urquhart BL , KimRB: Blood–brain barrier transporters and response to CNS-active drugs.Eur. J. Clin. Pharmacol.65(11) , 1063–1070 (2009).
  • Leslie EM , DeeleyRG, ColeSP: Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense.Toxicol. Appl. Pharmacol.204(3) , 216–237 (2005).
  • Shitara Y , SatoH, SugiyamaY: Evaluation of drug–drug interaction in the hepatobiliary and renal transport of drugs.Annu. Rev. Pharmacol. Toxicol.45 , 689–723 (2005).
  • Jia L , BettersJL, YuL: Niemann-Pick C1-like 1 (NPC1L1) protein in intestinal and hepatic cholesterol transport.Annu. Rev. Physiol.73 , 239–259 (2010).
  • Kemp S , WandersR: Biochemical aspects of X-linked adrenoleukodystrophy.Brain Pathol.20(4) , 831–837 (2010).
  • Gradhand U , KimRB: Pharmacogenomics of MRP transporters (ABCC1–5) and BCRP (ABCG2).Drug Metab. Rev.40(2) , 317–354 (2008).
  • Ieiri I , HiguchiS, SugiyamaY: Genetic polymorphisms of uptake (OATP1B1, 1B3) and efflux (MRP2, BCRP) transporters: implications for inter-individual differences in the pharmacokinetics and pharmacodynamics of statins and other clinically relevant drugs.Expert Opin. Drug Metab. Toxicol.5(7) , 703–729 (2009).
  • Grossman I : ADME pharmacogenetics: current practices and future outlook.Expert Opin. Drug Metab. Toxicol.5(5) , 449–462 (2009).
  • Franke RM , GardnerER, SparreboomA: Pharmacogenetics of drug transporters.Curr. Pharm. Des.16(2) , 220–230 (2010).
  • Kroetz DL , YeeSW, GiacominiKM: The pharmacogenomics of membrane transporters project: research at the interface of genomics and transporter pharmacology.Clin. Pharmacol. Ther.87(1) , 109–116 (2010).
  • Sissung TM , BaumCE, KirklandCT, GaoR, GardnerER, FiggWD: Pharmacogenetics of membrane transporters: an update on current approaches.Mol. Biotechnol.44(2) , 152–167 (2010).
  • Yee SW , ChenL, GiacominiKM: Pharmacogenomics of membrane transporters: past, present and future.Pharmacogenomics11(4) , 475–479 (2010).
  • Yan Q : Membrane transporters and drug development: relevance to pharmacogenomics, nutrigenomics, epigenetics, and systems biology.Methods Mol. Biol.637 , 1–21 (2010).
  • Zair ZM , ElorantaJJ, StiegerB, Kullak-UblickGA: Pharmacogenetics of OATP (SLC21/SLCO), OAT and OCT (SLC22) and PEPT (SLC15) transporters in the intestine, liver and kidney.Pharmacogenomics9(5) , 597–624 (2008).
  • Meier PJ , StiegerB: Bile salt transporters.Annu. Rev. Physiol.64 , 635–661 (2002).
  • Pauli-Magnus C , StiegerB, MeierY, Kullak Ublick GA, Meier PJ: Enterohepatic transport of bile salts and genetics of cholestasis. J. Hepatol.43(2) , 342–357 (2005).
  • Stieger B : The role of the sodium-taurocholate cotransporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation.Handb. Exp. Pharmacol.201 , 205–259 (2011).
  • Hofmann AF , MolinoG, MilaneseM, BelforteG: Description and simulation of a physiological pharmacokinetic model for the metabolism and enterohepatic circulation of bile acids in man. Cholic acid in healthy man.J. Clin. Invest.71(4) , 1003–1022 (1983).
  • Watanabe T , KusuharaH, MaedaK, ShitaraY, SugiyamaY: Physiologically based pharmacokinetic modeling to predict transporter-mediated clearance and distribution of pravastatin in humans.J. Pharmacol. Exp. Ther.328(2) , 652–662 (2009).
  • Kusuhara H , SugiyamaY: Pharmacokinetic modeling of the hepatobiliary transport mediated by cooperation of uptake and efflux transporters.Drug Metab. Rev.42(3) , 539–550 (2010).
  • Staatz CE , TettSE: Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients.Clin. Pharmacokinet.46(1) , 13–58 (2007).
  • Picard N , YeeSW, WoillardJB et al.: The role of organic anion-transporting polypeptides and their common genetic variants in mycophenolic acid pharmacokinetics.Clin. Pharmacol. Ther.87(1) , 100–108 (2010).
  • Kobayashi M , SaitohH, TadanoK, TakahashiY, HiranoT: Cyclosporin A, but not tacrolimus, inhibits the biliary excretion of mycophenolic acid glucuronide possibly mediated by multidrug resistance-associated protein 2 in rats.J. Pharmacol. Exp. Ther.309(3) , 1029–1035 (2004).
  • Meinertz T , GilfrichHJ, GrothU, JonenHG, JahnchenE: Interruption of the enterohepatic circulation of phenprocoumon by cholestyramine.Clin. Pharmacol. Ther.21(6) , 731–735 (1977).
  • Meinertz T , GilfrichMJ, BorkR, JahnchenE: Treatment of phenprocoumon intoxication with cholestyramine.Br. Med. J.2(6084) , 439 (1977).
  • Ito S : Structure and function of the glycocalyx.Fed. Proc.28(1) , 12–25 (1969).
  • Esposito G , FaelliA, ToscoM, OrsenigoMN, de Gasperi R, Pacces N: Influence of the enteric surface coat on the unidirectional flux of acetamide across the wall of rat small intestine. Experientia39(2) , 149–151 (1983).
  • Hurter T , ReisHE, BorchardF: [Disorders of intestinal absorption in patients treated with cytostatic chemotherapy].Z. Gastroenterol.27(10) , 606–610 (1989).
  • Daniel H , FettC, KratzA: Demonstration and modification of intervillous pH profiles in rat small intestine in vitro.Am. J. Physiol.257(4 Pt 1) , G489–G495 (1989).
  • Lucas ML , CannonMJ: Measurement of sodium ion concentration in the unstirred layer of rat small intestine by polymer Na+-sensitive electrodes.Biochim. Biophys Acta730(1) , 41–48 (1983).
