553
Views
0
CrossRef citations to date
0
Altmetric
Review

Individualization of Treatments with Drugs Metabolized by CES1: Combining Genetics and Metabolomics

, , , , , , , , , , , , , , , , , , & show all
Pages 649-665 | Published online: 21 Apr 2015

References

  • Hosokawa M . Structure and catalytic properties of carboxylesterase isozymes involved in metabolic activation of prodrugs . Molecules13 ( 2 ), 412 – 431 ( 2008 ).
  • Holmes RS , WrightMW , LaulederkindSJFet al. Recommended nomenclature for five mammalian carboxylesterase gene families: human, mouse, and rat genes and proteins . Mamm. Genome21 ( 9–10 ), 427 – 441 ( 2010 ).
  • Sun Z , MurryDJ , SanghaniSPet al. Methylphenidate is stereoselectively hydrolyzed by human carboxylesterase CES1A1 . J. Pharmacol. Exp. Ther.310 ( 2 ), 469 – 476 ( 2004 ).
  • Shi D , YangJ , YangDet al. Anti-influenza prodrug oseltamivir is activated by carboxylesterase human carboxylesterase 1, and the activation is inhibited by antiplatelet agent clopidogrel . J. Pharmacol. Exp. Ther.319 ( 3 ), 1477 – 1484 ( 2006 ).
  • Takai S , MatsudaA , UsamiYet al. Hydrolytic profile for ester- or amide-linkage by carboxylesterases pI 5.3 and 4.5 from human liver . Biol. Pharm. Bull.20 ( 8 ), 869 – 873 ( 1997 ).
  • Zhu H-J , AppelDI , JohnsonJA , ChavinKD , MarkowitzJS . Role of carboxylesterase 1 and impact of natural genetic variants on the hydrolysis of trandolapril . Biochem. Pharmacol.77 ( 7 ), 1266 – 1272 ( 2009 ).
  • Fujiyama N , MiuraM , KatoS , SoneT , IsobeM , SatohS . Involvement of carboxylesterase 1 and 2 in the hydrolysis of mycophenolate mofetil . Drug Metab. Dispos.38 ( 12 ), 2210 – 2217 ( 2010 ).
  • Ghosh S . Cholesteryl ester hydrolase in human monocyte/macrophage: cloning, sequencing, and expression of full-length cDNA . Physiol. Genomics2 ( 1 ), 1 – 8 ( 2000 ).
  • Okazaki H , IgarashiM , NishiMet al. Identification of a novel member of the carboxylesterase family that hydrolyzes triacylglycerol: a potential role in adipocyte lipolysis . Diabetes55 ( 7 ), 2091 – 2097 ( 2006 ).
  • Xie S , BorazjaniA , HatfieldMJ , EdwardsCC , PotterPM , RossMK . Inactivation of lipid glyceryl ester metabolism in human THP1 monocytes/macrophages by activated organophosphorus insecticides: role of carboxylesterases 1 and 2 . Chem. Res. Toxicol.23 ( 12 ), 1890 – 1904 ( 2010 ).
  • Sai K , SaitoY , TatewakiNet al. Association of carboxylesterase 1A genotypes with irinotecan pharmacokinetics in Japanese cancer patients . Br. J. Clin. Pharmacol.70 ( 2 ), 222 – 233 ( 2010 ).
  • Geshi E , KimuraT , YoshimuraMet al. A single nucleotide polymorphism in the carboxylesterase gene is associated with the responsiveness to imidapril medication and the promoter activity . Hypertens. Res.28 ( 9 ), 719 – 725 ( 2005 ).
  • Bruxel EM , Salatino-OliveiraA , GenroJPet al. Association of a carboxylesterase 1 polymorphism with appetite reduction in children and adolescents with attention-deficit/hyperactivity disorder treated with methylphenidate . Pharmacogenomics J.13 ( 5 ), 476 – 480 ( 2013 ).
