477
Views
0
CrossRef citations to date
0
Altmetric
Research Article

CYP3A5 and CYP3A4, but not ABCB1 Polymorphisms Affect Tacrolimus Dose-Adjusted Trough Concentrations in Kidney Transplant Recipients

, , , , &
Pages 179-188 | Received 21 Aug 2013, Accepted 30 Sep 2013, Published online: 21 Jan 2014

References

  • Lee RA , GabardiS. Current trends in immunosuppressive therapies for renal transplant recipients. Am. J. Health Syst. Pharm.69(22) , 1961–1975 (2012).
  • Wallemacq P , ArmstrongVW, BrunetM et al. Opportunities to optimize tacrolimus therapy in solid organ transplantation: report of the European consensus conference. Ther. Drug Monit. 31(2) , 139–152 (2009).
  • Shiraga T , MatsudaH, NagaseK et al. Metabolism of FK506, a potent immunosuppressive agent, by cytochrome P450 3A enzymes in rat, dog and human liver microsomes. Biochem. Pharmacol. 47(4) , 727–735 (1994).
  • Terrazzino S , QuagliaM, StrattaP, CanonicoPL, GenazzaniAA. The effect of CYP3A5 6986A>G and ABCB1 3435C>T on tacrolimus dose-adjusted trough levels and acute rejection rates in renal transplant patients: a systematic review and meta-analysis. Pharmacogenet. Genomics22(8) , 642–645 (2012).
  • Adler G , LoniewskaB, ParczewskiM, KordekA, CiechanowiczA. Frequency of common CYP3A5 gene variants in healthy Polish newborn infants. Pharmacol. Rep.61(5) , 947–951 (2009).
  • Hashimoto H , ToideK, KitamuraR et al. Gene structure of CYP3A4, an adult-specific form of cytochrome P450 in human livers, and its transcriptional control. Eur. J. Biochem. 218(2) , 585–595 (1993).
  • Birdwell KA , GradyB, ChoiL et al. The use of a DNA biobank linked to electronic medical records to characterize pharmacogenomic predictors of tacrolimus dose requirement in kidney transplant recipients. Pharmacogenet. Genomics 22(1) , 32–42 (2012).
  • Elens L , van Schaik RH, Panin N et al. Effect of a new functional CYP3A4 polymorphism on calcineurin inhibitors‘ dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenomics12(10) , 1383–1396 (2011).
  • Wang D , GuoY, WrightonSA, CookeGE, SadeeW. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J.11(4) , 274–286 (2011).
  • Saeki T , UedaK, TanigawaraY, HoriR, KomanoT. Human P-glycoprotein transports cyclosporin A and FK506. J. Biol. Chem.268(9) , 6077–6080 (1993).
  • Li Y , HuX, CaiB et al. Meta-analysis of the effect of MDR1 C3435 polymorphism on tacrolimus pharmacokinetics in renal transplant recipients. Transplant. Immunol. 27(1) , 12–18 (2012).
  • Hoffmeyer S , BurkO, von Richter O et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Natl Acad. Sci. USA97(7) , 3473–3478 (2000).
  • Kimchi-Sarfaty C , OhJM, KimIW et al. A ‘silent‘ polymorphism in the MDR1 gene changes substrate specificity. Science 315(5811) , 525–528 (2007).
  • Balbontin FG , KiberdB, SquiresJ et al. Tacrolimus monitoring by simplified sparse sampling under the concentration time curve. Transplant. Proc. 35(7) , 2445–2448 (2003).
  • Scholten EM , CremersSC, SchoemakerRC et al. AUC-guided dosing of tacrolimus prevents progressive systemic overexposure in renal transplant recipients. Kidney Int. 67(6) , 2440–2447 (2005).
  • Rebbeck TR , TroxelAB, WangY et al. Estrogen sulfation genes, hormone replacement therapy, and endometrial cancer risk. J. Natl Cancer Inst. 98(18) , 1311–1320 (2006).
  • Elens L , BouamarR, HesselinkDA et al. A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients. Clin. Chem. 57(11) , 1574–1583 (2011).
  • Kurzawski M , DrozdzikM. Pharmacogenetics in solid organ transplantation: genes involved in mechanism of action and pharmacokinetics of immunosuppressive drugs. Pharmacogenomics14(9) , 1099–1118 (2013).