  • Sugano K : Aqueous boundary layers related to oral absorption of a drug: From dissolution of a drug to darrier mediated transport and intestinal wall metabolism.Mol. Pharm. (2010) (Epub ahead of print).
  • Nakamura T , YamamoriM, SakaedaT: Pharmacogenetics of intestinal absorption.Curr. Drug Deliv.5(3) , 153–169 (2008).
  • Oostendorp RL , BeijnenJH, SchellensJH: The biological and clinical role of drug transporters at the intestinal barrier.Cancer Treat. Rev.35(2) , 137–147 (2009).
  • Giacomini KM , HuangSM, TweedieDJ et al.: Membrane transporters in drug development.Nat. Rev. Drug Discov.9(3) , 215–236 (2010).
  • Tamai I , NezuJ, UchinoH et al.: Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family.Biochem. Biophys Res. Commun.273 , 251–260 (2000).
  • Englund G , RorsmanF, RonnblomA et al.: Regional levels of drug transporters along the human intestinal tract: co-expression of ABC and SLC transporters and comparison with Caco-2 cells.Eur. J. Pharm. Sci.29(3–4) , 269–277 (2006).
  • Hilgendorf C , AhlinG, SeithelA, ArturssonP, UngellAL, KarlssonJ: Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines.Drug Metab. Dispos.35(8) , 1333–1340 (2007).
  • Meier Y , ElorantaJJ, DarimontJ et al.: Regional distribution of solute carrier mRNA expression along the human intestinal tract.Drug Metab. Dispos.35(4) , 590–594 (2007).
  • Koepsell H , LipsK, VolkC: Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications.Pharm. Res.24(7) , 1227–1251 (2007).
  • Bordeaux J , WelshA, AgarwalS et al.: Antibody validation.Biotechniques48(3) , 197–209 (2010).
  • Glaeser H , BaileyDG, DresserGK et al.: Intestinal drug transporter expression and the impact of grapefruit juice in humans.Clin. Pharmacol. Ther.81(3) , 362–370 (2007).
  • Marquez B , van Bambeke F: ABC multidrug transporters: target for modulation of drug pharmacokinetics and drug–drug interactions. Curr. Drug Targets12(5) , 600–620 (2010).
  • Brandsch M : Transport of drugs by proton-coupled peptide transporters: pearls and pitfalls.Expert Opin. Drug Metab. Toxicol.5 , 887–905 (2009).
  • Greiner B , EichelbaumM, FritzP et al.: The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin.J. Clin. Invest.104(2) , 147–153 (1999).
  • Kerb R : Implications of genetic polymorphisms in drug transporters for pharmacotherapy.Cancer Lett.234(1) , 4–33 (2006).
  • Cascorbi I : P-glycoprotein: tissue distribution, substrates, and functional consequences of genetic variations.Handb. Exp. Pharmacol.201 , 261–283 (2011).
  • Haufroid V : Genetic polymorphisms of ATP-binding cassette transporters ABCB1 and ABCC2 and their impact on drug disposition.Curr. Drug Targets12(5) , 631–646 (2010).
  • Aller SG , YuJ, WardA et al.: Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding.Science323(5922) , 1718–1722 (2009).
  • Nies AT , SchwabM, KepplerD: Interplay of conjugating enzymes with OATP uptake transporters and ABCC/MRP efflux pumps in the elimination of drugs.Expert Opin. Drug Metab. Toxicol.4(5) , 545–568 (2008).
  • Jemnitz K , Heredi-SzaboK, JanossyJ, IojaE, VereczkeyL, KrajcsiP: ABCC2/Abcc2: a multispecific transporter with dominant excretory functions.Drug Metab. Rev.42(3) , 402–436 (2010).
  • Polgar O , RobeyRW, BatesSE: ABCG2: structure, function and role in drug response.Expert Opin. Drug Metab. Toxicol.4(1) , 1–15 (2008).
  • Poguntke M , HazaiE, FrommMF, ZolkO: Drug transport by breast cancer resistance protein.Expert Opin. Drug Metab. Toxicol.6(11) , 1363–1384 (2010).
  • Schwabedissen HE , KroemerHK: In vitro and in vivo evidence for the importance of breast cancer resistance protein transporters (BCRP/MXR/ABCP/ABCG2).Handb. Exp. Pharmacol.201 , 325–371 (2011).
  • Woodward OM , KottgenA, CoreshJ, BoerwinkleE, GugginoWB, KottgenM: Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout.Proc. Natl Acad. Sci. USA106(25) , 10338–10342 (2009).
  • Dehghan A , KottgenA, YangQ et al.: Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study.Lancet372(9654) , 1953–1961 (2008).
  • Borst P , de Wolf C, van de Wetering K: Multidrug resistance-associated proteins 3, 4, and 5. Pflugers Arch.453(5) , 661–673 (2007).
  • Hagenbuch B , GuiC: Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family.Xenobiotica38(7–8) , 778–801 (2008).
  • Kalliokoski A , NiemiM: Impact of OATP transporters on pharmacokinetics.Br. J. Pharmacol.158(3) , 693–705 (2009).
  • Fahrmayr C , FrommMF, KonigJ: Hepatic OATP and OCT uptake transporters: their role for drug–drug interactions and pharmacogenetic aspects.Drug Metab. Rev.42(3) , 380–401 (2010).
  • Konig J : Uptake transporters of the human OATP family. Molecular characteristics, substrates, their role in drug–drug interactions, and functional consequences of polymorphisms.Handb. Exp. Pharmacol.201 , 1–28 (2011).
  • Burckhardt G , BurckhardtBC: In vitro and in vivo evidence of the importance of organic anion transporters (OATs) in drug therapy.Handb. Exp. Pharmacol.201 , 29–104 (2011).
  • Nies AT , KoepsellH, DammeK, SchwabM: Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy.Handb. Exp. Pharmacol.201 , 105–167 (2011).
  • Endres CJ , EndresMG, UnadkatJD: Interplay of drug metabolism and transport: a real phenomenon or an artifact of the site of measurement?Mol. Pharm.6(6) , 1756–1765 (2009).
  • Pastor-Anglada M , Cano-SoldadoP, Molina-ArcasM et al.: Cell entry and export of nucleoside analogues.Virus Res.107 , 151–164 (2005).