  • Marsh S , XiaoM , YuJet al. Pharmacogenomic assessment of carboxylesterases 1 and 2 . Genomics84 ( 4 ), 661 – 668 ( 2004 ).
  • Yamada S , RichardsonK , TangMet al. Genetic variation in carboxylesterase genes and susceptibility to isoniazid-induced hepatotoxicity . Pharmacogenomics J.10 ( 6 ), 524 – 536 ( 2010 ).
  • Zhu H-J , MarkowitzJS . Activation of the antiviral prodrug oseltamivir is impaired by two newly identified carboxylesterase 1 variants . Drug Metab. Dispos.37 ( 2 ), 264 – 267 ( 2009 ).
  • Zhu H-J , PatrickKS , YuanH-Jet al. Two CES1 gene mutations lead to dysfunctional carboxylesterase 1 activity in man: clinical significance and molecular basis . Am. J. Hum. Genet.82 ( 6 ), 1241 – 1248 ( 2008 ).
  • Hosokawa M , FurihataT , YaginumaYet al. Genomic structure and transcriptional regulation of the rat, mouse, and human carboxylesterase genes . Drug Metab. Rev.39 ( 1 ), 1 – 15 ( 2007 ).
  • Fukami T , NakajimaM , MaruichiTet al. Structure and characterization of human carboxylesterase 1A1, 1A2, and 1A3 genes . Pharmacogenet. Genomics18 ( 10 ), 911 – 920 ( 2008 ).
  • Martin J , HanC , GordonLAet al. The sequence and analysis of duplication-rich human chromosome 16 . Nature432 ( 7020 ), 988 – 994 ( 2004 ).
  • Tanimoto K , KaneyasuM , ShimokuniT , HiyamaK , NishiyamaM . Human carboxylesterase 1A2 expressed from carboxylesterase 1A1 and 1A2 genes is a potent predictor of CPT-11 cytotoxicity in vitro . Pharmacogenet. Genomics17 ( 1 ), 1 – 10 ( 2007 ).
  • Yoshimura M , KimuraT , IshiiMet al. Functional polymorphisms in carboxylesterase1A2 (CES1A2) gene involves specific protein 1 (Sp1) binding sites . Biochem. Biophys. Res. Commun.369 ( 3 ), 939 – 942 ( 2008 ).
  • Zhu H-J , BrindaB , FroehlichTE , MarkowitzJS . A discriminative analytical method for detection of CES1A1 and CES1A2/CES1A3 genetic variants . Pharmacogenet. Genomics22 ( 3 ), 215 – 218 ( 2012 ).
  • Patrick KS , StraughnAB , MinhinnettRRet al. Influence of ethanol and gender on methylphenidate pharmacokinetics and pharmacodynamics . Clin. Pharmacol. Ther.81 ( 3 ), 346 – 353 ( 2007 ).
  • Zhu H-J , WangX , GawronskiBE , BrindaBJ , AngiolilloDJ , MarkowitzJS . Carboxylesterase 1 as a determinant of clopidogrel metabolism and activation . J. Pharmacol. Exp. Ther.344 ( 3 ), 665 – 672 ( 2013 ).
  • Bencharit S , MortonCL , XueY , PotterPM , RedinboMR . Structural basis of heroin and cocaine metabolism by a promiscuous human drug-processing enzyme . Nat. Struct. Mol. Biol.10 ( 5 ), 349 – 356 ( 2003 ).
  • Ollis DL , CheahE , CyglerMet al. The alpha/beta hydrolase fold . Protein Eng.5 ( 3 ), 197 – 211 ( 1992 ).
  • Bencharit S , EdwardsCC , MortonCLet al. Multisite promiscuity in the processing of endogenous substrates by human carboxylesterase 1 . J. Mol. Biol.363 ( 1 ), 201 – 214 ( 2006 ).
  • Fleming CD , BencharitS , EdwardsCCet al. Structural insights into drug processing by human carboxylesterase 1: tamoxifen, mevastatin, and inhibition by benzil . J. Mol. Biol.352 ( 1 ), 165 – 177 ( 2005 ).
