417
Views
0
CrossRef citations to date
0
Altmetric
Review

Differing Clinical Impact of BRCA1 and BRCA2 Mutations in Serous Ovarian Cancer

, , , , , & show all
Pages 1523-1535 | Published online: 12 Oct 2012

References

  • Pennington KP , SwisherEM. Hereditary ovarian cancer: beyond the usual suspects. Gynecol. Oncol.124(2) , 347–353 (2012).
  • King MC , MarksJH, MandellJB. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science302(5645) , 643–646 (2003).
  • Chen S , ParmigianiG. Meta-analysis of BRCA1 and BRCA2 penetrance. J. Clin. Oncol.25(11) , 1329–1333 (2007).
  • Sakai W , SwisherEM, KarlanBY et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 451(7182) , 1116–1120 (2008).
  • Swisher EM , SakaiW, KarlanBY, WurzK, UrbanN, TaniguchiT. Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance. Cancer Res.68(8) , 2581–2586 (2008).
  • Yang D , KhanS, SunY et al. Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA 306(14) , 1557–1565 (2011).
  • Hyman DM , ZhouQ, IasonosA et al. Improved survival for BRCA2-associated serous ovarian cancer compared with both BRCA-negative and BRCA1-associated serous ovarian cancer. Cancer 118(15) , 3703–3709 (2011).
  • Bolton K l, Chenevix-Trench G, Goh C et al. Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer. JAMA307(4) , 382–390 (2012).
  • Liu J , CristeaMC, FrankelP et al. Clinical characteristics and outcomes of BRCA-associated ovarian cancer: genotype and survival. Cancer Genet. 205(1–2) , 34–41 (2012).
  • Reitsma W , de Bock GH, Oosterwijk JC, Ten Hoor KA, Hollema H, Mourits MJ. Clinicopathologic characteristics and survival in BRCA1- and BRCA2-related adnexal cancer: are they different? Int. J. Gynecol. Cancer22(4) , 579–585 (2012).
  • Whittemore AS , GongG, ItnyreJ. Prevalence and contribution of BRCA1 mutations in breast cancer and ovarian cancer: results from three U.S. population-based case–control studies of ovarian cancer. Am. J. Hum. Genet.60(3) , 496–504 (1997).
  • Risch HA , McLaughlinJR, ColeDE et al. Prevalence and penetrance of germline BRCA1 and BRCA2 mutations in a population series of 649 women with ovarian cancer. Am. J. Hum. Genet. 68(3) , 700–710 (2001).
  • Rubin SC , BlackwoodMA, BanderaC et al. BRCA1, BRCA2, and hereditary nonpolyposis colorectal cancer gene mutations in an unselected ovarian cancer population: relationship to family history and implications for genetic testing. Am. J. Obstet. Gynecol.178(4) , 670–677 (1998).
  • Pal T , Permuth-WeyJ, BettsJA et al. BRCA1 and BRCA2 mutations account for a large proportion of ovarian carcinoma cases. Cancer104(12) , 2807–2816 (2005).
  • Press JZ , De Luca A, Boyd N et al. Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities. BMC Cancer8 , 17 (2008).
  • Levine DA , ArgentaPA, YeeCJ et al. Fallopian tube and primary peritoneal carcinomas associated with BRCA mutations. J. Clin. Oncol. 21(22) , 4222–4227 (2003).
  • Crum CP , DrapkinR, MironA et al. The distal fallopian tube: a new model for pelvic serous carcinogenesis. Curr. Opin Obstet. Gynecol. 19(1) , 3–9 (2007).
  • Norquist BM , GarciaRL, AllisonKH et al. The molecular pathogenesis of hereditary ovarian carcinoma: alterations in the tubal epithelium of women with BRCA1 and BRCA2 mutations. Cancer 116(22) , 5261–5271 (2010).
  • Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature474(7353) , 609–615 (2011).
  • Bowtell DD . The genesis and evolution of high-grade serous ovarian cancer. Nat. Rev. Cancer10(11) , 803–808 (2010).
  • Kuo KT , MaoTL, JonesS et al. Frequent activating mutations of PIK3CA in ovarian clear cell carcinoma. Am. J. Pathol. 174(5) , 1597–1601 (2009).
  • Jones S , WangTL, Shih Ie M et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science330(6001) , 228–231 (2010).