  • Kusuhara H , SugiyamaY: In vitro–in vivo extrapolation of transporter-mediated clearance in the liver and kidney.Drug Metab. Pharmacokinet.24(1) , 37–52 (2009).
  • Keppler D : Multidrug resistance proteins (MRPs, ABCCs): importance for pathophysiology and drug therapy.Handb. Exp. Pharmacol.201 , 299–323 (2011).
  • Borst P , van de Wetering K, Schlingemann R: Does the absence of ABCC6 (multidrug resistance protein 6) in patients with Pseudoxanthoma elasticum prevent the liver from providing sufficient vitamin K to the periphery? Cell Cycle7 , 1575–1579 (2008).
  • Otsuka M , MatsumotoT, MorimotoR, AriokaS, OmoteH, MoriyamaY: A human transporter protein that mediates the final excretion step for toxic organic cations.Proc. Natl Acad. Sci. USA102(50) , 17923–17928 (2005).
  • Nies AT , KepplerD: The apical conjugate efflux pump ABCC2 (MRP2).Pflugers Arch.453(5) , 643–659 (2007).
  • Stieger B , MeierY, MeierPJ: The bile salt export pump.Pflugers Arch.453(5) , 611–620 (2007).
  • Hirano M , MaedaK, HayashiH, KusuharaH, SugiyamaY: Bile salt export pump (BSEP/ABCB11) can transport a nonbile acid substrate, pravastatin.J. Pharmacol. Exp. Ther.314 , 876–882 (2005).
  • Stieger B : Role of the bile salt export pump, BSEP, in acquired forms of cholestasis.Drug Metab. Rev.42 , 437–445 (2010).
  • Pauli-Magnus C , MeierPJ, StiegerB: Genetic determinants of drug-induced cholestasis and intrahepatic cholestasis of pregnancy.Semin. Liver Dis.30(2) , 147–159 (2010).
  • Morgan RE , TraunerM, van Staden CJ et al.: Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development. Toxicol. Sci.118(2) , 485–500 (2010).
  • Davit-Spraul A , GonzalesE, BaussanC, JacqueminE: The spectrum of liver diseases related to ABCB4 gene mutations: pathophysiology and clinical aspects.Semin. Liver Dis.30(2) , 134–146 (2010).
  • Jakulj L , VissersMN, TanckMW et al.: ABCG5/G8 polymorphisms and markers of cholesterol metabolism: systematic review and meta-analysis.J. Lipid Res.51(10) , 3016–3023 (2010).
  • Paulusma CC , ElferinkRP, JansenPL: Progressive familial intrahepatic cholestasis type 1.Semin. Liver Dis.30(2) , 117–124 (2010).
  • Huber-Ruano I , Pastor-AngladaM: Transport of nucleoside analogs across the plasma membrane: a clue to understanding drug-induced cytotoxicity.Curr. Drug Metab.10(4) , 347–358 (2009).
  • Saito S , IidaA, SekineA et al.: Catalog of 238 variations among six human genes encoding solute carriers (hSLCs) in the Japanese population.J. Hum. Genet.47(11) , 576–584 (2002).
  • Zhang EY , FuDJ, PakYA et al.: Genetic polymorphisms in human proton-dependent dipeptide transporter PEPT1: implications for the functional role of Pro586.J. Pharmacol. Exp. Ther.310(2) , 437–445 (2004).
  • Anderle P , NielsenCU, PinsonneaultJ, KrogPL, BrodinB, SadeeW: Genetic variants of the human dipeptide transporter PEPT1.J. Pharmacol. Exp. Ther.316(2) , 636–646 (2006).
  • Murakami T , TakanoM: Intestinal efflux transporters and drug absorption.Expert Opin. Drug Metab. Toxicol.4(7) , 923–939 (2008).
  • Schrickx JA , Fink-GremmelsJ: Implications of ABC transporters on the disposition of typical veterinary medicinal products.Eur. J. Pharmacol.585(2–3) , 510–519 (2008).
  • Zhou SF : Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition.Xenobiotica38 , 863–888 (2008).
  • Ieiri I , TakaneH, OtsuboK: The MDR1 (ABCB1) gene polymorphism and its clinical implications.Clin. Pharmacokinet.43(9) , 553–576 (2004).
  • Pauli-Magnus C , KroetzDL: Functional implications of genetic polymorphisms in the multidrug resistance gene MDR1 (ABCB1).Pharm. Res.21(6) , 904–913 (2004).
  • Eichelbaum M , FrommMF, SchwabM: Clinical aspects of the MDR1 (ABCB1) gene polymorphism.Ther. Drug Monit.26(2) , 180–185 (2004).
  • Li YH , WangYH, LiY, YangL: MDR1 gene polymorphisms and clinical relevance.Yi Chuan Xue Bao33(2) , 93–104 (2006).
  • Dey S : Single nucleotide polymorphisms in human P-glycoprotein: its impact on drug delivery and disposition.Expert Opin. Drug Deliv.3(1) , 23–35 (2006).
  • Chinn LW , KroetzDL: ABCB1 pharmacogenetics: progress, pitfalls, and promise.Clin. Pharmacol. Ther.81(2) , 265–269 (2007).
  • Ishikawa T , SakuraiA, HiranoH, LezhavaA, SakuraiM, HayashizakiY: Emerging new technologies in pharmacogenomics: rapid SNP detection, molecular dynamic simulation, and QSAR analysis methods to validate clinically important genetic variants of human ABC transporter ABCB1 (P-gp/MDR1).Pharmacol. Ther.126(1) , 69–81 (2010).
  • Fung KL , GottesmanMM: A synonymous polymorphism in a common MDR1 (ABCB1) haplotype shapes protein function.Biochim. Biophys Acta.1794(5) , 860–871 (2009).
  • Kroetz DL , Pauli-MagnusC, HodgesLM et al.: Sequence diversity and haplotype structure in the human ABCB1 (MDR1, multidrug resistance transporter) gene.Pharmacogenetics13(8) , 481–494 (2003).
  • Kimchi-Sarfaty C , MarpleAH, ShinarS et al.: Ethnicity-related polymorphisms and haplotypes in the human ABCB1 gene.Pharmacogenomics8(1) , 29–39 (2007).
  • Hoffmeyer S , BurkO, von Richter O et al.: Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Natl Acad. Sci. USA97(7) , 3473–3478 (2000).