  • Niefind K , YdeCW , ErmakovaI , IssingerO-G . Evolved to be active: sulfate ions define substrate recognition sites of CK2alpha and emphasise its exceptional role within the CMGC family of eukaryotic protein kinases . J. Mol. Biol.370 ( 3 ), 427 – 438 ( 2007 ).
  • Mizutani K , YamashitaH , MikamiB , HiroseM . Crystal structure at 1.9 A resolution of the apoovotransferrin N-lobe bound by sulfate anions: implications for the domain opening and iron release mechanism . Biochemistry39 ( 12 ), 3258 – 3265 ( 2000 ).
  • Crow JA , HerringKL , XieS , BorazjaniA , PotterPM , RossMK . Inhibition of carboxylesterase activity of THP1 monocytes/macrophages and recombinant human carboxylesterase 1 by oxysterols and fatty acids . Biochim. Biophys. Acta1801 ( 1 ), 31 – 41 ( 2010 ).
  • Tabata T , KatohM , TokudomeS , NakajimaM , YokoiT . Identification of the cytosolic carboxylesterase catalyzing the 5′-deoxy-5-fluorocytidine formation from capecitabine in human liver . Drug Metab. Dispos.32 ( 10 ), 1103 – 1110 ( 2004 ).
  • Takahashi S , KatohM , SaitohT , NakajimaM , YokoiT . Different inhibitory effects in rat and human carboxylesterases . Drug Metab. Dispos.37 ( 5 ), 956 – 961 ( 2009 ).
  • Sato Y , MiyashitaA , IwatsuboT , UsuiT . Simultaneous absolute protein quantification of carboxylesterases 1 and 2 in human liver tissue fractions using liquid chromatography-tandem mass spectrometry . Drug Metab. Dispos.40 ( 7 ), 1389 – 1396 ( 2012 ).
  • Tang M , MukundanM , YangJet al. Antiplatelet agents aspirin and clopidogrel are hydrolyzed by distinct carboxylesterases, and clopidogrel is transesterificated in the presence of ethyl alcohol . J. Pharmacol. Exp. Ther.319 ( 3 ), 1467 – 1476 ( 2006 ).
  • Stephen LJ , BrodieMJ . Pharmacotherapy of epilepsy: newly approved and developmental agents . CNS Drugs25 ( 2 ), 89 – 107 ( 2011 ).
  • Sato Y , MiyashitaA , IwatsuboT , UsuiT . Conclusive identification of the oxybutynin-hydrolyzing enzyme in human liver . Drug Metab. Dispos.40 ( 5 ), 902 – 906 ( 2012 ).
  • Zhang J , BurnellJC , DumaualN , BosronWF . Binding and hydrolysis of meperidine by human liver carboxylesterase hCE-1 . J. Pharmacol. Exp. Ther.290 ( 1 ), 314 – 318 ( 1999 ).
  • Quinney SK , SanghaniSP , DavisWIet al. Hydrolysis of capecitabine to 5′-deoxy-5-fluorocytidine by human carboxylesterases and inhibition by loperamide . J. Pharmacol. Exp. Ther.313 ( 3 ), 1011 – 1016 ( 2005 ).
  • Wishart DS , KnoxC , GuoACet al. DrugBank: a comprehensive resource for in silico drug discovery and exploration . Nucleic Acids Res.34 , D668 – D672 ( 2006 ).
  • Wishart DS , KnoxC , GuoACet al. DrugBank: a knowledgebase for drugs, drug actions and drug targets . Nucleic Acids Res.36 , D901 – D906 ( 2008 ).
  • Knox C , LawV , JewisonTet al. DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs . Nucleic Acids Res.39 , D1035 – D1041 ( 2011 ).
  • Agostoni A , CicardiM . Drug-induced angioedema without urticaria . Drug Saf.24 ( 8 ), 599 – 606 ( 2001 ).
