330
Views
0
CrossRef citations to date
0
Altmetric
Review

Pharmacogenetics in Solid Organ Transplantation: Genes Involved in Mechanism of Action and Pharmacokinetics of Immunosuppressive Drugs

&
Pages 1099-1118 | Published online: 09 Jul 2013

References

  • Shiraga T , MatsudaH, NagaseK et al. Metabolism of FK506, a potent immunosuppressive agent, by cytochrome P450 3A enzymes in rat, dog and human liver microsomes. Biochem. Pharmacol. 47(4) , 727–735 (1994).
  • Kuehl P , ZhangJ, LinY et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet. 27(4) , 383–391 (2001).
  • Wang D , GuoY, WrightonSA, CookeGE, SadeeW. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J.11(4) , 274–286 (2011).
  • Hesselink DA , van Schaik RHN, van der Heiden IP et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin. Pharmacol. Ther.74(3) , 245–254 (2003).
  • Haufroid V , MouradM, Van Kerckhove V et al. The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenetics14(3) , 147–154 (2004).
  • Tavira B , GarciaEC, Diaz-CorteC et al. Pharmacogenetics of tacrolimus after renal transplantation: analysis of polymorphisms in genes encoding 16 drug metabolizing enzymes. Clin. Chem. Lab. Med. 49(5) , 825–833 (2011).
  • Zhao W , FakhouryM, BaudouinV et al. Population pharmacokinetics and pharmacogenetics of once daily prolonged-release formulation of tacrolimus in pediatric and adolescent kidney transplant recipients. Eur. J. Clin. Pharmacol. 69(2) , 189–195 (2013).
  • Garcia-Roca P , MedeirosM, ReyesH et al. CYP3A5 polymorphism in Mexican renal transplant recipients and its association with tacrolimus dosing. Arch. Med. Res.43(4) , 283–287 (2012).
  • Cho JH , YoonYD, ParkJY et al. Impact of cytochrome P450 3A and ATP-binding cassette subfamily B member 1 polymorphisms on tacrolimus dose-adjusted trough concentrations among Korean renal transplant recipients. Transplant. Proc. 44(1) , 109–114 (2012).
  • Niioka T , SatohS, KagayaH et al. Comparison of pharmacokinetics and pharmacogenetics of once- and twice-daily tacrolimus in the early stage after renal transplantation. Transplantation 94(10) , 1013–1019 (2012).
  • Glowacki F , LionetA, HammelinJP et al. Influence of cytochrome P450 3A5 (CYP3A5) genetic polymorphism on the pharmacokinetics of the prolonged-release, once-daily formulation of tacrolimus in stable renal transplant recipients. Clin. Pharmacokinet. 50(7) , 451–459 (2011).
  • Hashimoto H , ToideK, KitamuraR et al. Gene structure of CYP3A4, an adult-specific form of cytochrome P450 in human livers, and its transcriptional control. Eur. J. Biochem. 218(2) , 585–595 (1993).
  • Gervasini G , GarciaM, MaciasRM, CuberoJJ, CaravacaF, BenitezJ. Impact of genetic polymorphisms on tacrolimus pharmacokinetics and the clinical outcome of renal transplantation. Transplant. Int.25(4) , 471–480 (2012).
  • Elens L , van Schaik RH, Panin N et al. Effect of a new functional CYP3A4 polymorphism on calcineurin inhibitors‘ dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenomics12(10) , 1383–1396 (2011).
  • Saeki T , UedaK, TanigawaraY, HoriR, KomanoT. Human P-glycoprotein transports cyclosporin A and FK506. J. Biol. Chem.268(9) , 6077–6080 (1993).
  • Kimchi-Sarfaty C , OhJM, KimIW et al. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315(5811) , 525–528 (2007).
  • Li D , GuiR, LiJ, HuangZ, NieXM. Tacrolimus dosing in Chinese renal transplant patients is related to MDR1 gene C3435T polymorphisms. Transplant. Proc.38(9) , 2850–2852 (2006).
  • Akbas SH , BilgenT, KeserI et al. The effect of MDR1 (ABCB1) polymorphism on the pharmacokinetic of tacrolimus in Turkish renal transplant recipients. Transplant. Proc. 38(5) , 1290–1292 (2006).
