439
Views
0
CrossRef citations to date
0
Altmetric
Review

Potential Effect of Pharmacogenetics on Maternal, Fetal and Infant Antiretroviral Drug Exposure During Pregnancy and Breastfeeding

, &
Pages 1501-1522 | Published online: 12 Oct 2012

References

  • De Cock KM , FowlerMG, MercierE et al. Prevention of mother-to-child HIV transmission in resource-poor countries: translating research into policy and practice. JAMA 283(9) , 1175–1182 (2000).
  • Connor EM , SperlingRS, GelberR et al. Reduction of maternal-infant transmission of human immunodeficiency virus type 1 with zidovudine treatment. N. Engl. J. Med. 331(18) , 1173–1180 (1994).
  • Guay LA , MusokeP, FlemingT et al. Intrapartum and neonatal single-dose nevirapine compared with zidovudine for prevention of mother-to-child transmission of HIV-1 in Kampala, Uganda: HIVNET 012 randomised trial. Lancet 354(9181) , 795–802 (1999).
  • Lallemant M , JourdainG, Le Coeur S et al. Single-dose perinatal nevirapine plus standard zidovudine to prevent mother-to-child transmission of HIV-1 in Thailand. N. Engl. J. Med.351(3) , 217–228 (2004).
  • Warszawski J , TubianaR, Le Chenadec J et al. Mother-to-child HIV transmission despite antiretroviral therapy in the ANRS French Perinatal Cohort. AIDS22(2) , 289–299 (2008).
  • Chasela CS , HudgensMG, JamiesonDJ et al. Maternal or infant antiretroviral drugs to reduce HIV-1 transmission. N. Engl. J. Med. 362(24) , 2271–2281 (2010).
  • de Vincenzi I . Triple antiretroviral compared with zidovudine and single-dose nevirapine prophylaxis during pregnancy and breastfeeding for prevention of mother-to-child transmission of HIV-1 (Kesho Bora study): a randomised controlled trial. Lancet Infect. Dis.11(3) , 171–180 (2011).
  • Shapiro RL , HughesMD, OgwuA et al. Antiretroviral regimens in pregnancy and breast-feeding in Botswana. N. Engl. J. Med. 362(24) , 2282–2294 (2010).
  • Mirochnick M , CapparelliE. Pharmacokinetics of antiretrovirals in pregnant women. Clin. Pharmacokinet.43(15) , 1071–1087 (2004).
  • Cressey TR , LallemantM. Pharmacogenetics of antiretroviral drugs for the treatment of HIV-infected patients: an update. Infect. Genet. Evol.7(2) , 333–342 (2007).
  • Tozzi V . Pharmacogenetics of antiretrovirals. Antiviral Res.85(1) , 190–200 (2010).
  • Lubomirov R , ColomboS, di Iulio J et al. Association of pharmacogenetic markers with premature discontinuation of first-line anti-HIV therapy: an observational cohort study. J. Infect. Dis203(2) , 246–257 (2011).
  • Wyen C , HendraH, SiccardiM et al. Cytochrome P450 2B6 (CYP2B6) and constitutive androstane receptor (CAR) polymorphisms are associated with early discontinuation of efavirenz-containing regimens. J. Antimicrob. Chemother. 66(9) , 2092–2098 (2011).
  • Dunlop W . Serial changes in renal haemodynamics during normal human pregnancy. Br. J. Obstet. Gynaecol.88(1) , 1–9 (1981).
  • Tracy TS , VenkataramananR, GloverDD et al. Temporal changes in drug metabolism (CYP1A2, CYP2D6 and CYP3A activity) during pregnancy. Am. J. Obstet. Gynecol. 192(2) , 633–639 (2005).
  • Anderson GD . Pregnancy-induced changes in pharmacokinetics: a mechanistic-based approach. Clin. Pharmacokinet.44(10) , 989–1008 (2005).
  • Tirona RG , KimRB. Nuclear receptors and drug disposition gene regulation. J. Pharm. Sci.94(6) , 1169–1186 (2005).
  • Faucette SR , SueyoshiT, SmithCM et al. Differential regulation of hepatic CYP2B6 and CYP3A4 genes by constitutive androstane receptor but not pregnane X receptor. J. Pharmacol. Exp. Ther. 317(3) , 1200–1209 (2006).
  • Fahmi OA , KishM, BoldtS et al. Cytochrome P450 3A4 mRNA is a more reliable marker than CYP3A4 activity for detecting pregnane X receptor-activated induction of drug-metabolizing enzymes. Drug Metab. Dispos. 38(9) , 1605–1611 (2010).
  • Morris CA , OnyambokoMA, CapparelliE et al. Population pharmacokinetics of artesunate and dihydroartemisinin in pregnant and non-pregnant women with malaria. Malar. J. 10 , 114 (2011).
  • Badger TM , HidestrandM, ShankarK et al. The effects of pregnancy on ethanol clearance. Life Sci. 77(17) , 2111–2126 (2005).
  • Else LJ , TaylorS, BackDJ et al. Pharmacokinetics of antiretroviral drugs in anatomical sanctuary sites: the fetal compartment (placenta and amniotic fluid). Antivir. Ther. 16(8) , 1139–1147 (2011).
  • Watts DH . Teratogenicity risk of antiretroviral therapy in pregnancy. Curr. HIV/AIDS Rep.4(3) , 135–140 (2007).
  • Ross AC , LeongT, AveryA et al. Effects of in utero antiretroviral exposure on mitochondrial DNA levels, mitochondrial function and oxidative stress. HIV Med. 13(2) , 98–106 (2012).
  • Evseenko D , PaxtonJW, KeelanJA. Active transport across the human placenta: impact on drug efficacy and toxicity. Expert Opin Drug Metab. Toxicol.2(1) , 51–69 (2006).