  • Maeda K , SugiyamaY: Impact of genetic polymorphisms of transporters on the pharmacokinetic, pharmacodynamic and toxicological properties of anionic drugs.Drug Metab. Pharmacokinet.23(4) , 223–235 (2008).
  • Chowbay B , LiH, DavidM, CheungYB, LeeEJ: Meta-analysis of the influence of MDR1 C3435T polymorphism on digoxin pharmacokinetics and MDR1 gene expression.Br. J. Clin. Pharmacol.60 , 159–171 (2005).
  • Bournissen FG , MorettiME, JuurlinkDN, KorenG, WalkerM, FinkelsteinY: Polymorphism of the MDR1/ABCB1 C3435T drug-transporter and resistance to anticonvulsant drugs: a meta-analysis.Epilepsia50(4) , 898–903 (2009).
  • Haerian BS , RoslanH, RaymondAA et al.: ABCB1 C3435T polymorphism and the risk of resistance to antiepileptic drugs in epilepsy: a systematic review and meta-analysis.Seizure19(6) , 339–346 (2010).
  • Jiang ZP , WangYR, XuP, LiuRR, ZhaoXL, ChenFP: Meta-analysis of the effect of MDR1 C3435T polymorphism on cyclosporine pharmacokinetics.Basic Clin. Pharmacol. Toxicol.103(5) , 433–444 (2008).
  • Onnie CM , FisherSA, PattniR et al.: Associations of allelic variants of the multidrug resistance gene (ABCB1 or MDR1) and inflammatory bowel disease and their effects on disease behavior: a case–control and meta-analysis study.Inflamm. Bowel Dis.12(4) , 263–271 (2006).
  • Annese V , ValvanoMR, PalmieriO, LatianoA, BossaF, AndriulliA: Multidrug resistance 1 gene in inflammatory bowel disease: a meta-analysis.World J. Gastroenterol.12(23) , 3636–3644 (2006).
  • Lu PH , WeiMX, YangJ et al.: Association between two polymorphisms of ABCB1 and breast cancer risk in the current studies: a meta-analysis.Breast Cancer Res. Treat.125(2) , 537–543 (2011).
  • Benet LZ : The drug transporter-metabolism alliance: uncovering and defining the interplay.Mol. Pharm.6(6) , 1631–1643 (2009).
  • Pang KS , MaengHJ, FanJ: Interplay of transporters and enzymes in drug and metabolite processing.Mol. Pharm.6(6) , 1734–1755 (2009).
  • Durr D , StiegerB, Kullak-UblickGA et al.: St John‘s Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4.Clin. Pharmacol. Ther.68(6) , 598–604 (2000).
  • Hajda J , RentschKM, GublerC, SteinertH, StiegerB, FattingerK: Garlic extract induces intestinal P-glycoprotein, but exhibits no effect on intestinal and hepatic CYP3A4 in humans.Eur. J. Pharm. Sci.41(5) , 729–735 (2010).
  • Zhou S , LimLY, ChowbayB: Herbal modulation of P-glycoprotein.Drug Metab. Rev.36(1) , 57–104 (2004).
  • Eloranta JJ , Kullak-UblickGA: Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism.Arch. Biochem. Biophys433(2) , 397–412 (2005).
  • Urquhart BL , TironaRG, KimRB: Nuclear receptors and the regulation of drug-metabolizing enzymes and drug transporters: implications for interindividual variability in response to drugs.J. Clin. Pharmacol.47(5) , 566–578 (2007).
  • Mottino AD , CataniaVA: Hepatic drug transporters and nuclear receptors: regulation by therapeutic agents.World J. Gastroenterol.14(46) , 7068–7074 (2008).
  • Klaassen CD , AleksunesLM: Xenobiotic, bile acid, and cholesterol transporters: function and regulation.Pharmacol. Rev.62(1) , 1–96 (2010).
  • Ioannidis JP : Genetic associations: false or true?Trends Mol. Med.9 , 135–138 (2003).
  • Ioannidis JP , TrikalinosTA, NtzaniEE, Contopoulos-IoannidisDG: Genetic associations in large versus small studies: an empirical assessment.Lancet361 , 567–571 (2003).
  • Kraft P , ZegginiE, IoannidisJP: Replication in genome-wide association studies.Stat. Sci.24(4) , 561–573 (2009).
  • Hu M , ToKK, MakVW, TomlinsonB: The ABCG2 transporter and its relations with the pharmacokinetics, drug interaction and lipid-lowering effects of statins.Expert Opin. Drug Metab. Toxicol.7(1) , 49–62 (2011).
  • Sai K , SaitoY, MaekawaK et al.: Additive effects of drug transporter genetic polymorphisms on irinotecan pharmacokinetics/pharmacodynamics in Japanese cancer patients.Cancer Chemother. Pharmacol.66(1) , 95–105 (2010).
  • Cha PC , MushirodaT, ZembutsuH et al.: Single nucleotide polymorphism in ABCG2 is associated with irinotecan-induced severe myelosuppression.J. Hum. Genet.54(10) , 572–580 (2009).
  • De Jong FA , MarshS, MathijssenRH et al.: ABCG2 pharmacogenetics: ethnic differences in allele frequency and assessment of influence on irinotecan disposition.Clin. Cancer Res.10(17) , 5889–5894 (2004).
  • Han JY , LimHS, YooYK et al.: Associations of ABCB1, ABCC2, and ABCG2 polymorphisms with irinotecan-pharmacokinetics and clinical outcome in patients with advanced non-small cell lung cancer.Cancer110(1) , 138–147 (2007).
  • de Jong FA , de Jonge MJ, Verweij J, Mathijssen RH: Role of pharmacogenetics in irinotecan therapy. Cancer Lett.234(1) , 90–106 (2006).
  • Rau T , ErneyB, GoresR, EschenhagenT, BeckJ, LangerT: High-dose methotrexate in pediatric acute lymphoblastic leukemia: impact of ABCC2 polymorphisms on plasma concentrations.Clin. Pharmacol. Ther.80(5) , 468–476 (2006).
  • Fujita K , NagashimaF, YamamotoW et al.: Association of ATP-binding cassette, sub-family C, number 2 (ABCC2) genotype with pharmacokinetics of irinotecan in Japanese patients with metastatic colorectal cancer treated with irinotecan plus infusional 5-fluorouracil/leucovorin (FOLFIRI).Biol. Pharm. Bull.31(11) , 2137–2142 (2008).