  • Haufroid V , MouradM, Van Kerckhove V et al. The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogeneticss14(3) , 147–154 (2004).
  • Kuypers DR , NaesensM, de Jonge H, Lerut E, Verbeke K, Vanrenterghem Y. Tacrolimus dose requirements and CYP3A5 genotype and the development of calcineurin inhibitor-associated nephrotoxicity in renal allograft recipients. Ther. Drug Monit.32(4) , 394–404 (2010).
  • Li Y , HuX, CaiB et al. Meta-analysis of the effect of MDR1 C3435 polymorphism on tacrolimus pharmacokinetics in renal transplant recipients. Transplant. Immunol. 27(1) , 12–18 (2012).
  • de Jonge H , MetalidisC, NaesensM, LambrechtsD, KuypersDR. The P450 oxidoreductase*28 SNP is associated with low initial tacrolimus exposure and increased dose requirements in CYP3A5-expressing renal recipients. Pharmacogenomics12(9) , 1281–1291 (2011).
  • Boivin AA , CardinalH, BaramaA et al. Influence of SLCO1B3 genetic variations on tacrolimus pharmacokinetics in renal transplant recipients. Drug. Metab. Pharmacokinet. doi:http://dx.doi.org/10.2133/dmpk.DMPK-12-SH-093 (2012) (Epub ahead of print).
  • Shitara Y , TakeuchiK, NagamatsuY, WadaS, SugiyamaY, HorieT. Long-lasting inhibitory effects of cyclosporin A, but not tacrolimus, on OATP1B1- and OATP1B3-mediated uptake. Drug. Metab. Pharmacokinet.27(4) , 368–378 (2012).
  • Birdwell KA , GradyB, ChoiL et al. The use of a DNA biobank linked to electronic medical records to characterize pharmacogenomic predictors of tacrolimus dose requirement in kidney transplant recipients. Pharmacogenet. Genomics 22(1) , 32–42 (2012).
  • Thervet E , LoriotMA, BarbierS et al. Optimization of initial tacrolimus dose using pharmacogenetic testing. Clin. Pharmacol. Ther. 87(6) , 721–726 (2010).
  • Passey C , BirnbaumAK, BrundageRC, OettingWS, IsraniAK, JacobsonPA. Dosing equation for tacrolimus using genetic variants and clinical factors. Br. J. Clin. Pharmacol.72(6) , 948–957 (2011).
  • Elens L , HesselinkDA, van Schaik RH, van Gelder T. The CYP3A4*22 allele affects the predictive value of a pharmacogenetic algorithm predicting tacrolimus predose concentrations. Br. J. Clin. Pharmacol. (2012).
  • Quteineh L , VerstuyftC, FurlanV et al. Influence of CYP3A5 genetic polymorphism on tacrolimus daily dose requirements and acute rejection in renal graft recipients. Basic Clin. Pharmacol. Toxicol. 103(6) , 546–552 (2008).
  • Min SI , KimSY, AhnSH et al. CYP3A5 *1 allele: impacts on early acute rejection and graft function in tacrolimus-based renal transplant recipients. Transplantation90(12) , 1394–1400 (2010).
  • Miura Y , SatohS, SaitoM et al. Factors increasing quantitative interstitial fibrosis from 0 hr to 1 year in living kidney transplant patients receiving tacrolimus. Transplantation 91(1) , 78–85 (2011).
  • Naesens M , LerutE, de Jonge H et al. Donor age and renal P-glycoprotein expression associate with chronic histological damage in renal allografts. J. Am. Soc. Nephrol.20(11) , 2468–2480 (2009).
  • Miao LY , HuangCR, HouJQ, QianMY. Association study of ABCB1 and CYP3A5 gene polymorphisms with sirolimus trough concentration and dose requirements in Chinese renal transplant recipients. Biopharm. Drug Dispos.29(1) , 1–5 (2008).
  • Sam WJ , ChamberlainCE, LeeSJ et al. Associations of ABCB1 3435C > T and IL-10-1082G > a polymorphisms with long-term sirolimus dose requirements in renal transplant patients. Transplantation 92(12) , 1342–1347 (2011).