  • Gulati A , GerkPM. Role of placental ATP-binding cassette (ABC) transporters in antiretroviral therapy during pregnancy. J. Pharm. Sci.98(7) , 2317–2335 (2009).
  • Iqbal M , AudetteMC, PetropoulosS et al. Placental drug transporters and their role in fetal protection. Placenta 33(3) , 137–142 (2012).
  • Ieiri I . Functional significance of genetic polymorphisms in P-glycoprotein (MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). Drug Metab. Pharmacokinet.27(1) , 85–105 (2012).
  • Griffin L , AnnaertP, BrouwerKL. Influence of drug transport proteins on the pharmacokinetics and drug interactions of HIV protease inhibitors. J. Pharm. Sci.100(9) , 3636–3654 (2011).
  • Moss DM , KwanWS, LiptrottNJ et al. Raltegravir is a substrate for SLC22A6: a putative mechanism for the interaction between raltegravir and tenofovir. Antimicrob. Agents Chemother. 55(2) , 879–887 (2011).
  • Pal D , KwatraD, MinochaM et al. Efflux transporters- and cytochrome P-450-mediated interactions between drugs of abuse and antiretrovirals. Life Sci. 88(21–22) , 959–971 (2011).
  • Shitara Y . Clinical importance of OATP1B1 and OATP1B3 in drug–drug interactions. Drug Metab. Pharmacokinet.26(3) , 220–227 (2011).
  • Kis O , RobillardK, ChanGN et al. The complexities of antiretroviral drug–drug interactions: role of ABC and SLC transporters. Trends Pharmacol. Sci. 31(1) , 22–35 (2010).
  • Rubinchik-Stern M , EyalS. Drug interactions at the human placenta: what is the evidence? Front. Pharmacol.3 , 126 (2012).
  • Bazzoli C , JullienV, Le Tiec C et al. Intracellular pharmacokinetics of antiretroviral drugs in HIV-infected patients, and their correlation with drug action. Clin. Pharmacokinet.49(1) , 17–45 (2010).
  • Veal GJ , BackDJ. Metabolism of zidovudine. Gen. Pharmacol.26(7) , 1469–1475 (1995).
  • Sperling RS , RobozJ, DischeR et al. Zidovudine pharmacokinetics during pregnancy. Am. J. Perinatol. 9(4) , 247–249 (1992).
  • O‘Sullivan MJ , BoyerPJ, ScottGB et al. The pharmacokinetics and safety of zidovudine in the third trimester of pregnancy for women infected with human immunodeficiency virus and their infants: Phase I acquired immunodeficiency syndrome clinical trials group study (protocol 082). Zidovudine Collaborative Working Group. Am. J. Obstet. Gynecol. 168(5) , 1510–1516 (1993).
  • Moodley J , MoodleyD, PillayK et al. Pharmacokinetics and antiretroviral activity of lamivudine alone or when coadministered with zidovudine in human immunodeficiency virus type 1-infected pregnant women and their offspring. J. Infect. Dis 178(5) , 1327–1333 (1998).
  • Watts DH , BrownZA, TartaglioneT et al. Pharmacokinetic disposition of zidovudine during pregnancy. J. Infect. Dis 163(2) , 226–232 (1991).
  • Cressey TR , LeenasirimakulP, JourdainG et al. Intensive pharmacokinetics of zidovudine 200 mg twice daily in HIV-1-infected patients weighing less than 60 kg on highly active antiretroviral therapy. J. Acquir. Immune Defic. Syndr. 42(3) , 387–389 (2006).
  • Duncombe C , KerrSJ, LiddyJ et al. Efficacy and tolerability of zidovudine 200 mg twice a day as part of combination antiretroviral therapy for 96 weeks. J. Acquir. Immune Defic. Syndr. 54(5) , e19–e20 (2010).
  • Anderson PL , LambaJ, AquilanteCL et al. Pharmacogenetic characteristics of indinavir, zidovudine, and lamivudine therapy in HIV-infected adults: a pilot study. J. Acquir. Immune Defic. Syndr. 42(4) , 441–449 (2006).
  • Sai Y , NishimuraT, ShimpoS et al. Characterization of the mechanism of zidovudine uptake by rat conditionally immortalized syncytiotrophoblast cell line TR-TBT. Pharm. Res. 25(7) , 1647–1653 (2008).
  • Wade NA , UnadkatJD, HuangS et al. Pharmacokinetics and safety of stavudine in HIV-infected pregnant women and their infants: Pediatric AIDS Clinical Trials Group protocol 332. J. Infect. Dis 190(12) , 2167–2174 (2004).
  • Wangsomboonsiri W , MahasirimongkolS, ChantarangsuS et al. Association between HLA-B*4001 and lipodystrophy among HIV-infected patients from Thailand who received a stavudine-containing antiretroviral regimen. Clin. Infect. Dis 50(4) , 597–604 (2010).
  • Best BM , MirochnickM, CapparelliEV et al. Impact of pregnancy on abacavir pharmacokinetics. AIDS 20(4) , 553–560 (2006).
  • Hetherington S , McGuirkS, PowellG et al. Hypersensitivity reactions during therapy with the nucleoside reverse transcriptase inhibitor abacavir. Clin. Ther. 23(10) , 1603–1614 (2001).
  • Mallal S , NolanD, WittC et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 359(9308) , 727–732 (2002).
  • Mallal S , PhillipsE, CarosiG et al. HLA-B*5701 screening for hypersensitivity to abacavir. N. Engl. J. Med.358(6) , 568–579 (2008).
  • Benaboud S , TreluyerJM, UrienS et al. Pregnancy-related effects on lamivudine pharmacokinetics in a population study with 228 women. Antimicrob. Agents Chemother. 56(2) , 776–782 (2012).