  • de Jong FA , Scott-HortonTJ, KroetzDL et al.: Irinotecan-induced diarrhea: functional significance of the polymorphic ABCC2 transporter protein.Clin. Pharmacol. Ther.81(1) , 42–49 (2007).
  • Miura M , SatohS, InoueK et al.: Influence of SLCO1B1, 1B3, 2B1 and ABCC2 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients.Eur. J. Clin. Pharmacol.63(12) , 1161–1169 (2007).
  • Choi JH , AhnBM, YiJ et al.: MRP2 haplotypes confer differential susceptibility to toxic liver injury.Pharmacogenet. Genomics17(6) , 403–415 (2007).
  • Daly AK , AithalGP, LeathartJB, SwainsburyRA, DangTS, DayCP: Genetic susceptibility to diclofenac-induced hepatotoxicity: contribution of UGT2B7, CYP2C8, and ABCC2 genotypes.Gastroenterology132(1) , 272–281 (2007).
  • Saito S , IidaA, SekineA et al.: Identification of 779 genetic variations in eight genes encoding members of the ATP-binding cassette, subfamily C (ABCC/MRP/CFTR.J. Hum. Genet.47(4) , 147–171 (2002).
  • Lang T , HitzlM, BurkO et al.: Genetic polymorphisms in the multidrug resistance-associated protein 3 (ABCC3, MRP3) gene and relationship to its mRNA and protein expression in human liver.Pharmacogenetics14(3) , 155–164 (2004).
  • Lee YM , CuiY, KonigJ et al.: Identification and functional characterization of the natural variant MRP3-Arg1297His of human multidrug resistance protein 3 (MRP3/ABCC3).Pharmacogenetics14(4) , 213–223 (2004).
  • Fukushima-Uesaka H , SaitoY, MaekawaK et al.: Genetic variations of the ABC transporter gene ABCC3 in a Japanese population.Drug Metab. Pharmacokinet.22(2) , 129–135 (2007).
  • Muller P , AsherN, HeledM, CohenSB, RischA, RundD: Polymorphisms in transporter and phase II metabolism genes as potential modifiers of the predisposition to and treatment outcome of de novo acute myeloid leukemia in Israeli ethnic groups.Leuk. Res.32(6) , 919–929 (2008).
  • Campa D , VodickaP, PardiniB et al.: Could polymorphisms in ATP-binding cassette C3/multidrug resistance associated protein 3 (ABCC3/MRP3) modify colorectal cancer risk?Eur. J. Cancer44(6) , 854–857 (2008).
  • Muller PJ , DallyH, KlappeneckerCN et al.: Polymorphisms in ABCG2, ABCC3 and CNT1 genes and their possible impact on chemotherapy outcome of lung cancer patients.Int. J. Cancer124(7) , 1669–1674 (2009).
  • Neuvonen PJ , NiemiM, BackmanJT: Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance.Clin. Pharmacol. Ther.80(6) , 565–581 (2006).
  • Rodrigues AC : Efflux and uptake transporters as determinants of statin response.Expert Opin. Drug Metab. Toxicol.6(5) , 621–632 (2010).
  • Neuvonen PJ : Drug interactions with HMG-CoA reductase inhibitors (statins): the importance of CYP enzymes, transporters and pharmacogenetics.Curr. Opin. Investig. Drugs11(3) , 323–332 (2010).
  • Kim RB : 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins) and genetic variability (single nucleotide polymorphisms) in a hepatic drug uptake transporter: what‘s it all about?Clin. Pharmacol. Ther.75(5) , 381–385 (2004).
  • Konig J , SeithelA, GradhandU, FrommMF: Pharmacogenomics of human OATP transporters.Naunyn Schmiedebergs Arch. Pharmacol.372(6) , 432–443 (2006).
  • Romaine SP , BaileyKM, HallAS, BalmforthAJ: The influence of SLCO1B1 (OATP1B1) gene polymorphisms on response to statin therapy.Pharmacogenomics J.10(1) , 1–11 (2010).
  • Niemi M : Transporter pharmacogenetics and statin toxicity.Clin. Pharmacol. Ther.87(1) , 130–133 (2010).
  • Tirona RG , LeakeBF, MerinoG, KimRB: Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European– and African–Americans.J. Biol. Chem.276(38) , 35669–35675 (2001).
  • Tirona RG , LeakeBF, WolkoffAW, KimRB: Human organic anion transporting polypeptide-C (SLC21A6) is a major determinant of rifampin-mediated pregnane X receptor activation.J. Pharmacol. Exp. Ther.304(1) , 223–228 (2003).
  • Kuncl RW : Agents and mechanisms of toxic myopathy.Curr. Opin. Neurol.22(5) , 506–515 (2009).
  • Link E , ParishS, ArmitageJ et al.: SLCO1B1 variants and statin-induced myopathy – a genomewide study.N. Engl. J. Med.359(8) , 789–799 (2008).
  • Niemi M , PasanenMK, NeuvonenPJ: Organic anion transporting polypeptide 1b1: a genetically polymorphic transporter of major importance for hepatic drug uptake.Pharmacol. Rev.63 , 157–181 (2011).
  • Nozawa T , NakajimaM, TamaiI et al.: Genetic polymorphisms of human organic anion transporters OATP-C (SLC21A6) and OATP-B (SLC21A9): allele frequencies in the Japanese population and functional analysis.J. Pharmacol. Exp. Ther.302(2) , 804–813 (2002).
  • Ho RH , LeakeBF, KimRB, WangY: OATP2B1 allelic variants differentially transport rosuvastatin in vitro.Drug Metab. Rev.38(Suppl. 2) , S240–S241 (2006).
  • Mougey EB , FengH, CastroM, IrvinCG, LimaJJ: Absorption of montelukast is transporter mediated: a common variant of OATP2B1 is associated with reduced plasma concentrations and poor response.Pharmacogenet. Genomics19(2) , 129–138 (2009).
  • Mougey EB , LangJE, WenX, LimaJJ: Effect of citrus juice and SLCO2B1 genotype on the pharmacokinetics of montelukast.J. Clin. Pharmacol. (2010) (Epub ahead of print).