  • Klein K , ZangerUM. Pharmacogenomics of cytochrome P450 3A4: recent progress toward the ‘missing heritability‘ problem. Front. Genet.4 , 12 (2013).
  • Rebbeck TR , JaffeJM, WalkerAH, WeinAJ, MalkowiczSB. Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J. Natl Cancer Inst.90(16) , 1225–1229 (1998).
  • Amirimani B , NingB, DeitzAC, WeberBL, KadlubarFF, RebbeckTR. Increased transcriptional activity of the CYP3A4*1B promoter variant. Environ. Mol. Mutagen.42(4) , 299–305 (2003).
  • Hesselink DA , van Schaik RHN, van der Heiden IP et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin. Pharmacol. Ther.74(3) , 245–254 (2003).
  • Tavira B , CotoE, Diaz-CorteC, AlvarezV, Lopez-LarreaC, OrtegaF. A search for new CYP3A4 variants as determinants of tacrolimus dose requirements in renal-transplanted patients. Pharmacogenet. Genomics23(8) , 445–448 (2013).
  • Gervasini G , GarciaM, MaciasRM, CuberoJJ, CaravacaF, BenitezJ. Impact of genetic polymorphisms on tacrolimus pharmacokinetics and the clinical outcome of renal transplantation. Transplant. Int.25(4) , 471–480 (2012).
  • Roy JN , BaramaA, PoirierC, VinetB, RogerM. CYP3A4, CYP3A5, and MDR-1 genetic influences on tacrolimus pharmacokinetics in renal transplant recipients. Pharmacogenet. Genomics16(9) , 659–665 (2006).
  • Santoro AB , StruchinerCJ, FelipeCR, Tedesco-SilvaH, Medina-PestanaJO, Suarez-KurtzG. CYP3A5 genotype, but not CYP3A4*1b, CYP3A4*22, or hematocrit, predicts tacrolimus dose requirements in Brazilian renal transplant patients. Clin. Pharmacol. Ther.94(2) , 201–202 (2013).
  • Gijsen VM , van Schaik RH, Elens L et al.CYP3A4*22 and CYP3A combined genotypes both correlate with tacrolimus disposition in pediatric heart transplant recipients. Pharmacogenomics14(9) , 1027–1036 (2013).
  • Sadee W , WangD, PappAC et al. Pharmacogenomics of the RNA world: structural RNA polymorphisms in drug therapy. Clin. Pharmacol. Ther. 89(3) , 355–365 (2011).
  • Klein K , ThomasM, WinterS et al. PPARA: a novel genetic determinant of CYP3A4in vitro and in vivo. Clin. Pharmacol. Ther. 91(6) , 1044–1052 (2012).
  • Kuypers DR , NaesensM, de Jonge H, Lerut E, Verbeke K, Vanrenterghem Y. Tacrolimus dose requirements and CYP3A5 genotype and the development of calcineurin inhibitor-associated nephrotoxicity in renal allograft recipients. Ther. Drug Monit.32(4) , 394–404 (2010).
  • Tavira B , GarciaEC, Diaz-CorteC et al. Pharmacogenetics of tacrolimus after renal transplantation: analysis of polymorphisms in genes encoding 16 drug metabolizing enzymes. Clin. Chem. Lab. Med. 49(5) , 825–833 (2011).
  • Haufroid V , MouradM, Van Kerckhove V et al. The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenetics14(3) , 147–154 (2004).
  • Thervet E , LoriotMA, BarbierS et al. Optimization of initial tacrolimus dose using pharmacogenetic testing. Clin. Pharmacol. Ther. 87(6) , 721–726 (2010).
  • Passey C , BirnbaumAK, BrundageRC, OettingWS, IsraniAK, JacobsonPA. Dosing equation for tacrolimus using genetic variants and clinical factors. Br. J. Clin. Pharmacol.72(6) , 948–957 (2011).
  • Passey C , BirnbaumAK, BrundageRC et al. Validation of tacrolimus equation to predict troughs using genetic and clinical factors. Pharmacogenomics 13(10) , 1141–1147 (2012).
  • Boughton O , BorgulyaG, CecconiM, FredericksS, Moreton-ClackM, MacPheeIA. A published pharmacogenetic algorithm was poorly predictive of tacrolimus clearance in an independent cohort of renal transplant recipients. Br. J. Clin. Pharmacol.76(3) , 425–431 (2013).
  • Elens L , HesselinkDA, van Schaik RH, van Gelder T. The CYP3A4*22 allele affects the predictive value of a pharmacogenetic algorithm predicting tacrolimus predose concentrations. Br. J. Clin. Pharmacol.75(6) , 1545–1547 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.