  • Mandelbrot L , PeytavinG, FirtionG et al. Maternal–fetal transfer and amniotic fluid accumulation of lamivudine in human immunodeficiency virus-infected pregnant women. Am. J. Obstet. Gynecol. 184(2) , 153–158 (2001).
  • Shapiro RL , HollandDT, CapparelliE et al. Antiretroviral concentrations in breast-feeding infants of women in Botswana receiving antiretroviral treatment. J. Infect. Dis 192(5) , 720–727 (2005).
  • Mirochnick M , ThomasT, CapparelliE et al. Antiretroviral concentrations in breast-feeding infants of mothers receiving highly active antiretroviral therapy. Antimicrob. Agents Chemother. 53(3) , 1170–1176 (2009).
  • Jung N , LehmannC, RubbertA et al. Relevance of the organic cation transporters 1 and 2 for antiretroviral drug therapy in human immunodeficiency virus infection. Drug Metab. Dispos. 36(8) , 1616–1623 (2008).
  • Minuesa G , VolkC, Molina-ArcasM et al. Transport of lamivudine [(-)-beta-L-2´,3´-dideoxy-3´-thiacytidine] and high-affinity interaction of nucleoside reverse transcriptase inhibitors with human organic cation transporters 1, 2, and 3. J. Pharmacol. Exp. Ther. 329(1) , 252–261 (2009).
  • Bleasby K , CastleJC, RobertsCJ et al. Expression profiles of 50 xenobiotic transporter genes in humans and pre-clinical species: a resource for investigations into drug disposition. Xenobiotica 36(10–11) , 963–988 (2006).
  • Choi MK , SongIS. Genetic variants of organic cation transporter 1 (OCT1) and OCT2 significantly reduce lamivudine uptake. Biopharm. Drug Dispos.33(3) , 170–178 (2012).
  • Blanche S , TardieuM, RustinP et al. Persistent mitochondrial dysfunction and perinatal exposure to antiretroviral nucleoside analogues. Lancet 354(9184) , 1084–1089 (1999).
  • Divi RL , WalkerVE, WadeNA et al. Mitochondrial damage and DNA depletion in cord blood and umbilical cord from infants exposed in utero to combivir. AIDS 18(7) , 1013–1021 (2004).
  • Kallianpur AR , HulganT. Pharmacogenetics of nucleoside reverse-transcriptase inhibitor-associated peripheral neuropathy. Pharmacogenomics10(4) , 623–637 (2009).
  • Canter JA , RobbinsGK, SelphD et al. African mitochondrial DNA subhaplogroups and peripheral neuropathy during antiretroviral therapy. J. Infect. Dis 201(11) , 1703–1707 (2010).
  • Stek AM , BestBM, LuoW et al. Effect of pregnancy on emtricitabine pharmacokinetics. HIV Med. 13(4) , 226–235 (2011).
  • Benaboud S , PruvostA, CoffiePA et al. Concentrations of tenofovir and emtricitabine in breast milk of HIV-1-infected women in Abidjan, Cote d‘Ivoire, in the ANRS 12109 TEmAA Study, Step 2. Antimicrob. Agents Chemother. 55(3) , 1315–1317 (2011).
  • Bousquet L , PruvostA, DidierN et al. Emtricitabine: inhibitor and substrate of multidrug resistance associated protein. Eur. J. Pharm. Sci. 35(4) , 247–256 (2008).
  • Kearney BP , FlahertyJF, ShahJ. Tenofovir disoproxil fumarate: clinical pharmacology and pharmacokinetics. Clin. Pharmacokinet.43(9) , 595–612 (2004).
  • Burchett S , BestB, MirochnickM et al. Tenofovir pharmacokinetics during pregnancy, at delivery and postpartum. Presented at: 14th Conference on Retroviruses and Opportunistic Infections. Los Angeles, CA, USA, 25–28 February 2007 (Abstract 738b).
  • Colbers A , TaylorG, MoltoJ et al. A comparison of the pharmacokinetics of tenofovir during pregnancy and postpartum. Presented at: 13th International Workshop on Clinical Pharmacology of HIV Therapy. Barcelona, Spain, 16–18 April 2012.
  • Benaboud S , HirtD, LaunayO et al. Pregnancy-related effects on tenofovir pharmacokinetics: a population study with 186 women. Antimicrob. Agents Chemother. 56(2) , 857–862 (2012).
  • Best BM , LetendreSL, KoopmansP et al. Low cerebrospinal fluid concentrations of the nucleotide HIV reverse transcriptase inhibitor, tenofovir. J. Acquir. Immune Defic. Syndr. 59(4) , 376–381 (2012).
  • Uwai Y , IdaH, TsujiY et al. Renal transport of adefovir, cidofovir, and tenofovir by SLC22A family members (hOAT1, hOAT3, and hOCT2). Pharm. Res. 24(4) , 811–815 (2007).
  • Pushpakom SP , LiptrottNJ, Rodriguez-NovoaS et al. Genetic variants of ABCC10, a novel tenofovir transporter, are associated with kidney tubular dysfunction. J. Infect. Dis 204(1) , 145–153 (2011).
  • Alebouyeh M , TakedaM, OnozatoML et al. Expression of human organic anion transporters in the choroid plexus and their interactions with neurotransmitter metabolites. J. Pharmacol. Sci. 93(4) , 430–436 (2003).
  • Nahata MC , BradyMT. Pharmacokinetics of fluconazole after oral administration in children with human immunodeficiency virus infection. Eur. J Clin Pharmacol.48(3–4) , 291–293 (1995).
  • Leggas M , AdachiM, SchefferGL et al. Mrp4 confers resistance to topotecan and protects the brain from chemotherapy. Mol. Cell. Biol.24(17) , 7612–7621 (2004).
