410
Views
0
CrossRef citations to date
0
Altmetric
Review

Pharmacogenomics of Lipid-Lowering Therapies

&
Pages 981-995 | Published online: 07 Jun 2013

References

  • Singh IM , ShishehborMH, AnsellBJ. High-density lipoprotein as a therapeutic target: a systematic review. JAMA298(7) , 786–798 (2007).
  • Sarwar N , SandhuMS, RickettsSL et al. Triglyceride-mediated pathways and coronary disease: collaborative analysis of 101 studies. Lancet 375(9726) , 1634–1639 (2010).
  • Nordestgaard BG , ChapmanMJ, RayK et al. Lipoprotein(a) as a cardiovascular risk factor: current status. Eur. Heart J. 31(23) , 2844–2853 (2010).
  • Voight BF , PelosoGM, Orho-MelanderM et al. Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study. Lancet 380(9841) , 572–580 (2012).
  • Baigent C , BlackwellL, EmbersonJ et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376(9753) , 1670–1681 (2010).
  • Baigent C , KeechA, KearneyPM et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366(9493) , 1267–1278 (2005).
  • Mihaylova B , EmbersonJ, BlackwellL et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet 380(9841) , 581–590 (2012).
  • Mihos CG , SalasMJ, SantanaO. The pleiotropic effects of the hydroxy-methyl-glutaryl-CoA reductase inhibitors in cardiovascular disease: a comprehensive review. Cardiol. Rev.18(6) , 298–304 (2010).
  • Hu M , MakVWL, ChuTTY, WayeMMY, TomlinsonB. Pharmacogenetics of HMG-CoA reductase inhibitors: optimizing the prevention of coronary heart disease. Curr. Pharmacogenomics Pers. Med.7(1) , 1–26 (2009).
  • Sirtori CR , MombelliG, TrioloM, LaaksonenR. Clinical response to statins: mechanism(s) of variable activity and adverse effects. Ann. Med.44(5) , 419–432 (2012).
  • Postmus I , VerschurenJJ, De Craen AJ et al. Pharmacogenetics of statins: achievements, whole-genome analyses and future perspectives. Pharmacogenomics13(7) , 831–840 (2012).
  • Mangravite LM , ThornCF, KraussRM. Clinical implications of pharmacogenomics of statin treatment. Pharmacogenomics J.6(6) , 360–374 (2006).
  • Neuvonen PJ , NiemiM, BackmanJT. Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin. Pharmacol. Ther.80(6) , 565–581 (2006).
  • Neuvonen PJ , BackmanJT, NiemiM. Pharmacokinetic comparison of the potential over-the-counter statins simvastatin, lovastatin, fluvastatin and pravastatin. Clin. Pharmacokinet.47(7) , 463–474 (2008).
  • Elsby R , HilgendorfC, FennerK. Understanding the critical disposition pathways of statins to assess drug–drug interaction risk during drug development: it‘s not just about OATP1B1. Clin. Pharmacol. Ther.92(5) , 584–598 (2012).
  • Hu M , MakVW, XiaoY, TomlinsonB. Associations between the genotypes and phenotype of CYP3A and the lipid response to simvastatin in Chinese patients with hypercholesterolemia. Pharmacogenomics14(1) , 25–34 (2013).
  • Wang D , GuoY, WrightonSA, CookeGE, SadeeW. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J.11(4) , 274–286 (2011).
  • Elens L , BeckerML, HaufroidV et al. Novel CYP3A4 intron 6 single nucleotide polymorphism is associated with simvastatin-mediated cholesterol reduction in the Rotterdam Study. Pharmacogenet. Genomics 21(12) , 861–866 (2011).
  • Romaine SP , BaileyKM, HallAS, BalmforthAJ. The influence of SLCO1B1 (OATP1B1) gene polymorphisms on response to statin therapy. Pharmacogenomics J.10(1) , 1–11 (2010).
  • Hu M , ToKK, MakVW, TomlinsonB. The ABCG2 transporter and its relations with the pharmacokinetics, drug interaction and lipid-lowering effects of statins. Expert Opin. Drug Metab. Toxicol.7(1) , 49–62 (2011).
  • Rodrigues AC . Efflux and uptake transporters as determinants of statin response. Expert Opin. Drug Metab. Toxicol.6(5) , 621–632 (2010).
  • Niemi M , PasanenMK, NeuvonenPJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol. Rev.63(1) , 157–181 (2011).