  • Imanaga J , KotegawaT, ImaiH et al.: The effects of the SLCO2B1 c.1457C > T polymorphism and apple juice on the pharmacokinetics of fexofenadine and midazolam in humans.Pharmacogenet. Genomics21(2) , 84–93 (2011).
  • Aoki M , TeradaT, OgasawaraK et al.: Impact of regulatory polymorphisms in organic anion transporter genes in the human liver.Pharmacogenet. Genomics19(8) , 647–656 (2009).
  • Shu Y , BrownC, CastroRA et al.: Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin pharmacokinetics.Clin. Pharmacol. Ther.83(2) , 273–280 (2008).
  • Shu Y , SheardownSA, BrownC et al.: Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action.J. Clin. Invest.117(5) , 1422–1431 (2007).
  • Zach O , KriegerO, FoedermayrM, ZellhoferB, LutzD: OCT1 (SLC22A1) R61C polymorphism and response to imatinib treatment in chronic myeloid leukemia patients.Leuk. Lymphoma49(11) , 2222–2223 (2008).
  • Sakata T , AnzaiN, KimuraT et al.: Functional analysis of human organic cation transporter OCT3 (SLC22A3) polymorphisms.J. Pharmacol. Sci.113(3) , 263–266 (2010).
  • Tzvetkov MV , VormfeldeSV, BalenD et al.: The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin.Clin. Pharmacol. Ther.86(3) , 299–306 (2009).
  • Sallinen R , KaunistoMA, ForsblomC et al.: Association of the SLC22A1, SLC22A2, and SLC22A3 genes encoding organic cation transporters with diabetic nephropathy and hypertension.Ann. Med.42(4) , 296–304 (2010).
  • Gradhand U , LangT, SchaeffelerE et al.: Variability in human hepatic MRP4 expression: influence of cholestasis and genotype.Pharmacogenomics J.8(1) , 42–52 (2008).
  • Abla N , ChinnLW, NakamuraT et al.: The human multidrug resistance protein 4 (MRP4, ABCC4): functional analysis of a highly polymorphic gene.J. Pharmacol. Exp. Ther.325(3) , 859–868 (2008).
  • Janke D , MehralivandS, StrandD et al.: 6-mercaptopurine and 9-(2-phosphonyl-methoxyethyl) adenine (PMEA) transport altered by two missense mutations in the drug transporter gene ABCC4.Hum. Mutat.29(5) , 659–669 (2008).
  • Kiser JJ , AquilanteCL, AndersonPL, KingTM, CartenML, FletcherCV: Clinical and genetic determinants of intracellular tenofovir diphosphate concentrations in HIV-infected patients.J. Acquir. Immune Defic. Syndr.47(3) , 298–303 (2008).
  • Kiser JJ , CartenML, AquilanteCL et al.: The effect of lopinavir/ritonavir on the renal clearance of tenofovir in HIV-infected patients.Clin. Pharmacol. Ther.83(2) , 265–272 (2008).
  • Rodriguez-Novoa S , LabargaP, SorianoV et al.: Predictors of kidney tubular dysfunction in HIV-infected patients treated with tenofovir: a pharmacogenetic study.Clin. Infect. Dis48(11) , e108–e116 (2009).
  • Ansari M , SautyG, LabudaM et al.: Polymorphisms in multidrug resistance-associated protein gene 4 is associated with outcome in childhood acute lymphoblastic leukemia.Blood114(7) , 1383–1386 (2009).
  • Bruggemann M , TrautmannH, HoelzerD, KnebaM, GokbugetN, RaffT: Multidrug resistance-associated protein 4 (MRP4) gene polymorphisms and treatment response in adult acute lymphoblastic leukemia.Blood114(26) , 5400–5401; author reply 5401–5402 (2009).
  • Low SK , KiyotaniK, MushirodaT, DaigoY, NakamuraY, ZembutsuH: Association study of genetic polymorphism in ABCC4 with cyclophosphamide-induced adverse drug reactions in breast cancer patients.J. Hum. Genet.54(10) , 564–571 (2009).
  • Ban H , AndohA, ImaedaH et al.: The multidrug-resistance protein 4 polymorphism is a new factor accounting for thiopurine sensitivity in Japanese patients with inflammatory bowel disease.J. Gastroenterol.45(10) , 1014–1021 (2010).
  • Chen Y , TeranishiK, LiS et al.: Genetic variants in multidrug and toxic compound extrusion-1, hMATE1, alter transport function.Pharmacogenomics J.9(2) , 127–136 (2009).
  • Kajiwara M , TeradaT, OgasawaraK et al.: Identification of multidrug and toxin extrusion (MATE1 and MATE2-K) variants with complete loss of transport activity.J. Hum. Genet.54(1) , 40–46 (2009).
  • Becker ML , VisserLE, van Schaik RH, Hofman A, Uitterlinden AG, Stricker BH: Genetic variation in the multidrug and toxin extrusion 1 transporter protein influences the glucose-lowering effect of metformin in patients with diabetes: a preliminary study. Diabetes58(3) , 745–749 (2009).
  • Rane A , LindhJD: Pharmacogenetics of anticoagulants.Hum. Genomics Proteomics2010 , 754919 (2010).
  • Zeggini E , IoannidisJP: Meta-analysis in genome-wide association studies.Pharmacogenomics10(2) , 191–201 (2009).
  • Daly AK , DonaldsonPT, BhatnagarP et al.: HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin.Nat. Genet.41(7) , 816–819 (2009).
  • Russmann S , JetterA, Kullak-UblickGA: Pharmacogenetics of drug-induced liver injury.Hepatology52(2) , 748–761 (2010).
  • Govindarajan R , BakkenAH, HudkinsKL et al.: In situ hybridization and immunolocalization of concentrative and equilibrative nucleoside transporters in the human intestine, liver, kidneys, and placenta.Am. J. Physiol. Regul. Integr. Comp. Physiol.293(5) , R1809–R1822 (2007).
  • Gill RK , SaksenaS, AlrefaiWA et al.: Expression and membrane localization of MCT isoforms along the length of the human intestine.Am. J. Physiol. Cell Physiol.289(4) , C846–C852 (2005).
  • Lin RY , VeraJC, ChagantiRS, GoldeDW: Human monocarboxylate transporter 2 (MCT2) is a high affinity pyruvate transporter.J. Biol. Chem.273(44) , 28959–28965 (1998).
