527
Views
3
CrossRef citations to date
0
Altmetric
Review

An Update on the Pharmacogenomics of Metformin: Progress, Problems and Potential

&
Pages 529-539 | Published online: 13 Mar 2014

References

  • Danaei G , FinucaneMM, LuY et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 378(9785) , 31–40 (2011).
  • Inzucchi SE , BergenstalRM, BuseJB et al. Management of hyperglycemia in Type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 35(6) , 1364–1379 (2012).
  • Graham GG , PuntJ, AroraM et al. Clinical pharmacokinetics of metformin. Clin. Pharmacokinet. 50(2) , 81–98 (2011).
  • Viollet B , GuigasB, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clin. Sci. (Lond.)122(6) , 253–270 (2012).
  • Gong L , GoswamiS, GiacominiKM, AltmanRB, KleinTE. Metformin pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet. Genomics22(11) , 820–827 (2012).
  • Rena G , PearsonER, SakamotoK. Molecular mechanism of action of metformin: old or new insights? Diabetologia56(9) , 1898–1906 (2013).
  • Bailey CJ . Biguanides and NIDDM. Diabetes Care15(6) , 755–772 (1992).
  • Stumvoll M , NurjhanN, PerrielloG, DaileyG, GerichJE. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N. Engl. J. Med.333(9) , 550–554 (1995).
  • Bailey CJ , TurnerRC. Metformin. N. Engl. J. Med.334(9) , 574–579 (1996).
  • Zhou G , MyersR, LiY et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108(8) , 1167–1174 (2001).
  • Shaw RJ , LamiaKA, VasquezD et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310(5754) , 1642–1646 (2005).
  • Foretz M , HebrardS, LeclercJ et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest. 120(7) , 2355–2369 (2010).
  • Owen MR , DoranE, HalestrapAP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J.348(Pt 3) , 607–614 (2000).
  • El-Mir MY , NogueiraV, FontaineE, AveretN, RigouletM, LeverveX. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J. Biol. Chem.275(1) , 223–228 (2000).
  • Stephenne X , ForetzM, TaleuxN et al. Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status. Diabetologia 54(12) , 3101–3110 (2011).
  • Hawley SA , RossFA, ChevtzoffC et al. Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab. 11(6) , 554–565 (2010).
  • Miller RA , ChuQ, XieJ, ForetzM, ViolletB, BirnbaumMJ. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature494(7436) , 256–260 (2013).
  • Zhou M , XiaL, WangJ. Metformin transport by a newly cloned proton-stimulated organic cation transporter (plasma membrane monoamine transporter) expressed in human intestine. Drug Metab. Dispos. Biol. Fate Chem.35(10) , 1956–1962 (2007).
  • Muller J , LipsKS, MetznerL, NeubertRH, KoepsellH, BrandschM. Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochem. Pharmacol.70(12) , 1851–1860 (2005).
  • Chen L , PawlikowskiB, SchlessingerA et al. Role of organic cation transporter 3 (SLC22A3) and its missense variants in the pharmacologic action of metformin. Pharmacogenet. Genomics 20(11) , 687–699 (2010).
  • Nies AT , KoepsellH, WinterS et al. Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology 50(4) , 1227–1240 (2009).
  • Shu Y , SheardownSA, BrownC et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J. Clin. Invest. 117(5) , 1422–1431 (2007).
  • Otsuka M , MatsumotoT, MorimotoR, AriokaS, OmoteH, MoriyamaY. A human transporter protein that mediates the final excretion step for toxic organic cations. Proc. Natl Acad. Sci. USA102(50) , 17923–17928 (2005).
  • Tanihara Y , MasudaS, SatoT, KatsuraT, OgawaO, InuiK. Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H(+)-organic cation antiporters. Biochem. Pharmacol.74(2) , 359–371 (2007).