  • Gibbs JE , ThomasSA. The distribution of the anti-HIV drug, 2´3´-dideoxycytidine (ddC), across the blood–brain and blood–cerebrospinal fluid barriers and the influence of organic anion transport inhibitors. J. Neurochem.80(3) , 392–404 (2002).
  • Anthonypillai C , GibbsJE, ThomasSA. The distribution of the anti-HIV drug, tenofovir (PMPA), into the brain, CSF and choroid plexuses. Cerebrospinal Fluid Res.3 , 1 (2006).
  • Kiser JJ , AquilanteCL, AndersonPL et al. Clinical and genetic determinants of intracellular tenofovir diphosphate concentrations in HIV-infected patients. J. Acquir. Immune Defic. Syndr. 47(3) , 298–303 (2008).
  • Cihlar T , HoES, LinDC et al. Human renal organic anion transporter 1 (hOAT1) and its role in the nephrotoxicity of antiviral nucleotide analogs. Nucleosides Nucleotides Nucleic Acids 20(4–7) , 641–648 (2001).
  • Mallants R , Van Oosterwyck K, Van Vaeck L et al. Multidrug resistance-associated protein 2 (MRP2) affects hepatobiliary elimination but not the intestinal disposition of tenofovir disoproxil fumarate and its metabolites. Xenobiotica35(10–11) , 1055–1066 (2005).
  • Imaoka T , KusuharaH, AdachiM et al. Functional involvement of multidrug resistance-associated protein 4 (MRP4/ABCC4) in the renal elimination of the antiviral drugs adefovir and tenofovir. Mol. Pharmacol. 71(2) , 619–627 (2007).
  • Rodriguez-Novoa S , LabargaP, SorianoV et al. Predictors of kidney tubular dysfunction in HIV-infected patients treated with tenofovir: a pharmacogenetic study. Clin. Infect. Dis 48(11) , e108–e116 (2009).
  • Rodriguez-Novoa S , LabargaP, D‘AvolioA et al. Impairment in kidney tubular function in patients receiving tenofovir is associated with higher tenofovir plasma concentrations. AIDS 24(7) , 1064–1066 (2010).
  • Viramune® Tablets, Viramune® Oral Suspension, package insert. Boehringer-Ingelheim Pharmaceuticals Inc., CT, USA.
  • Cressey TR , JourdainG, LallemantMJ et al. Persistence of nevirapine exposure during the postpartum period after intrapartum single-dose nevirapine in addition to zidovudine prophylaxis for the prevention of mother-to-child transmission of HIV-1. J. Acquir. Immune Defic. Syndr. 38(3) , 283–288 (2005).
  • Jourdain G , Ngo-Giang-HuongN, Le Coeur S et al. Intrapartum exposure to nevirapine and subsequent maternal responses to nevirapine-based antiretroviral therapy. N. Engl. J. Med.351(3) , 229–240 (2004).
  • McIntyre JA , HopleyM, MoodleyD et al. Efficacy of short-course AZT plus 3TC to reduce nevirapine resistance in the prevention of mother-to-child HIV transmission: a randomized clinical trial. PLoS Med. 6(10) , e1000172 (2009).
  • Van Dyke RB , Ngo-Giang-HuongN, ShapiroDE et al. A comparison of 3 regimens to prevent nevirapine resistance mutations in HIV-infected pregnant women receiving a single intrapartum dose of nevirapine. Clin. Infect. Dis 54(2) , 285–293 (2012).
  • Chantarangsu S , CresseyTR, MahasirimongkolS et al. Influence of CYP2B6 polymorphisms on the persistence of plasma nevirapine concentrations following a single intra-partum dose for the prevention of mother to child transmission in HIV-infected Thai women. J. Antimicrob. Chemother. 64(6) , 1265–1273 (2009).
  • Capparelli EV , AweekaF, HittiJ et al. Chronic administration of nevirapine during pregnancy: impact of pregnancy on pharmacokinetics. HIV Med. 9(4) , 214–220 (2008).
  • Lamorde M , Byakika-KibwikaP, Okaba-KayomV et al. Suboptimal nevirapine steady-state pharmacokinetics during intrapartum compared with postpartum in HIV-1-seropositive Ugandan women. J. Acquir. Immune Defic. Syndr. 55(3) , 345–350 (2010).
  • von Hentig N , CarlebachA, GuteP et al. A comparison of the steady-state pharmacokinetics of nevirapine in men, nonpregnant women and women in late pregnancy. Br. J. Clin. Pharmacol. 62(5) , 552–559 (2006).
  • Penzak SR , KabuyeG, MugyenyiP et al. Cytochrome P450 2B6 (CYP2B6) G516T influences nevirapine plasma concentrations in HIV-infected patients in Uganda. HIV Med. 8(2) , 86–91 (2007).
  • Wyen C , HendraH, VogelM et al. Impact of CYP2B6 983T>C polymorphism on non-nucleoside reverse transcriptase inhibitor plasma concentrations in HIV-infected patients. J. Antimicrob. Chemother. 61(4) , 914–918 (2008).
  • Brown KC , HosseinipourMC, HoskinsJM et al. Exploration of CYP450 and drug transporter genotypes and correlations with nevirapine exposure in Malawians. Pharmacogenomics 13(1) , 113–121 (2012).
  • Liptrott NJ , PushpakomS, WyenC et al. Association of ABCC10 polymorphisms with nevirapine plasma concentrations in the German Competence Network for HIV/AIDS. Pharmacogenet. Genomics 22(1) , 10–19 (2012).
  • Hitti J , FrenkelLM, StekAM et al. Maternal toxicity with continuous nevirapine in pregnancy: results from PACTG 10.2. J. Acquir. Immune Defic. Syndr. 36(3) , 772–776 (2004).