  • Mourad M , MouradG, WallemacqP et al. Sirolimus and tacrolimus trough concentrations and dose requirements after kidney transplantation in relation to CYP3A5 and MDR1 polymorphisms and steroids. Transplantation 80(7) , 977–984 (2005).
  • Moes D , PressRR, den Hartigh J, van der Straaten T, de Fijter JW, Guchelaar HJ. Population pharmacokinetics and pharmacogenetics of everolimus in renal transplant patients. Clin. Pharmacokinet.51(7) , 467–480 (2012).
  • Tett SE , Saint-MarcouxF, StaatzCE et al. Mycophenolate, clinical pharmacokinetics, formulations, and methods for assessing drug exposure. Transplant. Rev. (Orlando) 25(2) , 47–57 (2011).
  • Basu NK , KoleL, KubotaS, OwensIS. Human UDP-glucuronosyltransferases show atypical metabolism of mycophenolic acid and inhibition by curcumin. Drug. Metab. Dispos.32(7) , 768–773 (2004).
  • Picard N , RatanasavanhD, PremaudA, Le Meur Y, Marquet P. Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab. Dispos.33(1) , 139–146 (2005).
  • Kuypers DR , de Jonge H, Naesens M et al. Current target ranges of mycophenolic acid exposure and drug-related adverse events: a 5-year, open-label, prospective, clinical follow-up study in renal allograft recipients. Clin. Ther.30(4) , 673–683 (2008).
  • van Schaik RHN , van Agteren M, de Fijter JW et al.UGT1A9 -275T>A/-2152C>T Polymorphisms correlate with low MPA exposure and acute rejection in MMF/tacrolimus-treated kidney transplant patients. Clin. Pharmacol. Ther.86(3) , 319–327 (2009).
  • Sanchez-Fructuoso AI , MaestroML, CalvoN et al. The prevalence of uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T and its influence on mycophenolic acid pharmacokinetics in stable renal transplant patients. Transplant. Proc. 41(6) , 2313–2316 (2009).
  • Johnson LA , OettingWS, BasuS, PrausaS, MatasA, JacobsonPA. Pharmacogenetic effect of the UGT polymorphisms on mycophenolate is modified by calcineurin inhibitors. Eur. J. Clin. Pharmacol.64(11) , 1047–1056 (2008).
  • Kobayashi M , SaitohH, TadanoK, TakahashiY, HiranoT. Cyclosporin A, but not tacrolimus, inhibits the biliary excretion of mycophenolic acid glucuronide possibly mediated by multidrug resistance-associated protein 2 in rats. J. Pharmacol. Exp. Ther.309(3) , 1029–1035 (2004).
  • Miura M , KagayaH, SatohS et al. Influence of drug transporters and UGT polymorphisms on pharmacokinetics of phenolic glucuronide metabolite of mycophenolic acid in Japanese renal transplant recipients. Ther. Drug. Monit. 30(5) , 559–564 (2008).
  • Baldelli S , MerliniS, PericoN et al. C-440T/T-331C polymorphisms in the UGT1A9 gene affect the pharmacokinetics of mycophenolic acid in kidney transplantation. Pharmacogenomics 8(9) , 1127–1141 (2007).
  • Lloberas N , TorrasJ, CruzadoJM et al. Influence of MRP2 on MPA pharmacokinetics in renal transplant recipients-results of the pharmacogenomic substudy within the symphony study. Nephrol. Dial. Transplant. 26(11) , 3784–3793 (2011).
  • Shipkova M , ArmstrongVW, OellerichM, WielandE. Acyl glucuronide drug metabolites: toxicological and analytical implications. Ther. Drug Monit.25(1) , 1–16 (2003).
  • Naesens M , KuypersDR, VerbekeK, VanrenterghemY. Multidrug resistance protein 2 genetic polymorphisms influence mycophenolic acid exposure in renal allograft recipients. Transplantation82(8) , 1074–1084 (2006).
  • Woillard JB , RerolleJP, PicardN et al. Risk of diarrhoea in a long-term cohort of renal transplant patients given mycophenolate mofetil: the significant role of the UGT1A8 2 variant allele. Br. J. Clin. Pharmacol. 69(6) , 675–683 (2010).
