315
Views
0
CrossRef citations to date
0
Altmetric
Review

Pharmacogenetics of Chronic Obstructive Pulmonary Disease

Pages 1215-1225 | Published online: 16 Jul 2013

References

  • Hunninghake GM , ChoMH, TesfaigziY et al. MMP12, lung function, and COPD in high-risk populations. N. Engl. J. Med. 361(27) , 2599–2608 (2009).
  • van Diemen CC , PostmaDS, VonkJM, BruinenbergM, SchoutenJP, BoezenHM. A disintegrin and metalloprotease 33 polymorphisms and lung function decline in the general population. Am. J. Respir. Crit. Care Med.172(3) , 329–333 (2005).
  • Homma S , SakamotoT, HegabAE et al. Association of phosphodiesterase 4D gene polymorphisms with chronic obstructive pulmonary disease: relationship to interleukin 13 gene polymorphism. Int. J. Mol. Med. 18(5) , 933–939 (2006).
  • Rennard SI , CalverleyPM, GoehringUM, BredenbrökerD, MartinezFJ. Reduction of exacerbations by the PDE4 inhibitor roflumilast – the importance of defining different subsets of patients with COPD. Respir. Res.12 , 18 (2011).
  • Wilk JB , ChenTH, GottliebDJ et al. A genome-wide association study of pulmonary function measures in the Framingham Heart Study. PLoS Genet. 5 , e1000429 (2009).
  • Pillai SG , GeD, ZhuG et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet. 5 , e1000421 (2009).
  • Cho MH , BoutaouiN, KlandermanBJ et al. Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nat. Genet. 42(3) , 200–202 (2010).
  • Pillai SG , KongX, EdwardsLD et al. Loci identified by genome-wide association studies influence different disease-related phenotypes in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 182(12) , 1498–1505 (2010).
  • Kim DK , ChoMH, HershCP et al. Genome-wide association analysis of blood biomarkers in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 186(12) , 1238–1247 (2012).
  • Hirschhorn JN . Genomewide association studies – illuminating biologic pathways. N. Engl. J. Med.360 (17) , 1699–1701 (2009).
  • Kaneko Y , YatagaiY, YamadaH et al. The search for common pathways underlying asthma and COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 8 , 65–78 (2013).
  • Agusti A , CalverleyPM, CelliB et al. Characterisation of COPD heterogeneity in the ECLIPSE cohort. Evaluation of COPD longitudinally to identify predictive surrogate endpoints (ECLIPSE) investigators. Respir. Res. 11 , 122 (2010).
  • Pizzichini E , PizzichiniMM, GibsonP et al. Sputum eosinophilia predicts benefit from prednisone in smokers with chronic obstructive bronchitis. Am. J. Respir. Crit. Care Med. 158(5 Pt 1) , 1511–1517 (1998).
  • Barnes PJ . Glucocorticosteroids: current and future directions. Br. J. Pharmacol.163(1) , 29–43 (2011).
  • Agusti A , EdwardsLD, RennardSI et al. Persistent systemic inflammation is associated with poor clinical outcomes in COPD: a novel phenotype. PLoS ONE 7 , e37483 (2012).
  • Lahousse L , LothDW, JoosGF et al. Statins, systemic inflammation and risk of death in COPD: the Rotterdam study. Pulm. Pharmacol. Ther. 26(2) , 212–217 (2013).
  • Calverley PM , BurgePS, SpencerS, AndersonJA, JonesPW. Bronchodilator reversibility testing in chronic obstructive pulmonary disease. Thorax58(8) , 659–664 (2003).
  • Palmer LJ , CeledonJC, ChapmanHA, SpeizerFE, WeissST, SilvermanEK. Genome-wide linkage analysis of bronchodilator responsiveness and post-bronchodilator spirometric phenotypes in chronic obstructive pulmonary disease. Hum. Mol. Genet.12(10) , 1199–1210 (2003).
  • Albert P , AgustiA, EdwardsL et al. Bronchodilator responsiveness as a phenotypic characteristic of established chronic obstructive pulmonary disease. Thorax 67(8) , 701–708 (2012).
  • Johnson M . Molecular mechanisms of β2-adrenergic receptor function, response, and regulation. J. Allergy Clin. Immunol.117(1) , 18–24 (2006).