  • Phanuphak N , ApornpongT, TeeratakulpisarnS et al. Nevirapine-associated toxicity in HIV-infected Thai men and women, including pregnant women. HIV Med. 8(6) , 357–366 (2007).
  • Chantarangsu S , MushirodaT, MahasirimongkolS et al. HLA-B*3505 allele is a strong predictor for nevirapine-induced skin adverse drug reactions in HIV-infected Thai patients. Pharmacogenet. Genomics19(2) , 139–146 (2009).
  • Chantarangsu S , MushirodaT, MahasirimongkolS et al. Genome-wide association study identifies variations in 6p21.3 associated with nevirapine-induced rash. Clin. Infect. Dis 53(4) , 341–348 (2011).
  • Ellis JC , L‘hommeRF, EwingsFM et al. Nevirapine concentrations in HIV-infected children treated with divided fixed-dose combination antiretroviral tablets in Malawi and Zambia. Antivir. Ther. 12(2) , 253–260 (2007).
  • Minniear TD , ZehC, PolleN et al. Rash, hepatotoxicity and hyperbilirubinemia among kenyan infants born to HIV-infected women receiving triple-antiretroviral drugs for the prevention of mother-to-child HIV transmission. Pediatr. Infect. Dis. J. doi:10.1097/INF.0b013e318267ef6a (2012) (Epub ahead of print).
  • Fundaro C , GenoveseO, RendeliC et al. Myelomeningocele in a child with intrauterine exposure to efavirenz. AIDS 16(2) , 299–300 (2002).
  • Bussmann H , WesterCW, WesterCN et al. Pregnancy rates and birth outcomes among women on efavirenz-containing highly active antiretroviral therapy in Botswana. J. Acquir. Immune Defic. Syndr. 45(3) , 269–273 (2007).
  • Bera E , McCauslandK, NonkweloR et al. Birth defects following exposure to efavirenz-based antiretroviral therapy during pregnancy: a study at a regional South African hospital. AIDS 24(2) , 283–289 (2010).
  • Ford N , MofensonL, KranzerK et al. Safety of efavirenz in first-trimester of pregnancy: a systematic review and meta-analysis of outcomes from observational cohorts. AIDS 24(10) , 1461–1470 (2010).
  • Ekouevi DK , CoffiePA, OuattaraE et al. Pregnancy outcomes in women exposed to efavirenz and nevirapine: an appraisal of the IeDEA west Africa and ANRS databases, Abidjan, Cote d‘Ivoire. J. Acquir. Immune Defic. Syndr. 56(2) , 183–187 (2011).
  • Cressey TR , StekA, CapparelliE et al. Efavirenz pharmacokinetics during the third trimester of pregnancy and postpartum. J. Acquir. Immune Defic. Syndr. 59(3) , 245–252 (2012).
  • Ward BA , GorskiJC, JonesDR et al. The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity. J. Pharmacol. Exp. Ther. 306(1) , 287–300 (2003).
  • di Iulio J , FayetA, Arab-AlameddineM et al. In vivo analysis of efavirenz metabolism in individuals with impaired CYP2A6 function. Pharmacogenet. Genomics19(4) , 300–309 (2009).
  • Ogburn ET , JonesDR, MastersAR et al. Efavirenz primary and secondary metabolism in vitro and in vivo: identification of novel metabolic pathways and cytochrome P450 2A6 as the principal catalyst of efavirenz 7-hydroxylation. Drug Metab. Dispos. 38(7) , 1218–1229 (2010).
  • Bae SK , JeongYJ, LeeC et al. Identification of human UGT isoforms responsible for glucuronidation of efavirenz and its three hydroxy metabolites. Xenobiotica 41(6) , 437–444 (2011).
  • Kwara A , LarteyM, SagoeKW et al. CYP2B6, CYP2A6 and UGT2B7 genetic polymorphisms are predictors of efavirenz mid-dose concentration in HIV-infected patients. AIDS23(16) , 2101–2106 (2009).
  • Kwara A , LarteyM, SagoeKW et al. CYP2B6 (c.516G–>T) and CYP2A6 (*9B and/or *17) polymorphisms are independent predictors of efavirenz plasma concentrations in HIV-infected patients. Br. J. Clin. Pharmacol.67(4) , 427–436 (2009).
  • Rotger M , ColomboS, FurrerH et al. Influence of CYP2B6 polymorphism on plasma and intracellular concentrations and toxicity of efavirenz and nevirapine in HIV-infected patients. Pharmacogenet. Genomics 15(1) , 1–5 (2005).
  • Schneider S , PeltierA, GrasA et al. Efavirenz in human breast milk, mothers‘, and newborns‘ plasma. J. Acquir. Immune Defic. Syndr. 48(4) , 450–454 (2008).
  • Marzolini C , TelentiA, DecosterdLA et al. Efavirenz plasma levels can predict treatment failure and central nervous system side effects in HIV-1-infected patients. AIDS 15(1) , 71–75 (2001).
  • Peroni RN , Di Gennaro SS, Hocht C et al. Efavirenz is a substrate and in turn modulates the expression of the efflux transporter ABCG2/BCRP in the gastrointestinal tract of the rat. Biochem. Pharmacol.82(9) , 1227–1233 (2011).
  • Maliepaard M , SchefferGL, FaneyteIF et al. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res. 61(8) , 3458–3464 (2001).
  • Jonker JW , MerinoG, MustersS et al. The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk. Nat. Med. 11(2) , 127–129 (2005).
  • Hahnova-Cygalova L , CeckovaM, StaudF. Fetoprotective activity of breast cancer resistance protein (BCRP, ABCG2): expression and function throughout pregnancy. Drug Metab. Rev.43(1) , 53–68 (2011).