  • Bonati M , ClavennaA . The epidemiology of psychotropic drug use in children and adolescents . Int. Rev. Psychiatry17 ( 3 ), 181 – 188 ( 2005 ).
  • Kendall T , TaylorE , PerezA , TaylorC . Diagnosis and management of attention-deficit/hyperactivity disorder in children, young people, and adults: summary of NICE guidance . BMJ337 , a1239 ( 2008 ).
  • May DE , KratochvilCJ . Attention-deficit hyperactivity disorder: recent advances in paediatric pharmacotherapy . Drugs70 ( 1 ), 15 – 40 ( 2010 ).
  • Heal DJ , SmithSL , FindlingRL . ADHD: current and future therapeutics . Curr. Top. Behav. Neurosci.9 , 361 – 390 ( 2012 ).
  • Billiard M . Narcolepsy: current treatment options and future approaches . Neuropsychiatr. Dis. Treat.4 ( 3 ), 557 – 566 ( 2008 ).
  • Herrmann N , RothenburgLS , BlackSEet al. Methylphenidate for the treatment of apathy in Alzheimer disease: prediction of response using dextroamphetamine challenge . J. Clin. Psychopharmacol.28 ( 3 ), 296 – 301 ( 2008 ).
  • Howland RH . The use of dopaminergic and stimulant drugs for the treatment of depression . J. Psychosoc. Nurs. Ment. Health Serv.50 ( 2 ), 11 – 14 ( 2012 ).
  • Rodriguez-Oroz MC . Methylphenidate for freezing of gait in Parkinson’s disease . Lancet Neurol.11 ( 7 ), 569 – 570 ( 2012 ).
  • Santosh PJ , TaylorE . Stimulant drugs . Eur. Child Adolesc. Psychiatry9 ( Suppl. 1 ), I27 – I43 ( 2000 ).
  • Faraone SV , BuitelaarJ . Comparing the efficacy of stimulants for ADHD in children and adolescents using meta-analysis . Eur. Child Adolesc. Psychiatry19 ( 4 ), 353 – 364 ( 2010 ).
  • Greenhill LL , SwansonJM , VitielloBet al. Impairment and deportment responses to different methylphenidate doses in children with ADHD: the MTA titration trial . J. Am. Acad. Child Adolesc. Psychiatry40 ( 2 ), 180 – 187 ( 2001 ).
  • Vitiello B , SevereJB , GreenhillLLet al. Methylphenidate dosage for children with ADHD over time under controlled conditions: lessons from the MTA . J. Am. Acad. Child Adolesc. Psychiatry40 ( 2 ), 188 – 196 ( 2001 ).
  • Masellis M , BasileVS , MugliaP , OzdemirV , MacciardiFM , KennedyJL . Psychiatric pharmacogenetics: personalizing psychostimulant therapy in attention-deficit/hyperactivity disorder . Behav. Brain Res.130 ( 1–2 ), 85 – 90 ( 2002 ).
  • Mohammadi MR , AkhondzadehS . Pharmacotherapy of attention-deficit/hyperactivity disorder: nonstimulant medication approaches . Expert Rev. Neurother.7 ( 2 ), 195 – 201 ( 2007 ).
  • Müller U , SucklingJ , ZelayaFet al. Plasma level-dependent effects of methylphenidate on task-related functional magnetic resonance imaging signal changes . Psychopharmacology (Berl.)180 ( 4 ), 624 – 633 ( 2005 ).
  • Gualtieri CT , WarginW , KanoyRet al. Clinical studies of methylphenidate serum levels in children and adults . J. Am. Acad. Child Psychiatry21 ( 1 ), 19 – 26 ( 1982 ).
  • Kupietz SS , WinsbergBG , SverdJ . Learning ability and methylphenidate (Ritalin) plasma concentration in hyperkinetic children. A preliminary investigation . J. Am. Acad. Child Psychiatry21 ( 1 ), 27 – 30 ( 1982 ).