  • Miura M , SatohS, InoueK et al. Influence of SLCO1B1, 1B3, 2B1 and ABCC2 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Eur. J. Clin. Pharmacol. 63(12) , 1161–1169 (2007).
  • Wang J , YangJW, ZeeviA et al. IMPDH1 gene polymorphisms and association with acute rejection in renal transplant patients. Clin. Pharmacol. Ther.83(5) , 711–717 (2008).
  • Kagaya H , MiuraM, SaitoM, HabuchiT, SatohS. Correlation of IMPDH1 gene polymorphisms with subclinical acute rejection and mycophenolic acid exposure parameters on day 28 after renal transplantation. Basic Clin. Pharmacol. Toxicol.107(2) , 631–636 (2010).
  • Grinyo J , VanrenterghemY, NashanB et al. Association of four DNA polymorphisms with acute rejection after kidney transplantation. Transpl. Int. 21(9) , 879–891 (2008).
  • Sombogaard F , van Schaik RH, Mathot RA et al. Interpatient variability in IMPDH activity in MMF-treated renal transplant patients is correlated with IMPDH type II 3757T > C polymorphism. Pharmacogenet. Genomics19(8) , 626–634 (2009).
  • Halloran P , MathewT, TomlanovichS, GrothC, HooftmanL, BarkerC. Mycophenolate mofetil in renal allograft recipients: a pooled efficacy analysis of three randomized, double-blind, clinical studies in prevention of rejection. The International Mycophenolate Mofetil Renal Transplant Study Groups. Transplantation63(1) , 39–47 (1997).
  • Weinshilboum RM , SladekSL. Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am. J. Hum.Genet.32(5) , 651–662 (1980).
  • Kurzawski M , DziewanowskiK, CiechanowskiK, DrozdzikM. Severe azathioprine-induced myelotoxicity in a kidney transplant patient with thiopurine S-methyltransferase-deficient genotype (TPMT*3A/*3C). Transpl. Int.18(5) , 623–625 (2005).
  • Budhiraja P , PopovtzerM. Azathioprine-related myelosuppression in a patient homozygous for TPMT*3A. Nat. Rev. Nephrol.7(8) , 478–484 (2011).
  • Yates CR , KrynetskiEY, LoennechenT et al. Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann. Intern. Med. 126(8) , 608–614 (1997).
  • Stocco G , FrancaR, VerzegnassiF, LonderoM, RabusinM, DecortiG. Multilocus genotypes of relevance for drug metabolizing enzymes and therapy with thiopurines in patients with acute lymphoblastic leukemia. Front. Genet.3 , 309 (2012).
  • Relling MV , GardnerEE, SandbornWJ et al. Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin. Pharmacol. Ther. 89(3) , 387–391 (2011).
  • Formea CM , Myers-HuentelmanH, WuR et al. Thiopurine S-methyltransferase genotype predicts azathioprine-induced myelotoxicity in kidney transplant recipients. Am. J. Transplant. 4(11) , 1810–1817 (2004).
  • Kurzawski M , DziewanowskiK, Gawronska-SzklarzB, DomanskiL, DrozdzikM. The impact of thiopurine S-methyltransferase polymorphism on azathioprine-induced myelotoxicity in renal transplant recipients. Ther. Drug Monit.27(4) , 435–441 (2005).
  • Kurzawski M , DziewanowskiK, LenerA, DrozdzikM. TPMT but not ITPA gene polymorphism influences the risk of azathioprine intolerance in renal transplant recipients. Eur. J. Clin. Pharmacol.65(5) , 533–540 (2009).
  • Xin HW , XiongH, WuXC, LiQ, XiongL, YuAR. Relationships between thiopurine S-methyltransferase polymorphism and azathioprine-related adverse drug reactions in Chinese renal transplant recipients. Eur. J. Clin. Pharmacol.65(3) , 249–255 (2009).
  • Vannaprasaht S , AngsuthumS, AvihingsanonY et al. Impact of the heterozygous TPMT*1/*3C genotype on azathioprine-induced myelosuppression in kidney transplant recipients in Thailand. Clin. Ther. 31(7) , 1524–1533 (2009).
  • Fabre MA , JonesDC, BunceM et al. The impact of thiopurine S-methyltransferase polymorphisms on azathioprine dose 1 year after renal transplantation. Transpl. Int. 17(9) , 531–539 (2004).