  • Izurieta P , KakudaTN, FeysC et al. Safety and pharmacokinetics of etravirine in pregnant HIV-1-infected women. HIV Med. 12(4) , 257–258 (2011).
  • Yanakakis LJ , BumpusNN. Biotransformation of the antiretroviral drug etravirine: metabolite identification, reaction phenotyping, and characterization of autoinduction of cytochrome P450-dependent metabolism. Drug Metab. Dispos.40(4) , 803–814 (2012).
  • McGready R , StepniewskaK, SeatonE et al. Pregnancy and use of oral contraceptives reduces the biotransformation of proguanil to cycloguanil. Eur. J. Clin. Pharmacol. 59(7) , 553–557 (2003).
  • Mega JL , CloseSL, WiviottSD et al. Cytochrome P-450 polymorphisms and response to clopidogrel. N. Engl. J. Med. 360(4) , 354–362 (2009).
  • Sibbing D , KochW, GebhardD et al. Cytochrome 2C19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement. Circulation 121(4) , 512–518 (2010).
  • Kumar GN , RodriguesAD, BukoAM et al. Cytochrome P450-mediated metabolism of the HIV-1 protease inhibitor ritonavir (ABT-538) in human liver microsomes. J. Pharmacol. Exp. Ther. 277(1) , 423–431 (1996).
  • van der Sandt IC , VosCM, NabulsiL et al. Assessment of active transport of HIV protease inhibitors in various cell lines and the in vitro blood–brain barrier. AIDS 15(4) , 483–491 (2001).
  • Janneh O , BrayPG, JonesE et al. Concentration-dependent effects and intracellular accumulation of HIV protease inhibitors in cultured CD4 T cells and primary human lymphocytes. J. Antimicrob. Chemother. 65(5) , 906–916 (2010).
  • Stek AM , MirochnickM, CapparelliE et al. Reduced lopinavir exposure during pregnancy. AIDS 20(15) , 1931–1939 (2006).
  • Else LJ , DouglasM, DickinsonL et al. Improved oral bioavailability of lopinavir in melt-extruded tablet formulation reduces impact of third trimester on lopinavir plasma concentrations. Antimicrob. Agents Chemother. 56(2) , 816–824 (2012).
  • Cressey TR , JourdainG, RawangbanB et al. Pharmacokinetics and virologic response of zidovudine/lopinavir/ritonavir initiated during the third trimester of pregnancy. AIDS 24(14) , 2193–2200 (2010).
  • Calza L , ManfrediR, TrapaniF et al. Lopinavir/ritonavir trough concentrations with the tablet formulation in HIV-1-infected women during the third trimester of pregnancy. Scand. J. Infect. Dis 44(5) , 381–387 (2012).
  • Ramautarsing RA , van der Lugt J, Gorowara M et al. Thai HIV-1-infected women do not require a dose increase of lopinavir/ritonavir during the third trimester of pregnancy. AIDS25(10) , 1299–1303 (2011).
  • Lambert JS , ElseLJ, JacksonV et al. Therapeutic drug monitoring of lopinavir/ritonavir in pregnancy. HIV Med. 12(3) , 166–173 (2011).
  • Best BM , StekAM, MirochnickM et al. Lopinavir tablet pharmacokinetics with an increased dose during pregnancy. J. Acquir. Immune Defic. Syndr. 54(4) , 381–388 (2010).
  • Hartkoorn RC , KwanWS, ShallcrossV et al. HIV protease inhibitors are substrates for OATP1A2, OATP1B1 and OATP1B3 and lopinavir plasma concentrations are influenced by SLCO1B1 polymorphisms. Pharmacogenet. Genomics 20(2) , 112–120 (2010).
  • Schipani A , EganD, DickinsonL et al. Estimation of the effect of SLCO1B1 polymorphisms on lopinavir plasma concentration in HIV-infected adults. Antivir. Ther. 17(5) , 861–868 (2012).
  • Rezk NL , WhiteN, BridgesAS et al. Studies on antiretroviral drug concentrations in breast milk: validation of a liquid chromatography-tandem mass spectrometric method for the determination of 7 anti-human immunodeficiency virus medications. Ther. Drug. Monit. 30(5) , 611–619 (2008).
  • Ripamonti D , CattaneoD, MaggioloF et al. Atazanavir plus low-dose ritonavir in pregnancy: pharmacokinetics and placental transfer. AIDS 21(18) , 2409–2415 (2007).
  • Mirochnick M , BestBM, StekAM et al. Atazanavir pharmacokinetics with and without tenofovir during pregnancy. J. Acquir. Immune Defic. Syndr. 56(5) , 412–419 (2011).
  • Mirochnick M , StekA, CapparelliE et al. Pharmacokinetics of increased dose atazanavir with and without tenofovir during pregnancy. Presented at: 12th International Workshop on Clinical Pharmacology of HIV Therapy. Miami, FL, USA, 13–15 April 2011.
  • Anderson PL , AquilanteCL, GardnerEM et al. Atazanavir pharmacokinetics in genetically determined CYP3A5 expressors versus non-expressors. J. Antimicrob. Chemother. 64(5) , 1071–1079 (2009).
  • Siccardi M , D‘AvolioA, BaiettoL et al. Association of a single-nucleotide polymorphism in the pregnane X receptor (PXR 63396C–>T) with reduced concentrations of unboosted atazanavir. Clin. Infect. Dis 47(9) , 1222–1225 (2008).
  • Schipani A , SiccardiM, D‘AvolioA et al. Population pharmacokinetic modeling of the association between 63396C->T pregnane X receptor polymorphism and unboosted atazanavir clearance. Antimicrob. Agents Chemother. 54(12) , 5242–5250 (2010).
  • Kile DA , MawhinneyS, AquilanteCL et al. A population pharmacokinetic-pharmacogenetic analysis of atazanavir. AIDS Res. Hum. Retroviruses doi:10.1089/aid.2011.0378 (2012) (Epub ahead of print).