  • Quinn D , WigalS , SwansonJet al. Comparative pharmacodynamics and plasma concentrations of d-threo-methylphenidate hydrochloride after single doses of d-threo-methylphenidate hydrochloride and d,l-threo-methylphenidate hydrochloride in a double-blind, placebo-controlled, crossover laboratory school study in children with attention-deficit/hyperactivity disorder . J. Am. Acad. Child Adolesc. Psychiatry43 ( 11 ), 1422 – 1429 ( 2004 ).
  • Spencer TJ , BonabAA , DoughertyDD , MartinJ , McDonnellT , FischmanAJ . A PET study examining pharmacokinetics and dopamine transporter occupancy of two long-acting formulations of methylphenidate in adults . Int. J. Mol. Med.25 ( 2 ), 261 – 265 ( 2010 ).
  • Rapport MD , QuinnSO , DuPaulGJ , QuinnEP , KellyKL . Attention deficit disorder with hyperactivity and methylphenidate: the effects of dose and mastery level on children’s learning performance . J. Abnorm. Child Psychol.17 ( 6 ), 669 – 689 ( 1989 ).
  • Stein MA , SarampoteCS , WaldmanIDet al. A dose-response study of OROS methylphenidate in children with attention-deficit/hyperactivity disorder . Pediatrics112 ( 5 ), e404 ( 2003 ).
  • Hungund BL , PerelJM , HurwicMJ , SverdJ , WinsbergBG . Pharmacokinetics of methylphenidate in hyperkinetic children . Br. J. Clin. Pharmacol.8 ( 6 ), 571 – 576 ( 1979 ).
  • Levy F . Applications of pharmacogenetics in children with attention-deficit/hyperactivity disorder . Pharmgenomics Pers. Med.7 , 349 – 356 ( 2014 ).
  • Purper-Ouakil D , WohlM , OrejarenaSet al. Pharmacogenetics of methylphenidate response in attention deficit/hyperactivity disorder: association with the dopamine transporter gene (SLC6A3) . Am. J. Med. Genet. B. Neuropsychiatr. Genet.147B ( 8 ), 1425 – 1430 ( 2008 ).
  • Georgiadis D , BeauF , CzarnyB , CottonJ , YiotakisA , DiveV . Roles of the two active sites of somatic angiotensin-converting enzyme in the cleavage of angiotensin I and bradykinin: insights from selective inhibitors . Circ. Res.93 ( 2 ), 148 – 154 ( 2003 ).
  • Thomsen R , RasmussenHB , LinnetK , INDICES Consortium . In vitro drug metabolism by human carboxylesterase 1: focus on angiotensin-convertingenzyme inhibitors . Drug Metab. Dispos.42 ( 1 ), 126 – 133 ( 2014 ).
  • Drummer OH , NicolaciJ , IakovidisD . Biliary excretion and conjugation of diacid angiotensin-convertingenzyme inhibitors . J. Pharmacol. Exp. Ther.252 ( 3 ), 1202 – 1206 ( 1990 ).
  • Materson BJ . Variability in response to antihypertensive drugs . Am. J. Med.120 ( 4 Suppl. 1 ), S10 – S20 ( 2007 ).
  • Izzo JL Jr , WeirMR . Angiotensin-converting enzyme inhibitors . J. Clin. Hypertens.13 ( 9 ), 667 – 675 ( 2011 ).
  • Lees KR . The dose-response relationship with angiotensin converting enzyme inhibitors: effects on blood pressure and biochemical parameters . J. Hypertens. Suppl.10 ( 5 ), S3 – S11 ( 1992 ).
  • Tsoukas G , AnandS , YangK . Dose-dependent antihypertensive efficacy and tolerability of perindopril in a large, observational, 12-week, general practice-based study . Am. J. Cardiovasc. Drugs11 ( 1 ), 45 – 55 ( 2011 ).