  • Kobilka BK , DixonRA, FrielleT et al. cDNA for the human β2-adrenergic receptor: a protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proc. Natl Acad. Sci. USA 84(1) , 46–50 (1987).
  • Leineweber K , HeuschG. β1- and β2-adrenoceptor polymorphisms and cardiovascular diseases. Br. J. Pharmacol.158(1) , 61–69 (2009).
  • Green SA , TurkiJ, InnisM, LiggettSB. Amino-terminal polymorphisms of the human β2-adrenergic receptor impart distinct agonist-promoted regulatory properties. Biochemistry33(32) , 9414–9419 (1994).
  • Green SA , ColeG, JacintoM, InnisM, LiggettSB. A polymorphism of the human β2-adrenergic receptor within the fourth transmembrane domain alters ligand binding and functional properties of the receptor. J. Biol. Chem.268(31) , 23116–23121 (1993).
  • Green SA , TurkiJ, BejaranoP, HallIP, LiggettSB. Influence of β2-adrenergic receptor genotypes on signal transduction in human airway smooth muscle cells. Am. J. Respir. Cell Mol. Biol.13(1) , 25–33 (1995).
  • McGraw DW , ForbesSL, KramerLA, LiggettSB. Polymorphisms of the 5´ leader cistron of the human β2-adrenergic receptor regulate receptor expression. J. Clin. Invest.102(11) , 1927–1932 (1998).
  • Ahles A , RochaisF, FrambachT, BünemannM, EngelhardtS. Polymorphism-specific “memory” mechanism in the β2-adrenergic receptor. Sci. Signal.4(185) , ra53 (2011).
  • Drysdale CM , McGrawDW, StackCB et al. Complex promoter and coding region β2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc. Natl Acad. Sci. USA 97(19) , 10483–10488 (2000).
  • Hizawa N . Pharmacogenetics of β2-agonists. Allergol. Int.60(3) , 239–246 (2011).
  • Israel E , DrazenJM, LiggettSB et al. The effect of polymorphisms of the β(2)-adrenergic receptor on the response to regular use of albuterol in asthma. Am. J. Respir. Crit. Care Med. 162(1) , 75–80 (2000).
  • Wechsler ME , LehmanE, LazarusSC et al. β-adrenergic receptor polymorphisms and response to salmeterol. Am. J. Respir. Crit. Care Med. 173(5) , 519–526 (2006).
  • Hegab AE , SakamotoT, SaitohW et al. Polymorphisms of IL4, IL13, and ADRB2 genes in COPD. Chest 126(6) , 1832–1839 (2004).
  • Hizawa N , MakitaH, NasuharaY et al. β2-adrenergic receptor genetic polymorphisms and short-term bronchodilator responses in patients with COPD. Chest 132(5) , 1485–1492 (2007).
  • Wechsler ME , KunselmanSJ, ChinchilliVM et al. Effect of β2-adrenergic receptor polymorphism on response to long acting β2 agonist in asthma (LARGE trial): a genotype-stratified, randomised, placebo-controlled, crossover trial. Lancet 374(9703) , 1754–1764 (2009).
  • Israel E , ChinchilliVM, FordJG et al. Use of regularly scheduled albuterol treatment in asthma: genotype-stratified, randomised, placebo-controlled cross-over trial. Lancet 364(9444) , 1505–1512 (2004).
  • Konno S , MakitaH, HasegawaM et al. β2-adrenergic receptor polymorphisms as a determinant of preferential bronchodilator responses to β2-agonist and anticholinergic agents in Japanese patients with chronic obstructive pulmonary disease. Pharmacogenet. Genomics 21(11) , 687–693 (2011).
  • Umeda N , YoshikawaT, KanazawaH, HirataK, FujimotoS. Association of β2-adrenoreceptor genotypes with bronchodilatory effect of tiotropium in COPD. Respirology13(3) , 346–352 (2008).
  • McGraw DW , AlmoosaKF, PaulRJ, KobilkaBK, LiggettSB. Antithetic regulation by β-adrenergic receptors of Gq receptor signaling via phospholipase C underlies the airway β-agonist paradox. J. Clin. Invest.112(4) , 619–626 (2003).