  • Rodriguez-Novoa S , Martin-CarboneroL, BarreiroP et al. Genetic factors influencing atazanavir plasma concentrations and the risk of severe hyperbilirubinemia. AIDS 21(1) , 41–46 (2007).
  • Rotger M , TaffeP, BleiberG et al. Gilbert syndrome and the development of antiretroviral therapy-associated hyperbilirubinemia. J. Infect. Dis 192(8) , 1381–1386 (2005).
  • Huang MJ , KuaKE, TengHC et al. Risk factors for severe hyperbilirubinemia in neonates. Pediatric Res. 56(5) , 682–689 (2004).
  • Mandelbrot L , MazyF, Floch-TudalC et al. Atazanavir in pregnancy: impact on neonatal hyperbilirubinemia. Eur. J. Obstet. Gynecol. Reprod. Biol. 157(1) , 18–21 (2011).
  • Spencer L , NeelyM, MordwinkinN et al. Intensive pharmacokinetics of zidovudine, lamivudine, and atazanavir and HIV-1 viral load in breast milk and plasma in HIV+ women receiving HAART. Presented at: 16th Conference on Retroviruses and Opportunistic Infections (CROI). Montréal, Canada, 8–11 February 2009 (Abstract 942).
  • Capparelli E , BestB, StekA et al. Pharmacokinetics of darunavir once or twice daily during and after pregnancy. Presented at: 3rd International Workshop on HIV Pediatrics. Rome, Italy, 15–16 July 2011 (Abstract P_72).
  • Capparelli E , StekA, BestB et al. Boosted fosamprenavir pharmacokinetics during pregnancy. Presented at: 17th Conference on Retroviruses and Opportunistic Infections (CROI). San Francisco, CA, USA, 16–19 February 2010.
  • Taylor N , TouzeauV, GeitM et al. Raltegravir in pregnancy: a case series presentation. Int. J. STD AIDS 22(6) , 358–360 (2011).
  • McKeown DA , RosenvingeM, DonaghyS et al. High neonatal concentrations of raltegravir following transplacental transfer in HIV-1 positive pregnant women. AIDS 24(15) , 2416–2418 (2010).
  • Best BM , CapparelliE, StekA et al. Raltegravir pharmacokinetics during pregnancy. Presented at: 50th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC). Boston, MA, USA, 12–15 September 2010 (Abstract H-1668a).
  • Ananworanich J , GorowaraM, AvihingsanonA et al. Pharmacokinetics of and short-term virologic response to low-dose 400-milligram once-daily raltegravir maintenance therapy. Antimicrob. Agents Chemother. 56(4) , 1892–1898 (2012).
  • Siccardi M , D‘AvolioA, Rodriguez-NovoaS et al. Intrapatient and interpatient pharmacokinetic variability of raltegravir in the clinical setting. Ther. Drug Monit. 34(2) , 232–235 (2012).
  • Hirano A , IkemuraK, TakahashiM et al. Lack of correlation between UGT1A1*6, *28 genotypes, and plasma raltegravir concentrations in Japanese HIV type 1-infected patients. AIDS Res. Hum. Retroviruses 28(8) , 776–779 (2011).
  • Arab-Alameddine M , Fayet-MelloA, LubomirovR et al. Population pharmacokinetic analysis and pharmacogenetics of raltegravir in HIV-positive and healthy individuals. Antimicrob. Agents Chemother. 56(6) , 2959–2966 (2012).
  • Weizsaecker K , KurowskiM, HoffmeisterB et al. Pharmacokinetic profile in late pregnancy and cord blood concentration of tipranavir and enfuvirtide. Int. J. STD AIDS. 22(5) , 294–295 (2011).
  • Wensing AM , BoucherCA, van Kasteren M et al. Prevention of mother-to-child transmission of drug resistant HIV-1 using maternal therapy with both enfuvirtide and tipranavir. AIDS20(10) , 1465–1467 (2006).
  • Sued O , LattnerJ, GunA et al. Use of darunavir and enfuvirtide in a pregnant woman. Int. J. STD AIDS. 19(12) , 866–867 (2008).
  • Madeddu G , CaliaGM, CampusML et al. Successful prevention of multidrug resistant HIV mother-to-child transmission with enfuvirtide use in late pregnancy. Int. J. STD AIDS. 19(9) , 644–645 (2008).
  • Furco A , GosraniB, NicholasS et al. Successful use of darunavir, etravirine, enfuvirtide and tenofovir/emtricitabine in pregnant woman with multiclass HIV resistance. AIDS 23(3) , 434–435 (2009).
  • Cohan D , FeakinsC, WaraD et al. Perinatal transmission of multidrug-resistant HIV-1 despite viral suppression on an enfuvirtide-based treatment regimen. AIDS 19(9) , 989–990 (2005).
  • Vincent J , AhmedT, EricL et al. Favourable outcome of a pregnancy with a maraviroc-containing regimen. J. AIDS Clinic. Res. 2(6) , (2011).
  • Siccardi M , D‘AvolioA, NozzaS et al. Maraviroc is a substrate for OATP1B1 in vitro and maraviroc plasma concentrations are influenced by SLCO1B1 521 T>C polymorphism. Pharmacogenet. Genomics 20(12) , 759–765 (2010).
  • Chappuy H , TreluyerJM, ReyE et al. Maternal–fetal transfer and amniotic fluid accumulation of protease inhibitors in pregnant women who are infected with human immunodeficiency virus. Am. J. Obstet. Gynecol. 191(2) , 558–562 (2004).
  • Flynn PM , MirochnickM, ShapiroDE et al. Pharmacokinetics and safety of single-dose tenofovir disoproxil fumarate and emtricitabine in HIV-1-infected pregnant women and their infants. Antimicrob. Agents Chemother. 55(12) , 5914–5922 (2011).