  • Nezasa K , HigakiK, MatsumuraT et al. Liver-specific distribution of rosuvastatin in rats: comparison with pravastatin and simvastatin. Drug Metab. Dispos. 30(11) , 1158–1163 (2002).
  • Niemi M . Transporter pharmacogenetics and statin toxicity. Clin. Pharmacol. Ther.87(1) , 130–133 (2010).
  • Link E , ParishS, ArmitageJ et al. SLCO1B1 variants and statin-induced myopathy – a genomewide study. N. Engl. J. Med. 359(8) , 789–799 (2008).
  • Donnelly LA , DoneyAS, TavendaleR et al. Common nonsynonymous substitutions in SLCO1B1 predispose to statin intolerance in routinely treated individuals with Type 2 diabetes: a go-DARTS study. Clin. Pharmacol. Ther. 89(2) , 210–216 (2011).
  • Voora D , ShahSH, SpasojevicI et al. The SLCO1B1*5 genetic variant is associated with statin-induced side effects. J. Am. Coll. Cardiol. 54(17) , 1609–1616 (2009).
  • Elhayany A , MishaalRA, VinkerS. Is there clinical benefit to routine enzyme testing of patients on statins? Expert Opin. Drug Saf.11(2) , 185–190 (2012).
  • Brunham LR , LansbergPJ, ZhangL et al. Differential effect of the rs4149056 variant in SLCO1B1 on myopathy associated with simvastatin and atorvastatin. Pharmacogenomics J. 12(3) , 233–237 (2012).
  • Santos PC , GagliardiAC, MinameMH et al. SLCO1B1 haplotypes are not associated with atorvastatin-induced myalgia in Brazilian patients with familial hypercholesterolemia. Eur. J. Clin. Pharmacol.68(3) , 273–279 (2012).
  • Keskitalo JE , PasanenMK, NeuvonenPJ, NiemiM. Different effects of the ABCG2 c.421C>A SNP on the pharmacokinetics of fluvastatin, pravastatin and simvastatin. Pharmacogenomics10(10) , 1617–1624 (2009).
  • Keskitalo JE , ZolkO, FrommMF, KurkinenKJ, NeuvonenPJ, NiemiM. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin. Pharmacol. Ther.86(2) , 197–203 (2009).
  • Hu M , LuiSS, MakVW et al. Pharmacogenetic analysis of lipid responses to rosuvastatin in Chinese patients. Pharmacogenet. Genomics 20(10) , 634–637 (2010).
  • Tomlinson B , HuM, LeeVW et al. ABCG2 polymorphism is associated with the low-density lipoprotein cholesterol response to rosuvastatin. Clin. Pharmacol. Ther.87(5) , 558–562 (2010).
  • Bailey KM , RomaineSP, JacksonBM et al. Hepatic metabolism and transporter gene variants enhance response to rosuvastatin in patients with acute myocardial infarction: the GEOSTAT-1 Study. Circ. Cardiovasc. Genet. 3(3) , 276–285 (2010).
  • Zhang W , YuBN, HeYJ et al. Role of BCRP 421C>A polymorphism on rosuvastatin pharmacokinetics in healthy Chinese males. Clin. Chim. Acta 373(1–2) , 99–103 (2006).
  • Chasman DI , PosadaD, SubrahmanyanL, CookNR, StantonVP Jr, Ridker PM. Pharmacogenetic study of statin therapy and cholesterol reduction. JAMA291(23) , 2821–2827 (2004).
  • Krauss RM , MangraviteLM, SmithJD et al. Variation in the 3-hydroxyl-3-methylglutaryl coenzyme a reductase gene is associated with racial differences in low-density lipoprotein cholesterol response to simvastatin treatment. Circulation 117(12) , 1537–1544 (2008).
  • Thompson JF , HydeCL, WoodLS et al. Comprehensive whole-genome and candidate gene analysis for response to statin therapy in the Treating to New Targets (TNT) cohort. Circ. Cardiovasc. Genet. 2(2) , 173–181 (2009).
  • Singer JB , HoldaasH, JardineAG et al. Genetic analysis of fluvastatin response and dyslipidemia in renal transplant recipients. J. Lipid Res. 48(9) , 2072–2078 (2007).
  • Polisecki E , MuallemH, MaedaN et al. Genetic variation at the LDL receptor and HMG-CoA reductase gene loci, lipid levels, statin response, and cardiovascular disease incidence in PROSPER. Atherosclerosis 200(1) , 109–114 (2008).