  • Song DK , ZhaoJ, ZhangLR. TPMT genotype and its clinical implication in renal transplant recipients with azathioprine treatment. J. Clin. Pharm. Ther.31(6) , 627–635 (2006).
  • von Ahsen N , OellerichM, ArmstrongVW. Characterization of the inosine triphosphatase (ITPA) gene: haplotype structure, haplotype-phenotype correlation and promoter function. Ther. Drug Monit.30(1) , 16–22 (2008).
  • van Dieren JM , HansenBE, KuipersEJ, NieuwenhuisEE, van der Woude CJ. Meta-analysis: inosine triphosphate pyrophosphatase polymorphisms and thiopurine toxicity in the treatment of inflammatory bowel disease. Aliment. Pharmacol. Ther.26(5) , 643–652 (2007).
  • Xiong H , XinHW, WuXC, LiQ, XiongL, YuAR. Association between inosine triphosphate pyrophosphohydrolase deficiency and azathioprine-related adverse drug reactions in the Chinese kidney transplant recipients. Fundam. Clin. Pharmacol.24(3) , 393–400 (2010).
  • Kurzawski M , DziewanowskiK, SafranowK, DrozdzikM. Polymorphism of genes involved in purine metabolism (XDH, AOX1, MOCOS) in kidney transplant recipients receiving azathioprine. Ther. Drug Monit.34(3) , 266–274 (2012).
  • Miura M , SatohS, InoueK et al. Influence of CYP3A5, ABCB1 and NR1I2 polymorphisms on prednisolone pharmacokinetics in renal transplant recipients. Steroids 73(11) , 1052–1059 (2008).
  • Wiesner RH , FungJJ. Present state of immunosuppressive therapy in liver transplant recipients. Liver Transpl.17(Suppl. 3) , S1–S9 (2011).
  • Tisone G , OrlandoG, AngelicoM. Operational tolerance in clinical liver transplantation: emerging developments. Transpl. Immunol.17(2) , 108–113 (2007).
  • Shi Y , LiY, TangJ et al. Influence of CYP3A4, CYP3A5 and MDR-1 polymorphisms on tacrolimus pharmacokinetics and early renal dysfunction in liver transplant recipients. Gene 512(2) , 226–231 (2013).
  • Yu XB , XieHY, WeiBJ et al. Association of MDR1 gene SNPs and haplotypes with the tacrolimus dose requirements in Han Chinese liver transplant recipients. PLoS ONE 6(11) , e25933 (2011).
  • Uesugi M , MasudaS, KatsuraT, OikeF, TakadaY, InuiKI. Effect of intestinal CYP3A5 on postoperative tacrolimus trough levels in living-donor liver transplant recipients. Pharmacogenet. Genomics16(2) , 119–127 (2006).
  • Fukudo M , YanoI, YoshimuraA et al. Impact of MDR1 and CYP3A5 on the oral clearance of tacrolimus and tacrolimus-related renal dysfunction in adult living-donor liver transplant patients. Pharmacogenet. Genomics 18(5) , 413–423 (2008).
  • Muraki Y , UsuiM, IsajiS et al. Impact of CYP3A5 genotype of recipients as well as donors on the tacrolimus pharmacokinetics and infectious complications after living-donor liver transplantation for Japanese adult recipients. Ann. Transplant. 16(4) , 55–62 (2011).
  • Provenzani A , NotarbartoloM, LabbozzettaM et al. The effect of CYP3A5 and ABCB1 single nucleotide polymorphisms on tacrolimus dose requirements in Caucasian liver transplant patients. Ann. Transplant. 14(1) , 23–31 (2009).
  • Barrera-Pulido L , Aguilera-GarciaI, Docobo-PerezF et al. Clinical relevance and prevalence of polymorphisms in CYP3A5 and MDR1 genes that encode tacrolimus biotransformation enzymes in liver transplant recipients. Transplant. Proc. 40(9) , 2949–2951 (2008).
  • Bonhomme-Faivre L , DevocelleA, SalibaF et al. MDR-1 C3435T polymorphism influences cyclosporine A dose requirement in liver-transplant recipients. Transplantation78(1) , 21–25 (2004).