  • Kullak-Ublick GA , GlasaJ, BokerC et al.: Chlorambucil-taurocholate is transported by bile acid carriers expressed in human hepatocellular carcinomas.Gastroenterology113(4) , 1295–1305 (1997).
  • Sun W , WuRR, van Poelje PD, Erion MD: Isolation of a family of organic anion transporters from human liver and kidney. Biochem. Biophys. Res. Commun.283(2) , 417–422 (2001).
  • Shin HJ , AnzaiN, EnomotoA et al.: Novel liver-specific organic anion transporter OAT7 that operates the exchange of sulfate conjugates for short chain fatty acid butyrate.Hepatology45(4) , 1046–1055 (2007).
  • Lee W , GlaeserH, SmithLH et al.: Polymorphisms in human organic anion-transporting polypeptide 1A2 (OATP1A2): implications for altered drug disposition and central nervous system drug entry.J. Biol. Chem.280(10) , 9610–9617 (2005).
  • Konig J , CuiY, NiesAT, KepplerD: A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane.Am. J. Physiol. Gastrointest. Liver Physiol.278 , G156–G164 (2000).
  • Konig J , CuiY, NiesAT, KepplerD: Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide.J. Biol. Chem.275 , 23161–23168 (2000).
  • Kullak-Ublick GA , IsmairMG, StiegerB et al.: Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver.Gastroenterology120(2) , 525–533 (2001).
  • Nies AT , KoepsellH, WinterS et al.: Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver.Hepatology50(4) , 1227–1240 (2009).
  • Peltekova VD , WintleRF, RubinLA et al.: Functional variants of OCTN cation transporter genes are associated with Crohn disease.Nat. Genet.36(5) , 471–475 (2004).
  • Groneberg DA , DoringF, EynottPR, FischerA, DanielH: Intestinal peptide transport: ex vivo uptake studies and localization of peptide carrier PEPT1.Am. J. Physiol. Gastrointest. Liver Physiol.281(3) , G697–G704 (2001).
  • Maliepaard M , van Gastelen MA, Tohgo A et al.: Circumvention of breast cancer resistance protein (BCRP)-mediated resistance to camptothecins in vitro using non-substrate drugs or the BCRP inhibitor GF120918. Clin. Cancer Res.7(4) , 935–941 (2001).
  • Arceci RJ , StieglitzK, BrasJ, SchinkelA, BaasF, CroopJ: Monoclonal antibody to an external epitope of the human mdr1 P-glycoprotein.Cancer Res.53(2) , 310–317 (1993).
  • Berggren S , GallC, WollnitzN et al.: Gene and protein expression of P-glycoprotein, MRP1, MRP2, and CYP3A4 in the small and large human intestine.Mol. Pharm.4(2) , 252–257 (2007).
  • Fromm MF , KauffmannHM, FritzP et al.: The effect of rifampin treatment on intestinal expression of human MRP transporters.Am. J. Pathol.157(5) , 1575–1580 (2000).
  • Keppler D , KartenbeckJ: The canalicular conjugate export pump encoded by the cmrp/cmoat gene.Prog. Liver Dis.14 , 55–67 (1996).
  • Scheffer GL , KoolM, de Haas M et al.: Tissue distribution and induction of human multidrug resistant protein 3. Lab. Invest.82(2) , 193–201 (2002).
  • Konig J , RostD, CuiY, KepplerD: Characterization of the human multidrug resistance protein isoform MRP3 localized to the basolateral hepatocyte membrane.Hepatology29(4) , 1156–1163 (1999).
  • Taipalensuu J , TornblomH, LindbergG et al.: Correlation of gene expression of ten drug efflux proteins of the ATP-binding cassette transporter family in normal human jejunum and in human intestinal epithelial Caco-2 cell monolayers.J. Pharmacol. Exp. Ther.299(1) , 164–170 (2001).
  • Rius M , NiesAT, Hummel-EisenbeissJ, JedlitschkyG, KepplerD: Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the basolateral hepatocyte membrane.Hepatology38(2) , 374–384 (2003).
  • Scheffer GL , HuX, PijnenborgAC, WijnholdsJ, BergenAA, ScheperRJ: MRP6 (ABCC6) detection in normal human tissues and tumors.Lab. Invest.82(4) , 515–518 (2002).
  • Hopper E , BelinskyMG, ZengH, TosoliniA, TestaJR, KruhGD: Analysis of the structure and expression pattern of MRP7 (ABCC10), a new member of the MRP subfamily.Cancer Lett.162(2) , 181–191 (2001).
  • Yang Z , WuD, BuiT, HoRJ: A novel human multidrug resistance gene MDR1 variant G571A (G191R) modulates cancer drug resistance and efflux transport.J. Pharmacol. Exp. Ther.327(2) , 474–481 (2008).
  • Sakurai A , OnishiY, HiranoH et al.: Quantitative structure – activity relationship analysis and molecular dynamics simulation to functionally validate nonsynonymous polymorphisms of human ABC transporter ABCB1 (P-glycoprotein/MDR1).Biochemistry46(26) , 7678–7693 (2007).
  • Crouthamel MH , WuD, YangZ, HoRJ: A novel MDR1 G1199T variant alters drug resistance and efflux transport activity of P-glycoprotein in recombinant Hek cells.J. Pharm. Sci.95(12) , 2767–2777 (2006).
  • Crouthamel MH , WuD, YangZ, HoRJ: A novel MDR1 GT1292-3TG (Cys431Leu) genetic variation and its effect on P-glycoprotein biologic functions.AAPS J.12(4) , 548–555 (2010).
  • Kim RB , LeakeBF, ChooEF et al.: Identification of functionally variant MDR1 alleles among European Americans and African–Americans.Clin. Pharmacol. Ther.70(2) , 189–199 (2001).
  • Morita N , YasumoriT, NakayamaK: Human MDR1 polymorphism: G2677T/A and C3435T have no effect on MDR1 transport activities.Biochem. Pharmacol.65(11) , 1843–1852 (2003).
  • Oselin K , GerloffT, MrozikiewiczPM, PahklaR, RootsI: MDR1 polymorphisms G2677T in exon 21 and C3435T in exon 26 fail to affect rhodamine 123 efflux in peripheral blood lymphocytes.Fundam. Clin. Pharmacol.17(4) , 463–469 (2003).