  • Yamamoto A , KamiyaT, YamamuraT et al. Clinical features of familial hypercholesterolemia. Arteriosclerosis 9(Suppl. 1) , I66–I74 (1989).
  • Couture P , BrunLD, SzotsF et al. Association of specific LDL receptor gene mutations with differential plasma lipoprotein response to simvastatin in young French Canadians with heterozygous familial hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 18(6) , 1007–1012 (1998).
  • Miltiadous G , XenophontosS, BairaktariE, GanotakisM, CariolouM, ElisafM. Genetic and environmental factors affecting the response to statin therapy in patients with molecularly defined familial hypercholesterolaemia. Pharmacogenet. Genomics15(4) , 219–225 (2005).
  • Kajinami K , YagiK, HigashikataT, InazuA, KoizumiJ, MabuchiH. Low-density lipoprotein receptor genotype-dependent response to cholesterol lowering by combined pravastatin and cholestyramine in familial hypercholesterolemia. Am. J. Cardiol.82(1) , 113–117 (1998).
  • Thompson JF , ManM, JohnsonKJ et al. An association study of 43 SNPs in 16 candidate genes with atorvastatin response. Pharmacogenomics J. 5(6) , 352–358 (2005).
  • Mousavi SA , BergeKE, LerenTP. The unique role of proprotein convertase subtilisin/kexin 9 in cholesterol homeostasis. J. Intern. Med.266(6) , 507–519 (2009).
  • Abifadel M , RabesJP, DevillersM et al. Mutations and polymorphisms in the proprotein convertase subtilisin kexin 9 (PCSK9) gene in cholesterol metabolism and disease. Hum. Mutat. 30(4) , 520–529 (2009).
  • Soutar AK , NaoumovaRP. Mechanisms of disease: genetic causes of familial hypercholesterolemia. Nat. Clin. Pract. Cardiovasc. Med.4(4) , 214–225 (2007).
  • Konrad RJ , TrouttJS, CaoG. Effects of currently prescribed LDL-C-lowering drugs on PCSK9 and implications for the next generation of LDL-C-lowering agents. Lipids Health Dis.10 , 38 (2011).
  • Naoumova RP , TosiI, PatelD et al. Severe hypercholesterolemia in four British families with the D374Y mutation in the PCSK9 gene: long-term follow-up and treatment response. Arterioscler. Thromb. Vasc. Biol. 25(12) , 2654–2660 (2005).
  • Pisciotta L , SalloR, RabacchiC, WunschA, CalandraS, BertoliniS. Leucine 10 allelic variant in signal peptide of PCSK9 increases the LDL cholesterol-lowering effect of statins in patients with familial hypercholesterolaemia. Nutr. Metab. Cardiovasc. Dis.22(10) , 831–835 (2012).
  • Chen SN , BallantyneCM, GottoAM Jr, Tan Y, Willerson JT, Marian AJ. A common PCSK9 haplotype, encompassing the E670G coding single nucleotide polymorphism, is a novel genetic marker for plasma low-density lipoprotein cholesterol levels and severity of coronary atherosclerosis. J. Am. Coll. Cardiol.45(10) , 1611–1619 (2005).
  • Norata GD , GarlaschelliK, GrigoreL et al. Effects of PCSK9 variants on common carotid artery intima media thickness and relation to ApoE alleles. Atherosclerosis 208(1) , 177–182 (2010).
  • Kotowski IK , PertsemlidisA, LukeA et al. A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. Am. J. Hum. Genet. 78(3) , 410–422 (2006).
  • Peters BJ , PettH, KlungelOH et al. Genetic variability within the cholesterol lowering pathway and the effectiveness of statins in reducing the risk of MI. Atherosclerosis 217(2) , 458–464 (2011).
  • Nieminen T , KahonenM, ViiriLE, GronroosP, LehtimakiT. Pharmacogenetics of apolipoprotein E gene during lipid-lowering therapy: lipid levels and prevention of coronary heart disease. Pharmacogenomics9(10) , 1475–1486 (2008).
  • Voora D , ShahSH, ReedCR et al. Pharmacogenetic predictors of statin-mediated low-density lipoprotein cholesterol reduction and dose response. Circ. Cardiovasc. Genet. 1(2) , 100–106 (2008).
  • Mega JL , MorrowDA, BrownA, CannonCP, SabatineMS. Identification of genetic variants associated with response to statin therapy. Arterioscler. Thromb. Vasc. Biol.29(9) , 1310–1315 (2009).