  • Fontana V , LuizonMR , SandrimVC . An update on the pharmacogenetics of treating hypertension . J. Hum. Hypertens. doi:10.1038/jhh.2014.76 ( 2014 ) ( Epub ahead of print ).
  • Talameh JA , McLeodHL , AdamsKF , PattersonJH . Genetic tailoring of pharmacotherapy in heart failure: optimize the old, while we wait for something new . J. Card. Fail.18 ( 4 ), 338 – 349 ( 2012 ).
  • Garabedian T , AlamS . High residual platelet reactivity on clopidogrel: its significance and therapeutic challenges overcoming clopidogrel resistance . Cardiovasc. Diagn. Ther.3 ( 1 ), 23 – 37 ( 2013 ).
  • Floyd CN , PassacqualeG , FerroA . Comparative pharmacokinetics and pharmacodynamics of platelet adenosine diphosphate receptor antagonists and their clinical implications . Clin. Pharmacokinet.51 ( 7 ), 429 – 442 ( 2012 ).
  • Hagihara K , KazuiM , KuriharaAet al. A possible mechanism for the differences in efficiency and variability of active metabolite formation from thienopyridine antiplatelet agents, prasugrel and clopidogrel . Drug Metab. Dispos.37 ( 11 ), 2145 – 2152 ( 2009 ).
  • Snoep JD , HovensMMC , EikenboomJCJ , van der BomJG , JukemaJW , HuismanMV . Clopidogrel nonresponsiveness in patients undergoing percutaneous coronary intervention with stenting: a systematic review and meta-analysis . Am. Heart J.154 ( 2 ), 221 – 231 ( 2007 ).
  • Von Beckerath N , TaubertD , Pogatsa-MurrayG , SchömigE , KastratiA , SchömigA . Absorption, metabolization, and antiplatelet effects of 300-, 600-, and 900-mg loading doses of clopidogrel: results of the ISAR-CHOICE (Intracoronary Stenting and Antithrombotic Regimen: Choose Between 3 High Oral Doses for Immediate Clopidogrel Effect) Trial . Circulation.112 ( 19 ), 2946 – 2950 ( 2005 ).
  • Cruden NLM , MorchK , WongDR , KlinkeWP , OfieshJ , HiltonJD . Clopidogrel loading dose and bleeding outcomes in patients undergoing urgent coronary artery bypass grafting . Am. Heart J.161 ( 2 ), 404 – 410 ( 2011 ).
  • Ahmad T , VooraD , BeckerRC . The pharmacogenetics of antiplatelet agents: towards personalized therapy?Nat. Rev. Cardiol.8 ( 10 ), 560 – 571 ( 2011 ).
  • Lewis JP , HorensteinRB , RyanKet al. The functional G143E variant of carboxylesterase 1 is associated with increased clopidogrel active metabolite levels and greater clopidogrel response . Pharmacogenet. Genomics23 ( 1 ), 1 – 8 ( 2013 ).
  • Smith JR , RaynerCR , DonnerB , WollenhauptM , KlumppK , DutkowskiR . Oseltamivir in seasonal, pandemic, and avian influenza: a comprehensive review of 10-years clinical experience . Adv. Ther.28 ( 11 ), 927 – 959 ( 2011 ).
  • Moscona A . Neuraminidase inhibitors for influenza . N. Engl. J. Med.353 ( 13 ), 1363 – 1373 ( 2005 ).
  • Eisenberg EJ , BidgoodA , CundyKC . Penetration of GS4071, a novel influenza neuraminidase inhibitor, into rat bronchoalveolar lining fluid following oral administration of the prodrug GS4104 . Antimicrob. Agents Chemother.41 ( 9 ), 1949 – 1952 ( 1997 ).
  • He G , MassarellaJ , WardP . Clinical pharmacokinetics of the prodrug oseltamivir and its active metabolite Ro 64–0802 . Clin. Pharmacokinet.37 ( 6 ), 471 – 484 ( 1999 ).