  • Kim WJ , HershCP, DeMeoDL, ReillyJJ, SilvermanEK. Genetic association analysis of COPD candidate genes with bronchodilator responsiveness. Respir. Med.103(4) , 552–557 (2009).
  • Oostendorp J , PostmaDS, VoldersH et al. Differential desensitization of homozygous haplotypes of the β2-adrenergic receptor in lymphocytes. Am. J. Respir. Crit. Care Med. 172(3) , 322–328 (2005).
  • Mochizuki H , NanjoY, KawateE, YamazakiM, TsudaY, TakahashiH. β2-adrenergic receptor haplotype may be associated with susceptibility to desensitization to long-acting β2-agonists in COPD patients. Lung190(4) , 411–417 (2012).
  • Joos L , WeirTD, ConnettJE et al. Polymorphisms in the β2 adrenergic receptor and bronchodilator response, bronchial hyperresponsiveness, and rate of decline in lung function in smokers. Thorax 58(8) , 703–707 (2003).
  • Bleecker ER , MeyersDA, BaileyWC et al. ADRB2 polymorphisms and budesonide/formoterol responses in COPD. Chest142(2) , 320–328 (2012).
  • Yelensky R , LiY, LewitzkyS et al. A pharmacogenetic study of ADRB2 polymorphisms and indacaterol response in COPD patients. Pharmacogenomics J. 12 , 484–488 (2012).
  • Kim WJ , OhYM, SungJ et al. Lung function response to 12-week treatment with combined inhalation of long-acting β2 agonist and glucocorticoid according to ADRB2 polymorphism in patients with chronic obstructive pulmonary disease. Lung 186(6) , 381–386 (2008).
  • Chanock SJ , ManolioT, BoehnkeM et al. Replicating genotype–phenotype associations. Nature 447(7145) , 655–660 (2007).
  • Panebra A , WangWC, MaloneMM et al. Common ADRB2 haplotypes derived from 26 polymorphic sites direct β2-adrenergic receptor expression and regulation phenotypes. PLoS ONE 5 , e11819 (2010).
  • Salpeter SR , BuckleyNS, OrmistonTM, SalpeterEE. Meta-analysis: effect of long-acting β-agonists on severe asthma exacerbations and asthma-related deaths. Ann. Intern. Med.144(12) , 904–912 (2006).
  • Nelson HS , WeissST, BleeckerER, YanceySW, DorinskyPM. SMART Study Group: the salmeterol multicenter asthma research trial: a comparison of usual pharmacotherapy for asthma or usual pharmacotherapy plus salmeterol. Chest129(1) , 15–26 (2006).
  • Castle W , FullerR, HallJ, PalmerJ. Serevent nationwide surveillance study: comparison of salmeterol with salbutamol in asthmatic patients who require regular bronchodilator treatment. BMJ306(6884) , 1034–1037 (1993).
  • Zhang X , Mahmudi-AzerS, ConnettJE et al. Association of Hck genetic polymorphisms with gene expression and COPD. Hum. Genet. 120(5) , 681–690 (2007).
  • Tantisira KG , LakeS, SilvermanES et al. Corticosteroid pharmacogenetics: association of sequence variants in CRHR1 with improved lung function in asthmatics treated with inhaled corticosteroids. Hum. Mol. Genet. 13(13) , 1353–1359 (2004).
  • Kim WJ , SheenSS, KimTH et al. Association between CRHR1 polymorphism and improved lung function in response to inhaled corticosteroid in patients with COPD. Respirology 14(2) , 260–263 (2009).
  • Tantisira KG , Lasky-SuJ, HaradaM et al. Genome-wide association between GLCCI1 and response to glucocorticoid therapy in asthma. N. Engl. J. Med. 365(13) , 1173–1183 (2011).
  • van den Berge M , HiemstraPS, PostmaDS. Genetics of glucocorticoids in asthma. N. Engl. J. Med.365(25) , 2434–2435 (2011).
  • Uslu A , OgusC, OzdemirT, BilgenT, TosunO, KeserI. The effect of CYP1A2 gene polymorphisms on theophylline metabolism and chronic obstructive pulmonary disease in Turkish patients. BMB Rep.43(8) , 530–534 (2010).