  • Gerdes LU , GerdesC, KervinenK et al. The apolipoprotein ε4 allele determines prognosis and the effect on prognosis of simvastatin in survivors of myocardial infarction: a substudy of the Scandinavian simvastatin survival study. Circulation 101(12) , 1366–1371 (2000).
  • Chiodini BD , FranzosiMG, BarleraS et al. Apolipoprotein E polymorphisms influence effect of pravastatin on survival after myocardial infarction in a Mediterranean population: the GISSI-Prevenzione study. Eur. Heart J. 28(16) , 1977–1983 (2007).
  • Schnapp BJ . Trafficking of signaling modules by kinesin motors. J. Cell Sci.116(Pt 11) , 2125–2135 (2003).
  • Morrison AC , BareLA, ChamblessLE et al. Prediction of coronary heart disease risk using a genetic risk score: the atherosclerosis risk in communities study. Am. J. Epidemiol. 166(1) , 28–35 (2007).
  • Shiffman D , ChasmanDI, ZeeRY et al. A kinesin family member 6 variant is associated with coronary heart disease in the Women‘s Health Study. J. Am. Coll. Cardiol. 51(4) , 444–448 (2008).
  • Iakoubova OA , SabatineMS, RowlandCM et al. Polymorphism in KIF6 gene and benefit from statins after acute coronary syndromes: results from the PROVE IT-TIMI 22 study. J. Am. Coll. Cardiol. 51(4) , 449–455 (2008).
  • Iakoubova OA , TongCH, RowlandCM et al. Association of the Trp719Arg polymorphism in kinesin-like protein 6 with myocardial infarction and coronary heart disease in 2 prospective trials: the CARE and WOSCOPS trials. J. Am. Coll. Cardiol. 51(4) , 435–443 (2008).
  • Assimes TL , HolmH, KathiresanS et al. Lack of association between the Trp719Arg polymorphism in kinesin-like protein-6 and coronary artery disease in 19 case–control studies. J. Am. Coll. Cardiol. 56(19) , 1552–1563 (2010).
  • Hoffmann MM , MarzW, GenserB, DrechslerC, WannerC. Lack of association between the Trp719Arg polymorphism in kinesin-like protein-6 and cardiovascular risk and efficacy of atorvastatin among subjects with diabetes on dialysis: the 4D study. Atherosclerosis219(2) , 659–662 (2011).
  • Ridker PM , MacFadyenJG, GlynnRJ, ChasmanDI. Kinesin-like protein 6 (KIF6) polymorphism and the efficacy of rosuvastatin in primary prevention. Circ. Cardiovasc. Genet.4(3) , 312–317 (2011).
  • Hopewell JC , ParishS, ClarkeR et al. No impact of KIF6 genotype on vascular risk and statin response among 18,348 randomized patients in the heart protection study. J. Am. Coll. Cardiol. 57(20) , 2000–2007 (2011).
  • Arsenault BJ , BoekholdtSM, HovinghGK et al. The 719Arg variant of KIF6 and cardiovascular outcomes in statin-treated, stable coronary patients of the treating to new targets and incremental decrease in end points through aggressive lipid-lowering prospective studies. Circ. Cardiovasc. Genet. 5(1) , 51–57 (2012).
  • Marciante KD , DurdaJP, HeckbertSR et al. Cerivastatin, genetic variants, and the risk of rhabdomyolysis. Pharmacogenet. Genomics 21(5) , 280–288 (2011).
  • Isackson PJ , Ochs-BalcomHM, MaC et al. Association of common variants in the human eyes shut ortholog (EYS) with statin-induced myopathy: evidence for additional functions of EYS. Muscle Nerve 44(4) , 531–538 (2011).
  • Chasman DI , GiulianiniF, MacFadyenJ, BarrattBJ, NybergF, RidkerPM. Genetic determinants of statin-induced low-density lipoprotein cholesterol reduction: the Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) trial. Circ. Cardiovasc. Genet.5(2) , 257–264 (2012).
  • Deshmukh HA , ColhounHM, JohnsonT et al. Genome-wide association study of genetic determinants of LDL-c response to atorvastatin therapy: importance of Lp(a). J. Lipid Res. 53(5) , 1000–1011 (2012).