  • Hebert MF , DowlingAL, GierwatowskiC et al. Association between ABCB1 (multidrug resistance transporter) genotype and post-liver transplantation renal dysfunction in patients receiving calcineurin inhibitors. Pharmacogenetics 13(11) , 661–674 (2003).
  • Breen DP , MarinakiAM, ArenasM, HayesPC. Pharmacogenetic association with adverse drug reactions to azathioprine immunosuppressive therapy following liver transplantation. Liver Transplant.11(7) , 826–833 (2005).
  • Buster EH , van Vuuren HJ, Zondervan PE, Metselaar HJ, Tilanus HW, de Man RA. Thiopurine-methyltransferase and inosine triphosphate pyrophosphatase polymorphism in a liver transplant recipient developing nodular regenerative hyperplasia on low-dose azathioprine. Eur. J. Gastroenterol. Hepatol.20(1) , 68–72 (2008).
  • Kniepeiss D , RennerW, TrummerO et al. The role of CYP3A5 genotypes in dose requirements of tacrolimus and everolimus after heart transplantation. Clin. Transplant. 25(1) , 146–150 (2011).
  • Diaz-Molina B , TaviraB, LambertJL, BernardoMJ, AlvarezV, CotoE. Effect of CYP3A5, CYP3A4, and ABCB1 genotypes as determinants of tacrolimus dose and clinical outcomes after heart transplantation. Transplant. Proc.44(9) , 2635–2638 (2012).
  • Taegtmeyer AB , BreenJB, SmithJ et al. ATP-binding cassette subfamily B member 1 polymorphisms do not determine cyclosporin exposure, acute rejection or nephrotoxicity after heart transplantation. Transplantation 89(1) , 75–82 (2010).
  • Chowbay B , CumaraswamyS, CheungYB, ZhouQ, LeeEJ. Genetic polymorphisms in MDR1 and CYP3A4 genes in Asians and the influence of MDR1 haplotypes on cyclosporin disposition in heart transplant recipients. Pharmacogenetics13(2) , 89–95 (2003).
  • Hesselink DA , van Gelder T, van Schaik RH et al. Population pharmacokinetics of cyclosporine in kidney and heart transplant recipients and the influence of ethnicity and genetic polymorphisms in the MDR-1, CYP3A4, and CYP3A5 genes. Clin. Pharmacol. Ther.76(6) , 545–556 (2004).
  • Ting LS , Benoit-BiancamanoMO, BernardO, RiggsKW, GuillemetteC, EnsomMH. Pharmacogenetic impact of UDP-glucuronosyltransferase metabolic pathway and multidrug resistance-associated protein 2 transport pathway on mycophenolic acid in thoracic transplant recipients: an exploratory study. Pharmacotherapy30(11) , 1097–1108 (2010).
  • Ohmann EL , BurckartGJ, BrooksMM et al. Genetic polymorphisms influence mycophenolate mofetil-related adverse events in pediatric heart transplant patients. J. Heart Lung Transplant. 29(5) , 509–516 (2010).
  • Ohmann EL , BurckartGJ, ChenY et al. Inosine 5´-monophosphate dehydrogenase 1 haplotypes and association with mycophenolate mofetil gastrointestinal intolerance in pediatric heart transplant patients. Pediatr. Transplant. 14(7) , 891–895 (2010).
  • Sebbag L , BoucherP, DaveluP et al. Thiopurine S-methyltransferase gene polymorphism is predictive of azathioprine-induced myelosuppression in heart transplant recipient. Transplantation 69(7) , 1524–1527 (2000).
  • Zheng HX , ZeeviA, SchuetzE et al. Tacrolimus dosing in adult lung transplant patients is related to cytochrome P4503A5 gene polymorphism. J. Clin. Pharmacol. 44(2) , 135–140 (2004).
  • Wang J , ZeeviA, McCurryK et al. Impact of ABCB1 (MDR1) haplotypes on tacrolimus dosing in adult lung transplant patients who are CYP3A5*3/*3 nonexpressors. Transplant. Immunol. 15(3) , 235–240 (2006).
  • Zheng HX , ZeeviA, McCurryK et al. The impact of pharmacogenomic factors on acute persistent rejection in adult lung transplant patients. Transplant. Immunol. 14(1) , 37–42 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.