  • Wiegand KC , ShahSP, Al-AghaOM et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N. Engl. J. Med.363(16) , 1532–1543 (2010).
  • Cuatrecasas M , VillanuevaA, Matias-GuiuX, PratJ. K-RAS mutations in mucinous ovarian tumors: a clinicopathologic and molecular study of 95 cases. Cancer79(8) , 1581–1586 (1997).
  • Gilks CB , PratJ. Ovarian carcinoma pathology and genetics: recent advances. Hum. Pathol.40(9) , 1213–1223 (2009).
  • Piek JM , TorrengaB, HermsenB et al. Histopathological characteristics of BRCA1- and BRCA2-associated intraperitoneal cancer: a clinic-based study. Fam. Cancer 2(2) , 73–78 (2003).
  • Geisler JP , Hatterman-ZoggMA, RatheJA, BullerRE. Frequency of BRCA1 dysfunction in ovarian cancer. J. Natl Cancer Inst.94(1) , 61–67 (2002).
  • Hilton JL , GeislerJP, RatheJA, Hattermann-ZoggMA, DeyoungB, BullerRE. Inactivation of BRCA1 and BRCA2 in ovarian cancer. J. Natl Cancer Inst.94(18) , 1396–1406 (2002).
  • Lim S l, Smith P, Syed N et al. Promoter hypermethylation of FANCF and outcome in advanced ovarian cancer. Br. J. Cancer98(8) , 1452–1456 (2008).
  • Wang Z , LiM, LuS, ZhangY, WangH. Promoter hypermethylation of FANCF plays an important role in the occurrence of ovarian cancer through disrupting Fanconi anemia–BRCA pathway. Cancer Biol. Ther.5(3) , 256–260 (2006).
  • D‘Andrea AD . The Fanconi anemia/BRCA signaling pathway: disruption in cisplatin-sensitive ovarian cancers. Cell Cycle2(4) , 290–292 (2003).
  • Soegaard M , KjaerSK, CoxM et al. BRCA1 and BRCA2 mutation prevalence and clinical characteristics of a population-based series of ovarian cancer cases from Denmark. Clin. Cancer Res.14(12) , 3761–3767 (2008).
  • Risch HA , McLaughlinJR, Cole De et al. Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, Canada. J. Natl Cancer Inst.98(23) , 1694–1706 (2006).
  • Shaw PA , McLaughlinJR, ZweemerRP et al. Histopathologic features of genetically determined ovarian cancer. Int. J. Gynecol. Pathol. 21(4) , 407–411 (2002).
  • Tan DS , RothermundtC, ThomasK et al. ‘BRCAness‘ syndrome in ovarian cancer: a case–control study describing the clinical features and outcome of patients with epithelial ovarian cancer associated with BRCA1 and BRCA2 mutations. J. Clin. Oncol. 26(34) , 5530–5536 (2008).
  • Vencken PM , KriegeM, HoogwerfD et al. Chemosensitivity and outcome of BRCA1- and BRCA2-associated ovarian cancer patients after first-line chemotherapy compared with sporadic ovarian cancer patients. Ann. Oncol. 22(6) , 1346–1352 (2011).
  • Gallagher DJ , KonnerJA, Bell-McGuinnKM et al. Survival in epithelial ovarian cancer: a multivariate analysis incorporating BRCA mutation status and platinum sensitivity. Ann. Oncol. 22(5) , 1127–1132 (2011).
  • Turner N , TuttA, AshworthA. Hallmarks of ‘BRCAness‘ in sporadic cancers. Nat. Rev. Cancer4(10) , 814–819 (2004).
  • Gourley C , Michie Co, Roxburgh P et al. Increased incidence of visceral metastases in Scottish patients with BRCA1/2-defective ovarian cancer: an extension of the ovarian BRCAness phenotype. J. Clin. Oncol.28(15) , 2505–2511 (2010).
  • Aida H , TakakuwaK, NagataH et al. Clinical features of ovarian cancer in Japanese women with germ-line mutations of BRCA1. Clin. Cancer Res. 4(1) , 235–240 (1998).
  • Artioli G , BorgatoL, CappettaA et al. Overall survival in BRCA-associated ovarian cancer: case–control study of an Italian series. Eur. J. Gynaecol. Oncol. 31(6) , 658–661 (2010).