  • Anthonisen NR , ConnettJE, KileyJP et al. Effects of smoking intervention and the use of an inhaled anticholinergic bronchodilator on the rate of decline of FEV1. The Lung Health Study. JAMA 272(19) , 1497–1505 (1994).
  • Le Foll B , GeorgeTP. Treatment of tobacco dependence: integrating recent progress into practice. CMAJ177(11) , 1373–1380 (2007).
  • Schnoll RA , LermanC. Current and emerging pharmacotherapies for treating tobacco dependence. Expert Opin. Emerg. Drugs11(3) , 429–444 (2006).
  • Uhl GR , LiuQR, DrgonT et al. Molecular genetics of successful smoking cessation: convergent genome-wide association study results. Arch. Gen. Psychiatry 65(6) , 683–693 (2008).
  • Lerman C , TyndaleR, PattersonF et al. Nicotine metabolite ratio predicts efficacy of transdermal nicotine for smoking cessation. Clin. Pharmacol. Ther. 79(6) , 600–608 (2006).
  • Gold AB , LermanC. Pharmacogenetics of smoking cessation: role of nicotine target and metabolism genes. Hum. Genet.131 , 857–876 (2012).
  • Iwahashi K , WagaC, TakimotoT. Whole deletion of CYP2A6 gene (CYP2A6AST;4C) and smoking behavior. Neuropsychobiology49 , 101–104 (2004).
  • Pianezza ML , SellersEM, TyndaleRF. Nicotine metabolism defect reduces smoking. Nature393 , 750 (1998).
  • Fujieda M , YamazakiH, SaitoT et al. Evaluation of CYP2A6 genetic polymorphisms as determinants of smoking behavior and tobacco-related lung cancer risk in male Japanese smokers. Carcinogenesis 25(12) , 2451–2458 (2004).
  • Audrain-McGovern J , Al Koudsi N, Rodriguez D, Wileyto EP, Shields PG, Tyndale RF. The role of CYP2A6 in the emergence of nicotine dependence in adolescents. Pediatrics119 , e264–e274 (2007).
  • Malaiyandi V , LermanC, BenowitzNL et al. Impact of CYP2A6 genotype on retreatment smoking behaviour and nicotine levels from and usage of nicotine replacement therapy. Mol. Psychiatry 11 , 400–409 (2006).
  • Minematsu N , NakamuraH, IwataM et al. Association of CYP2A6 deletion polymorphism with smoking habit and development of pulmonary emphysema. Thorax 58 , 623–628 (2003).
  • Schoedel KA , HoffmannEB, RaoY, SellersEM, TyndaleRF. Ethnic variation in CYP2A6 and association of genetically slow nicotine metabolism and smoking in adult Caucasians. Pharmacogenetics14 , 615–662 (2004).
  • Kubota T , Nakajima-TaniguchiC, FukudaT et al. CYP2A6 polymorphisms are associated with nicotine dependence and influence withdrawal symptoms in smoking cessation. Pharmacogenomics J.6 , 115–119 (2006).
  • Thorgeirsson TE , GudbjartssonDF, SurakkaI et al. Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat. Genet. 42 , 448–453 (2010).
  • Kumasaka N , AokiM, OkadaY et al. Haplotypes with copy number and single nucleotide polymorphisms in CYP2A6 locus are associated with smoking quantity in a Japanese population. PLoS ONE 7(9) , e44507 (2012).
  • Gu DF , HinksLJ, MortonNE, DayIN. The use of long PCR to confirm three common alleles at the CYP2A6 locus and the relationship between genotype and smoking habit. Ann. Hum. Genet.64 , 383–390 (2000).
  • Chenoweth MJ , O‘LoughlinJ, SylvestreMP, TyndaleRF. CYP2A6 slow nicotine metabolism is associated with increased quitting by adolescent smokers. Pharmacogenet. Genomics23(4) , 232–235 (2013).
  • Ramoni RB , SacconeNL, HatsukamiDK, BierutLJ, RamoniMF. A testable model of nicotine dependence. J. Neurogenet.23(3) , 283–292 (2009).

▪ Website

  • Global Initiative for Chronic Obstructive Lung Disease. Global strategy for diagnosis, management and prevention of COPD. www.goldcopd.org (Accessed 14September2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.