  • Salama NN , YangZ, BuiT, HoRJ: MDR1 haplotypes significantly minimize intracellular uptake and transcellular P-gp substrate transport in recombinant LLC-PK1 cells.J. Pharm. Sci.95(10) , 2293–2308 (2006).
  • Schaefer M , RootsI, GerloffT: In-vitro transport characteristics discriminate wild-type ABCB1 (MDR1) from ALA893SER and ALA893THR polymorphisms.Pharmacogenet. Genomics16(12) , 855–861 (2006).
  • Storch CH , KlimmHD, HeinrichT, HaefeliWE, WeissJ: Plasma LDL cholesterol has no impact on P-glycoprotein (MDR1/ABCB1) activity in human peripheral blood mononuclear cells.Naunyn Schmiedebergs Arch. Pharmacol.376(1–2) , 135–143 (2007).
  • Mizuarai S , AozasaN, KotaniH: Single nucleotide polymorphisms result in impaired membrane localization and reduced ATPase activity in multidrug transporter ABCG2.Int. J. Cancer109(2) , 238–246 (2004).
  • Kondo C , SuzukiH, ItodaM et al.: Functional analysis of SNPs variants of BCRP/ABCG2.Pharm. Res.21(10) , 1895–1903 (2004).
  • Morisaki K , RobeyRW, Ozvegy-LaczkaC et al.: Single nucleotide polymorphisms modify the transporter activity of ABCG2.Cancer Chemother. Pharmacol.56(2) , 161–172 (2005).
  • Tamura A , WatanabeM, SaitoH et al.: Functional validation of the genetic polymorphisms of human ATP-binding cassette (ABC) transporter ABCG2: identification of alleles that are defective in porphyrin transport.Mol. Pharm.70(1) , 287–296 (2006).
  • Gardner ER , BurgerH, van Schaik RH et al.: Association of enzyme and transporter genotypes with the pharmacokinetics of imatinib. Clin. Pharmacol. Ther.80(2) , 192–201 (2006).
  • Tamura A , WakabayashiK, OnishiY et al.: Re-evaluation and functional classification of non-synonymous single nucleotide polymorphisms of the human ATP-binding cassette transporter ABCG2.Cancer Sci.98(2) , 231–239 (2007).
  • Li J , CusatisG, BrahmerJ et al.: Association of variant ABCG2 and the pharmacokinetics of epidermal growth factor receptor tyrosine kinase inhibitors in cancer patients.Cancer Biol. Ther.6(3) , 432–438 (2007).
  • Tamura A , OnishiY, AnR et al.: In vitro evaluation of photosensitivity risk related to genetic polymorphisms of human ABC transporter ABCG2 and inhibition by drugs.Drug Metab. Pharmacokinet.22(6) , 428–440 (2007).
  • Polgar O , DeekenJF, EdiriwickremaLS et al.: The 315–316 deletion determines the BXP-21 antibody epitope but has no effect on the function of wild type ABCG2 or the Q141K variant.Mol. Cell Biochem.322(1–2) , 63–71 (2009).
  • Pollex EK , AngerG, HutsonJ, KorenG, Piquette-MillerM: Breast cancer resistance protein (BCRP)-mediated glyburide transport: effect of the C421A/Q141K BCRP single-nucleotide polymorphism.Drug Metab. Dispos.38(5) , 740–744 (2010).
  • Hirouchi M , SuzukiH, ItodaM et al.: Characterization of the cellular localization, expression level, and function of SNP variants of MRP2/ABCC2.Pharm. Res.21(5) , 742–748 (2004).
  • Kobayashi K , ItoK, TakadaT, SugiyamaY, SuzukiH: Functional analysis of nonsynonymous single nucleotide polymorphism type ATP-binding cassette transmembrane transporter subfamily C member 3.Pharmacogenet. Genomics18(9) , 823–833 (2008).
  • Schwarz UI , Meyer zu Schwabedissen HE, Tirona RG et al.: Identification of novel functional organic anion-transporting polypeptide 1B3 polymorphisms and assessment of substrate specificity. Pharmacogenet. Genomics21(3) , 103–114 (2011).
  • Letschert K , KepplerD, KonigJ: Mutations in the SLCO1B3 gene affecting the substrate specificity of the hepatocellular uptake transporter OATP1B3 (OATP8).Pharmacogenetics14(7) , 441–452 (2004).
  • Shu Y , LeabmanMK, FengB et al.: Evolutionary conservation predicts function of variants of the human organic cation transporter, OCT1.Proc. Natl Acad. Sci. USA100(10) , 5902–5907 (2003).
  • Kerb R , BrinkmannU, ChatskaiaN et al.: Identification of genetic variations of the human organic cation transporter hOCT1 and their functional consequences.Pharmacogenetics12(8) , 591–595 (2002).
  • Sakata T , AnzaiN, ShinHJ et al.: Novel single nucleotide polymorphisms of organic cation transporter 1 (SLC22A1) affecting transport functions.Biochem. Biophys Res. Commun.313(3) , 789–793 (2004).
  • Lazar A , WalitzaS, JetterA et al.: Novel mutations of the extraneuronal monoamine transporter gene in children and adolescents with obsessive-compulsive disorder.Int. J. Neuropsychopharmacol.11(1) , 35–48 (2008).
  • Meyer zu Schwabedissen HE , VerstuyftC, KroemerHK, BecquemontL, KimRB: Human multidrug and toxin extrusion 1 (MATE1/SLC47A1) transporter: functional characterization, interaction with OCT2 (SLC22A2), and single nucleotide polymorphisms.Am. J. Physiol. Renal Physiol.298(4) , F997–F1005 (2010).
  • Leschziner GD , AndrewT, LeachJP et al.: Common ABCB1 polymorphisms are not associated with multidrug resistance in epilepsy using a gene-wide tagging approach.Pharmacogenet. Genomics17(3) , 217–220 (2007).
  • Abbas S , BeckmannL, Chang-ClaudeJ et al.: Polymorphisms in the BRCA1 and ABCB1 genes modulate menopausal hormone therapy associated breast cancer risk in postmenopausal women.Breast Cancer Res. Treat.120(3) , 727–736 (2010).
  • Nurmohamed L , Garcia-BournissenF, BuonoRJ, ShannonMW, FinkelsteinY: Predisposition to epilepsy – does the ABCB1 gene play a role?Epilepsia51(9) , 1882–1885 (2010).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.