  • Ben David Y , ChetritA, Hirsh-YechezkelG et al. Effect of BRCA mutations on the length of survival in epithelial ovarian tumors. J. Clin. Oncol. 20(2) , 463–466 (2002).
  • Boyd J , SonodaY, FedericiMG et al. Clinicopathologic features of BRCA-linked and sporadic ovarian cancer. JAMA 283(17) , 2260–2265 (2000).
  • Buller RE , ShahinMS, GeislerJP, ZoggM, De Young BR, Davis CS. Failure of BRCA1 dysfunction to alter ovarian cancer survival. Clin. Cancer Res.8(5) , 1196–1202 (2002).
  • Cass I , BaldwinRL, VarkeyT, MoslehiR, NarodSA, KarlanBY. Improved survival in women with BRCA-associated ovarian carcinoma. Cancer97(9) , 2187–2195 (2003).
  • Chetrit A , Hirsh-YechezkelG, Ben-DavidY, LubinF, FriedmanE, SadetzkiS. Effect of BRCA1/2 mutations on long-term survival of patients with invasive ovarian cancer: the national Israeli study of ovarian cancer. J. Clin .Oncol.26(1) , 20–25 (2008).
  • Hennessy BT , TimmsKM, CareyMS et al. Somatic mutations in BRCA1 and BRCA2 could expand the number of patients that benefit from poly (ADP ribose) polymerase inhibitors in ovarian cancer. J. Clin. Oncol. 28(22) , 3570–3576 (2010).
  • Jóhannsson OT , RanstamJ, BorgA, OlssonH. Survival of BRCA1 breast and ovarian cancer patients: a population-based study from southern Sweden. J. Clin. Oncol.16(2) , 397–404 (1998).
  • Kringen P , WangY, DumeauxV et al. TP53 mutations in ovarian carcinomas from sporadic cases and carriers of two distinct BRCA1 founder mutations; relation to age at diagnosis and survival. BMC Cancer5 , 134 (2005).
  • Lacour RA , WestinSN, MeyerLA et al. Improved survival in non-Ashkenazi Jewish ovarian cancer patients with BRCA1 and BRCA2 gene mutations. Gynecol. Oncol. 121(2) , 358–363 (2011).
  • Pal T , Permuth-WeyJ, KapoorR, CantorA, SutphenR. Improved survival in BRCA2 carriers with ovarian cancer. Fam. Cancer6(1) , 113–119 (2007).
  • Pharoah PD , EastonDF, StocktonDL, GaytherS, PonderBA. Survival in familial, BRCA1-associated, and BRCA2-associated epithelial ovarian cancer. United Kingdom Coordinating Committee for Cancer Research (UKCCCR) Familial Ovarian Cancer Study Group. Cancer Res.59(4) , 868–871 (1999).
  • Ragupathy K , FergusonM. Pattern and chemosensitivity of ovarian cancer in patients with BRCA1/2 mutations. J. Obstet. Gynaecol.31(2) , 178–179 (2011).
  • Ramus SJ , FishmanA, PharoahPD, YarkoniS, AltarasM, PonderBA. Ovarian cancer survival in Ashkenazi Jewish patients with BRCA1 and BRCA2 mutations. Eur. J. Surg. Oncol.27(3) , 278–281 (2001).
  • Rubin SC , BenjaminI, BehbakhtK et al. Clinical and pathological features of ovarian cancer in women with germ-line mutations of BRCA1. N. Engl. J. Med. 335(19) , 1413–1416 (1996).
  • Zweemer RP , VerheijenRH, CoeberghJW et al. Survival analysis in familial ovarian cancer, a case control study. Eur. J. Obstet. Gynecol. Reprod. Biol. 98(2) , 219–223 (2001).
  • Dann RB , DeloiaJA, TimmsKM et al. BRCA1/2 mutations and expression: response to platinum chemotherapy in patients with advanced stage epithelial ovarian cancer. Gynecol. Oncol.125(3) , 677–682 (2012).
  • Mankoo PK , ShenR, SchultzN, LevineDA, SanderC. Time to recurrence and survival in serous ovarian tumors predicted from integrated genomic profiles. PLoS ONE6(11) , e24709 (2011).