  • Takane H , ShikataE, OtsuboK, HiguchiS, IeiriI. Polymorphism in human organic cation transporters and metformin action. Pharmacogenomics9(4) , 415–422 (2008).
  • Masuda S , TeradaT, YonezawaA et al. Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. J. Am. Soc. Nephrol. 17(8) , 2127–2135 (2006).
  • Kerb R , BrinkmannU, ChatskaiaN et al. Identification of genetic variations of the human organic cation transporter hOCT1 and their functional consequences. Pharmacogenetics 12(8) , 591–595 (2002).
  • Leabman MK , HuangCC, KawamotoM et al. Polymorphisms in a human kidney xenobiotic transporter, OCT2, exhibit altered function. Pharmacogenetics 12(5) , 395–405 (2002).
  • Sakata T , AnzaiN, ShinHJ et al. Novel single nucleotide polymorphisms of organic cation transporter 1 (SLC22A1) affecting transport functions. Biochem. Biophys. Res. Commun. 313(3) , 789–793 (2004).
  • Shu Y , LeabmanMK, FengB et al. Evolutionary conservation predicts function of variants of the human organic cation transporter, OCT1. Proc. Natl Acad. Sci. USA 100(10) , 5902–5907 (2003).
  • Shu Y , BrownC, CastroRA et al. Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin pharmacokinetics. Clin. Pharmacol. Ther. 83(2) , 273–280 (2008).
  • Tzvetkov MV , VormfeldeSV, BalenD et al. The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin. Clin. Pharmacol. Ther. 86(3) , 299–306 (2009).
  • Shikata E , YamamotoR, TakaneH et al. Human organic cation transporter (OCT1 and OCT2) gene polymorphisms and therapeutic effects of metformin. J. Hum. Genet. 52(2) , 117–122 (2007).
  • Becker ML , VisserLE, van Schaik RH, Hofman A, Uitterlinden AG, Stricker BH. Genetic variation in the organic cation transporter 1 is associated with metformin response in patients with diabetes mellitus. Pharmacogenomics J.9(4) , 242–247 (2009).
  • Zhou K , DonnellyLA, KimberCH et al. Reduced function SLC22A1 polymorphisms encoding organic cation transporter 1 (OCT1) and glycaemic response to metformin: a Go-DARTS study. Diabetes 58(6) , 1434–1439 (2009).
  • Christensen MM , Brasch-AndersenC, GreenH et al. The pharmacogenetics of metformin and its impact on plasma metformin steady-state levels and glycosylated hemoglobin A1c. Pharmacogenet. Genomics 21(12) , 837–850 (2011).
  • Gram J , HenriksenJE, GrodumE et al. Pharmacological treatment of the pathogenetic defects in Type 2 diabetes: the randomized multicenter South Danish Diabetes Study. Diabetes Care 34(1) , 27–33 (2011).
  • Tkáč I , KlimcakovaL, JavorskyM et al. Pharmacogenomic association between a variant in SLC47A1 gene and therapeutic response to metformin in Type 2 diabetes. Diabetes Obes. Metab. 15(2) , 189–191 (2013).
  • Gambineri A , TomassoniF, GaspariniDI et al. Organic cation transporter 1 polymorphisms predict the metabolic response to metformin in women with the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 95(10) , E204–E208 (2010).
  • Jablonski KA , McateerJB, De Bakker PI et al. Common variants in 40 genes assessed for diabetes incidence and response to metformin and lifestyle interventions in the diabetes prevention program. Diabetes59(10) , 2672–2681 (2010).
  • Tarasova L , KalninaI, GeldnereK et al. Association of genetic variation in the organic cation transporters OCT1, OCT2 and multidrug and toxin extrusion 1 transporter protein genes with the gastrointestinal side effects and lower BMI in metformin-treated Type 2 diabetes patients. Pharmacogenet. Genomics 22(9) , 659–666 (2012).