  • Musoke P , GuayLA, BagendaD et al. A Phase I/II study of the safety and pharmacokinetics of nevirapine in HIV-1-infected pregnant Ugandan women and their neonates (HIVNET 006). AIDS 13(4) , 479–486 (1999).
  • van Heeswijk RP , KhaliqY, GallicanoKD et al. The pharmacokinetics of nelfinavir and M8 during pregnancy and post partum. Clin. Pharmacol. Ther. 76(6) , 588–597 (2004).
  • Winters MA , Van Rompay KK, Kashuba AD et al. Maternal–fetal pharmacokinetics and dynamics of a single intrapartum dose of maraviroc in rhesus macaques. Antimicrob. Agents Chemother.54(10) , 4059–4063 (2010).
  • Brennan-Benson P , PakianathanM, RiceP et al. Enfurvitide prevents vertical transmission of multidrug-resistant HIV-1 in pregnancy but does not cross the placenta. AIDS 20(2) , 297–299 (2006).
  • Ripamonti D , CattaneoD, CortinovisM et al. Transplacental passage of ritonavir-boosted darunavir in two pregnant women. Int. J. STD AIDS 20(3) , 215–216 (2009).
  • Ciccacci C , BorgianiP, CeffaS et al. Nevirapine-induced hepatotoxicity and pharmacogenetics: a retrospective study in a population from Mozambique. Pharmacogenomics 11(1) , 23–31 (2012).
  • Ni Z , MaoQ. ATP-binding cassette efflux transporters in human placenta. Curr. Pharm. Biotechnol.12(4) , 674–685 (2011).
  • Ellis L , PirmohamedM, OwenA. Transport of antiretroviral drugs by ABCB5: the elusive non-nucleoside transcriptase inhibitor efflux pump? Presented at: 12th International Workshop on Clinical Pharmacology of HIV Therapy. Miami, FL, USA, 13–15 April 2011.
  • Lee CG , GottesmanMM, CardarelliCO et al. HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter. Biochemistry 37(11) , 3594–3601 (1998).
  • Huisman MT , SmitJW, CrommentuynKM et al. Multidrug resistance protein 2 (MRP2) transports HIV protease inhibitors, and transport can be enhanced by other drugs. AIDS 16(17) , 2295–2301 (2002).
  • Jedlitschky G , BurchellB, KepplerD. The multidrug resistance protein 5 functions as an ATP-dependent export pump for cyclic nucleotides. J. Biol. Chem.275(39) , 30069–30074 (2000).
  • Moitra K , ScallyM, McGeeK et al. Molecular evolutionary analysis of ABCB5: the ancestral gene is a full transporter with potentially deleterious single nucleotide polymorphisms. PloS ONE 6(1) , e16318 (2011).
  • Wang H , YanZ, DongM et al. Alteration in placental expression of bile acids transporters OATP1A2, OATP1B1, OATP1B3 in intrahepatic cholestasis of pregnancy. Arch. Gynecol. Obstet. 285(6) , 1535–1540 (2011).
  • Kohler JJ , HosseiniSH, GreenE et al. Tenofovir renal proximal tubular toxicity is regulated by OAT1 and MRP4 transporters. Lab. Invest. 91(6) , 852–858 (2011).
  • Xu G , BhatnagarV, WenG et al. Analyses of coding region polymorphisms in apical and basolateral human organic anion transporter (OAT) genes [OAT1 (NKT), OAT2, OAT3, OAT4, URAT (RST)]. Kidney Int. 68(4) , 1491–1499 (2005).
  • Ugele B , St-PierreMV, PihuschM et al. Characterization and identification of steroid sulfate transporters of human placenta. Am. J. Physiol. Endocrinol. Metab. 284(2) , e390–e398 (2003).
  • Ugele B , BahnA, Rex-HaffnerM. Functional differences in steroid sulfate uptake of organic anion transporter 4 (OAT4) and organic anion transporting polypeptide 2B1 (OATP2B1) in human placenta. J. Steroid Biochem. Mol. Biol.111(1–2) , 1–6 (2008).
  • Alcorn J , LuX, MoscowJA et al. Transporter gene expression in lactating and nonlactating human mammary epithelial cells using real-time reverse transcription-polymerase chain reaction. J. Pharmacol. Exp. Ther. 303(2) , 487–496 (2002).
  • Nies AT , KoepsellH, WinterS et al. Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology 50(4) , 1227–1240 (2009).
  • Saito J , HirotaT, KikunagaN et al. Interindividual differences in placental expression of the SLC22A2 (OCT2) gene: relationship to epigenetic variations in the 5´-upstream regulatory region. J. Pharm. Sci. 100(9) , 3875–3883 (2011).
  • Sata R , OhtaniH, TsujimotoM et al. Functional analysis of organic cation transporter 3 expressed in human placenta. J. Pharmacol. Exp. Ther. 315(2) , 888–895 (2005).
  • Cressey T , BestBM, AchalapongJ et al. Effect of pregnancy on pharmacokinetics of indinavir boosted with ritonavir. Presented at: 13th International Workshop on Clinical Pharmacology of HIV Therapy. Barcelona, Spain, 16–18 April 2012 (Abstract P_37).
  • Read JS , BestBM, StekAM et al. Pharmacokinetics of new 625 mg nelfinavir formulation during pregnancy and postpartum. HIV Med. 9(10) , 875–882 (2008).
  • Martinez-Rebollar M , LoncaM, PerezI et al. Pharmacokinetic study of saquinavir 500 mg plus ritonavir (1000/100 mg twice a day) in HIV-positive pregnant women. Ther. Drug Monit. 33(6) , 772–777 (2011).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.