  • Yarden RI , Pardo-ReoyoS, SgagiasM, CowanKH, BrodyLC. BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat. Genet.30(3) , 285–289 (2002).
  • Joukov V , GroenAC, ProkhorovaT et al. The BRCA1/BARD1 heterodimer modulates ran-dependent mitotic spindle assembly. Cell 127(3) , 539–552 (2006).
  • Lou Z , Minter-DykhouseK, ChenJ. BRCA1 participates in DNA decatenation. Nat. Struct. Mol. Biol.12(7) , 589–593 (2005).
  • Sankaran S , CroneDE, PalazzoRE, ParvinJD. BRCA1 regulates gamma-tubulin binding to centrosomes. Cancer Biol. Ther.6(12) , 1853–1857 (2007).
  • Starita LM , MachidaY, SankaranS et al. BRCA1-dependent ubiquitination of gamma-tubulin regulates centrosome number. Mol. Cell. Biol. 24(19) , 8457–8466 (2004).
  • Drost R , BouwmanP, RottenbergS et al. BRCA1 RING function is essential for tumor suppression but dispensable for therapy resistance. Cancer Cell. 20(6) , 797–809 (2011).
  • Narod SA , NeuhausenS, VichodezG et al. Rapid progression of prostate cancer in men with a BRCA2 mutation. Br. J. Cancer 99(2) , 371–374 (2008).
  • Ferrone CR , LevineDA, TangLH et al. BRCA germline mutations in Jewish patients with pancreatic adenocarcinoma. J. Clin. Oncol.27(3) , 433–438 (2009).
  • Liede A , KarlanBY, NarodSA. Cancer risks for male carriers of germline mutations in BRCA1 or BRCA2: a review of the literature. J. Clin. Oncol.22(4) , 735–742 (2004).
  • Hahn SA , GreenhalfB, EllisI et al. BRCA2 germline mutations in familial pancreatic carcinoma. J. Natl Cancer Inst.95(3) , 214–221 (2003).
  • Moller P , EvansDG, ReisMM et al. Surveillance for familial breast cancer: Differences in outcome according to BRCA mutation status. Int. J. Cancer 121(5) , 1017–1020 (2007).
  • Lee EH , ParkSK, ParkB et al. Effect of BRCA1/2 mutation on short-term and long-term breast cancer survival: a systematic review and meta-analysis. Breast Cancer Res. Treat. 122(1) , 11–25 (2010).
  • Foulkes WD , MetcalfeK, SunP et al. Estrogen receptor status in BRCA1- and BRCA2-related breast cancer: the influence of age, grade, and histological type. Clin. Cancer Res. 10(6) , 2029–2034 (2004).
  • Satagopan JM , BoydJ, KauffND et al. Ovarian cancer risk in Ashkenazi Jewish carriers of BRCA1 and BRCA2 mutations. Clin. Cancer Res. 8(12) , 3776–3781 (2002).
  • Antoniou A , PharoahPD, NarodS et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am. J. Hum. Genet. 72(5) , 1117–1130 (2003).
  • Prevalence and penetrance of BRCA1 and BRCA2 mutations in a population-based series of breast cancer cases. Anglian Breast Cancer Study Group. Br. J. Cancer83(10) , 1301–1308 (2000).
  • Hall JM , Lee Mk, Newman B et al. Linkage of early-onset familial breast cancer to chromosome 17q21. Science250(4988) , 1684–1689 (1990).
  • Miki Y , SwensenJ, Shattuck-EidensD et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266(5182) , 66–71 (1994).
  • Sy SM , HuenMS, ChenJ. PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc. Natl Acad. Sci. USA106(17) , 7155–7160 (2009).
  • Wooster R , BignellG, LancasterJ et al. Identification of the breast cancer susceptibility gene BRCA2. Nature 378(6559) , 789–792 (1995).
  • Esashi F , ChristN, GannonJ et al. CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature 434(7033) , 598–604 (2005).
  • Ayoub N , RajendraE, SuX, JeyasekharanAD, MahenR, VenkitaramanAR. The carboxyl terminus of BRCA2 links the disassembly of Rad51 complexes to mitotic entry. Curr. Biol.19(13) , 1075–1085 (2009).
  • Davies OR , PellegriniL. Interaction with the BRCA2 C terminus protects RAD51-DNA filaments from disassembly by BRC repeats. Nat. Struct. Mol. Biol.14(6) , 475–483 (2007).