  • Hopewell JC , ParishS, OfferA et al. Impact of common genetic variation on response to simvastatin therapy among 18 705 participants in the Heart Protection Study. Eur. Heart J. 34(13) , 982–992 (2012).
  • Barber MJ , MangraviteLM, HydeCL et al. Genome-wide association of lipid-lowering response to statins in combined study populations. PLoS ONE 5(3) , e9763 (2010).
  • Chu AY , GuilianiniF, BarrattBJ, NybergF, ChasmanDI, RidkerPM. Pharmacogenetic determinants of statin-induced reductions in C-reactive protein. Circ. Cardiovasc. Genet.5(1) , 58–65 (2012).
  • Thompson A , GaoP, OrfeiL et al. Lipoprotein-associated phospholipase A(2) and risk of coronary disease, stroke, and mortality: collaborative analysis of 32 prospective studies. Lancet 375(9725) , 1536–1544 (2010).
  • Chu AY , GuilianiniF, GrallertH et al. Genome-wide association study evaluating lipoprotein-associated phospholipase A2 mass and activity at baseline and after rosuvastatin therapy. Circ. Cardiovasc. Genet. 5(6) , 676–685 (2012).
  • Shiffman D , TrompetS, LouieJZ et al. Genome-wide study of gene variants associated with differential cardiovascular event reduction by pravastatin therapy. PLoS ONE 7(5) , e38240 (2012).
  • Phan BA , DayspringTD, TothPP. Ezetimibe therapy: mechanism of action and clinical update. Vasc. Health Risk Manag.8 , 415–427 (2012).
  • Leiter LA , BetteridgeDJ, FarnierM et al. Lipid-altering efficacy and safety profile of combination therapy with ezetimibe/statin vs. statin monotherapy in patients with and without diabetes: an analysis of pooled data from 27 clinical trials. Diabetes Obes. Metab. 13(7) , 615–628 (2011).
  • Lioudaki E , GanotakisES, MikhailidisDP. Ezetimibe; more than a low density lipoprotein cholesterol lowering drug? an update after 4 years. Curr. Vasc. Pharmacol.9(1) , 62–86 (2011).
  • Pisciotta L , FasanoT, BellocchioA et al. Effect of ezetimibe coadministered with statins in genotype-confirmed heterozygous FH patients. Atherosclerosis 194(2) , e116–e122 (2007).
  • Hegele RA , GuyJ, BanMR, WangJ. NPC1L1 haplotype is associated with inter-individual variation in plasma low-density lipoprotein response to ezetimibe. Lipids Health Dis.4 , 16 (2005).
  • Simon JS , KarnoubMC, DevlinDJ et al. Sequence variation in NPC1L1 and association with improved LDL-cholesterol lowering in response to ezetimibe treatment. Genomics 86(6) , 648–656 (2005).
  • Berthold HK , LaaksonenR, LehtimakiT, GyllingH, KroneW, Gouni-BertholdI. SREBP-1c gene polymorphism is associated with increased inhibition of cholesterol-absorption in response to ezetimibe treatment. Exp. Clin. Endocrinol. Diabetes116(5) , 262–267 (2008).
  • Chapman MJ , RedfernJS, McGovernME, GiralP. Niacin and fibrates in atherogenic dyslipidemia: pharmacotherapy to reduce cardiovascular risk. Pharmacol. Ther.126(3) , 314–345 (2010).
  • Perez-Martinez P , CorellaD, ShenJ et al. Association between glucokinase regulatory protein (GCKR) and apolipoprotein A5 (APOA5) gene polymorphisms and triacylglycerol concentrations in fasting, postprandial, and fenofibrate-treated states. Am. J. Clin. Nutr. 89(1) , 391–399 (2009).
  • Cardona F , GuardiolaM, Queipo-OrtunoMI, MurriM, RibaltaJ, TinahonesFJ. The -1131T>C SNP of the APOA5 gene modulates response to fenofibrate treatment in patients with the metabolic syndrome: a postprandial study. Atherosclerosis206(1) , 148–152 (2009).
  • Lai CQ , ArnettDK, CorellaD et al. Fenofibrate effect on triglyceride and postprandial response of apolipoprotein A5 variants: the GOLDN study. Arterioscler. Thromb. Vasc. Biol. 27(6) , 1417–1425 (2007).
  • Smith JA , ArnettDK, KellyRJ et al. The genetic architecture of fasting plasma triglyceride response to fenofibrate treatment. Eur. J. Hum. Genet. 16(5) , 603–613 (2008).