  • Kang HJ , SongIS, ShinHJ et al. Identification and functional characterization of genetic variants of human organic cation transporters in a Korean population. Drug Metab. Dispos. Biol. Fate Chem. 35(4) , 667–675 (2007).
  • Song IS , ShinHJ, ShimEJ et al. Genetic variants of the organic cation transporter 2 influence the disposition of metformin. Clin. Pharmacol. Ther. 84(5) , 559–562 (2008).
  • Wang ZJ , YinOQ, TomlinsonB, ChowMS. OCT2 polymorphisms and in-vivo renal functional consequence: studies with metformin and cimetidine. Pharmacogenet. Genomics18(7) , 637–645 (2008).
  • Chen Y , LiS, BrownC et al. Effect of genetic variation in the organic cation transporter 2 on the renal elimination of metformin. Pharmacogenet. Genomics 19(7) , 497–504 (2009).
  • Christensen MM , PedersenRS, StageTB et al. A gene–gene interaction between polymorphisms in the OCT2 and MATE1 genes influences the renal clearance of metformin. Pharmacogenet. Genomics 23(10) , 526–534 (2013).
  • Kajiwara M , TeradaT, OgasawaraK et al. Identification of multidrug and toxin extrusion (MATE1 and MATE2-K) variants with complete loss of transport activity. J. Hum. Genet. 54(1) , 40–46 (2009).
  • Toyama K , YonezawaA, TsudaM et al. Heterozygous variants of multidrug and toxin extrusions (MATE1 and MATE2-K) have little influence on the disposition of metformin in diabetic patients. Pharmacogenet. Genomics 20(2) , 135–138 (2010).
  • Chen Y , TeranishiK, LiS et al. Genetic variants in multidrug and toxic compound extrusion-1, hMATE1, alter transport function. Pharmacogenomics J. 9(2) , 127–136 (2009).
  • Choi JH , YeeSW, RamirezAH et al. A common 5´-UTR variant in MATE2-K is associated with poor response to metformin. Clin. Pharmacol. Ther. 90(5) , 674–684 (2011).
  • Ha Choi J , Wah Yee S, Kim MJ et al. Identification and characterization of novel polymorphisms in the basal promoter of the human transporter, MATE1. Pharmacogenet. Genomics19(10) , 770–780 (2009).
  • Stocker SL , MorrisseyKM, YeeSW et al. The effect of novelpromoter variants in MATE1 and MATE2 on the pharmacokinetics and pharmacodynamics of metformin. Clin. Pharmacol. Ther. 93(2) , 186–194 (2013).
  • Becker ML , VisserLE, van Schaik RHN, Hofman A, Uitterlinden AG, Stricker BHC. Genetic variation in the multidrug and toxin extrusion 1 transporter protein influences the glucose-lowering effect of metformin in patients with diabetes: a preliminary study. Diabetes58(3) , 745–749 (2009).
  • Legro RS , BarnhartHX, SchlaffWD et al. Ovulatory response to treatment of polycystic ovary syndrome is associated with a polymorphism in the STK11 gene. J. Clin. Endocrinol. Metab. 93(3) , 792–800 (2008).
  • Dong M , GongZC, DaiXP et al. Serine racemase rs391300 G/A polymorphism influences the therapeutic efficacy of metformin in Chinese patients with diabetes mellitus Type 2. Clin. Exp. Pharmacol. Physiol. 38(12) , 824–829 (2011).
  • Zhou K , BellenguezC, SpencerCC et al. Common variants near ATM are associated with glycemic response to metformin in Type 2 diabetes. Nat. Genet. 43(2) , 117–120 (2011).
  • Yee SW , ChenL, GiacominiKM. The role of ATM in response to metformin treatment and activation of AMPK. Nat. Genet.44(4) , 359–360 (2012).

▪ Website

  • Centers for Disease Control and Prevention. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011. US Department of Health and Human Services, Centers for Disease Control and Prevention, GA, USA (2011). www.cdc.gov/diabetes/pubs/factsheet11.htm

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.