  • Roy R , ChunJ, PowellSN. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat. Rev. Cancer12(1) , 68–78 (2011).
  • Lou Z , ChiniCC, Minter-DykhouseK, ChenJ. Mediator of DNA damage checkpoint protein 1 regulates BRCA1 localization and phosphorylation in DNA damage checkpoint control. J. Biol. Chem.278(16) , 13599–13602 (2003).
  • Hashizume R , FukudaM, MaedaI et al. The RING heterodimer BRCA1–BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J. Biol. Chem. 276(18) , 14537–14540 (2001).
  • Jensen RB , CarreiraA, KowalczykowskiSC. Purified human BRCA2 stimulates RAD51-mediated recombination. Nature467(7316) , 678–683 (2010).
  • Holloman WK . Unraveling the mechanism of BRCA2 in homologous recombination. Nat. Struct. Mol. Biol.18(7) , 748–754 (2011).
  • Baumann P , BensonFE, WestSC. Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. Cell87(4) , 757–766 (1996).
  • Osher DJ , KushnerYB, ArseneauJ, FoulkesWD. Melphalan as a treatment for BRCA-related ovarian carcinoma: can you teach an old drug new tricks? J. Clin. Pathol.64(10) , 924–926 (2011).
  • Evers B , SchutE, van der Burg E et al. A high-throughput pharmaceutical screen identifies compounds with specific toxicity against BRCA2-deficient tumors. Clin. Cancer Res.16(1) , 99–108 (2009).
  • Farmer H , McCabeN, LordCJ et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035) , 917–921 (2005).
  • Bryant HE , SchultzN, ThomasHD et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434(7035) , 913–917 (2005).
  • Chen A . PARP inhibitors: its role in treatment of cancer. Chin. J. Cancer30(7) , 463–471 (2011).
  • Fong PC , BossDS, YapTA et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361(2) , 123–134 (2009).
  • Audeh MW , CarmichaelJ, PensonRT et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376(9737) , 245–251 (2010).
  • Fong PC , YapTA, BossDS et al. Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J. Clin. Oncol. 28(15) , 2512–2519 (2010).
  • Gelmon KA , TischkowitzM, MackayH et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a Phase 2, multicentre, open-label, non-randomised study. Lancet Oncol. 12(9) , 852–861 (2011).
  • Kaye SB , LubinskiJ, MatulonisU et al. Phase II, open-label, randomized, multicenter study comparing the efficacy and safety of olaparib, a poly (ADP-ribose) polymerase inhibitor, and pegylated liposomal doxorubicin in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer. J. Clin. Oncol. 30(4) , 372–379 (2012).
  • Ledermann J , HarterP, GourleyC et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N. Engl. J. Med. 366(15) , 1382–1392 (2012).
  • Turner NC Lord CJ, Iorns E et al. A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. EMBO J.27(9) , 1368–1377 (2008).
  • Issaeva N , ThomasHD, DjureinovicT et al. 6-thioguanine selectively kills BRCA2-defective tumors and overcomes PARP inhibitor resistance. Cancer Res. 70(15) , 6268–6276 (2010).
  • Jacquemont C , TaniguchiT. Proteasome function is required for DNA damage response and fanconi anemia pathway activation. Cancer Res.67(15) , 7395–7405 (2007).
  • Deans AJ , KhannaKK, McneesCJ, MercurioC, HeierhorstJ, McarthurGA. Cyclin-dependent kinase 2 functions in normal DNA repair and is a therapeutic target in BRCA1-deficient cancers. Cancer Res.66(16) , 8219–8226 (2006).
  • Dungey FA , CaldecottKW, ChalmersAJ. Enhanced radiosensitization of human glioma cells by combining inhibition of poly(ADP-ribose) polymerase with inhibition of heat shock protein 90. Mol. Cancer Ther.8(8) , 2243–2254 (2009).
  • Chiang JW , KarlanBY, CassL, BaldwinRL. BRCA1 promoter methylation predicts adverse ovarian cancer prognosis. Gynecol. Oncol.101(3) , 403–410 (2006).
  • Liu GY , ZhangW. Will Chinese ovarian cancer patients benefit from knowing the BRCA2 mutation status? Chin. J. Cancer31(1) , 1–4 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.