  • Boden WE , ProbstfieldJL, AndersonT et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 365(24) , 2255–2267 (2011).
  • Hu M , ChuWC, YamashitaS et al. Liver fat reduction with niacin is influenced by DGAT-2 polymorphisms in hypertriglyceridemic patients. J. Lipid Res. 53(4) , 802–809 (2012).
  • Brautbar A , CovarrubiasD, BelmontJ et al. Variants in the APOA5 gene region and the response to combination therapy with statins and fenofibric acid in a randomized clinical trial of individuals with mixed dyslipidemia. Atherosclerosis 219(2) , 737–742 (2011).
  • Brautbar A , ViraniSS, BelmontJ, NambiV, JonesPH, BallantyneCM. LPL gene variants affect apoC-III response to combination therapy of statins and fenofibric acid in a randomized clinical trial of individuals with mixed dyslipidemia. J. Lipid Res.53(3) , 556–560 (2012).
  • Wilke RA , RamseyLB, JohnsonSG et al. The clinical pharmacogenomics implementation consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy. Clin. Pharmacol. Ther. 92(1) , 112–117 (2012).
  • Cordero P , AshleyEA. Whole-genome sequencing in personalized therapeutics. Clin. Pharmacol. Ther.91(6) , 1001–1009 (2012).
  • Liu Y , OrdovasJM, GaoG et al. Pharmacogenetic association of the APOA1/C3/A4/A5 gene cluster and lipid responses to fenofibrate: the genetics of lipid-lowering drugs and diet network study. Pharmacogenet. Genomics 19(2) , 161–169 (2009).
  • Wojczynski MK , GaoG, BoreckiI et al. Apolipoprotein B genetic variants modify the response to fenofibrate: a GOLDN study. J. Lipid Res. 51(11) , 3316–3323 (2010).
  • Irvin MR , KabagambeEK, TiwariHK et al. Apolipoprotein E polymorphisms and postprandial triglyceridemia before and after fenofibrate treatment in the Genetics of Lipid Lowering and Diet Network (GOLDN) Study. Circ. Cardiovasc. Genet. 3(5) , 462–467 (2010).
  • Christidis DS , LiberopoulosEN, KakafikaAI et al. The effect of apolipoprotein E polymorphism on the response to lipid-lowering treatment with atorvastatin or fenofibrate. J. Cardiovasc. Pharmacol. Ther. 11(3) , 211–221 (2006).
  • Brisson D , LedouxK, BosseY et al. Effect of apolipoprotein E, peroxisome proliferator-activated receptor α and lipoprotein lipase gene mutations on the ability of fenofibrate to improve lipid profiles and reach clinical guideline targets among hypertriglyceridemic patients. Pharmacogenetics 12(4) , 313–320 (2002).
  • Shen J , ArnettDK, ParnellLD et al. The effect of CYP7A1 polymorphisms on lipid responses to fenofibrate. J. Cardiovasc. Pharmacol. 59(3) , 254–259 (2012).
  • Brouillette C , BosseY, PerusseL, GaudetD, VohlMC. Effect of liver fatty acid binding protein (FABP) T94A missense mutation on plasma lipoprotein responsiveness to treatment with fenofibrate. J. Hum. Genet.49(8) , 424–432 (2004).
  • Chien KL , LinYL, WenHC et al. Common sequence variant in lipoprotein lipase gene conferring triglyceride response to fibrate treatment. Pharmacogenomics 10(2) , 267–276 (2009).
  • Liu Y , OrdovasJM, GaoG et al. The SCARB1 gene is associated with lipid response to dietary and pharmacological interventions. J. Hum. Genet. 53(8) , 709–717 (2008).
  • Foucher C , RattierS, FlavellDM et al. Response to micronized fenofibrate treatment is associated with the peroxisome-proliferator-activated receptors α G/C intron7 polymorphism in subjects with Type 2 diabetes. Pharmacogenetics 14(12) , 823–829 (2004).
  • Shen J , ArnettDK, ParnellLD et al. Association of common C-reactive protein (CRP) gene polymorphisms with baseline plasma CRP levels and fenofibrate response: the GOLDN study. Diabetes Care 31(5) , 910–915 (2008).
  • Aslibekyan S , KabagambeEK, IrvinMR et al. A genome-wide association study of inflammatory biomarker changes in response to fenofibrate treatment in the genetics of lipid lowering drug and diet network. Pharmacogenet. Genomics 22(3) , 191–197 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.