  • Massarella JW , HeGZ , DorrA , NieforthK , WardP , BrownA . The pharmacokinetics and tolerability of the oral neuraminidase inhibitor oseltamivir (Ro 64–0796/GS4104) in healthy adult and elderly volunteers . J. Clin. Pharmacol.40 ( 8 ), 836 – 843 ( 2000 ).
  • Widmer N , MeylanP , IvanyukA , AouriM , DecosterdLA , BuclinT . Oseltamivir in seasonal, avian H5N1 and pandemic 2009 A/H1N1 influenza: pharmacokinetic and pharmacodynamic characteristics . Clin. Pharmacokinet.49 ( 11 ), 741 – 765 ( 2010 ).
  • Schentag JJ , HillG , ChuT , RaynerCR . Similarity in pharmacokinetics of oseltamivir and oseltamivir carboxylate in Japanese and Caucasian subjects . J. Clin. Pharmacol.47 ( 6 ), 689 – 696 ( 2007 ).
  • Abdel-Rahman SM , NewlandJG , KearnsGL . Pharmacologic considerations for oseltamivir disposition: focus on the neonate and young infant . Paediatr. Drugs13 ( 1 ), 19 – 31 ( 2011 ).
  • Wattanagoon Y , StepniewskaK , LindegårdhNet al. Pharmacokinetics of high-dose oseltamivir in healthy volunteers . Antimicrob. Agents Chemother.53 ( 3 ), 945 – 952 ( 2009 ).
  • Dutkowski R , ThakrarB , FroehlichE , SuterP , OoC , WardP . Safety and pharmacology of oseltamivir in clinical use . Drug Saf.26 ( 11 ), 787 – 801 ( 2003 ).
  • Yang J , ShiD , YangD , SongX , YanB . Interleukin-6 alters the cellular responsiveness to clopidogrel, irinotecan, and oseltamivir by suppressing the expression of carboxylesterases HCE1 and HCE2 . Mol. Pharmacol.72 ( 3 ), 686 – 694 ( 2007 ).
  • Mao Z , LiY , PengYet al. Lipopolysaccharide down-regulates carbolesterases 1 and 2 and reduces hydrolysis activity in vitro and in vivo via p38MAPK-NF-κB pathway . Toxicol. Lett.201 ( 3 ), 213 – 220 ( 2011 ).
  • Villarroel MC , HidalgoM , JimenoA . Mycophenolate mofetil: an update . Drugs Today45 ( 7 ), 521 – 532 ( 2009 ).
  • Staatz CE , TettSE . Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients . Clin. Pharmacokinet.46 ( 1 ), 13 – 58 ( 2007 ).
  • Sanders DB , EvoliA . Immunosuppressive therapies in myasthenia gravis . Autoimmunity43 ( 5–6 ), 428 – 435 ( 2010 ).
  • Bullingham RE , NichollsAJ , KammBR . Clinical pharmacokinetics of mycophenolate mofetil . Clin. Pharmacokinet.34 ( 6 ), 429 – 455 ( 1998 ).
  • Mourad M , MalaiseJ , Chaib EddourDet al. Pharmacokinetic basis for the efficient and safe use of low-dose mycophenolate mofetil in combination with tacrolimus in kidney transplantation . Clin. Chem.47 ( 7 ), 1241 – 1248 ( 2001 ).
  • Baldelli S , MerliniS , PericoNet al. C-440T/T-331C polymorphisms in the UGT1A9 gene affect the pharmacokinetics of mycophenolic acid in kidney transplantation . Pharmacogenomics8 ( 9 ), 1127 – 1141 ( 2007 ).
  • Kuypers DRJ , NaesensM , VermeireS , VanrenterghemY . The impact of uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T on early mycophenolic acid dose-interval exposure in de novo renal allograft recipients . Clin. Pharmacol. Ther.78 ( 4 ), 351 – 361 ( 2005 ).
  • Williams ET , CarlsonJE , LaiWGet al. Investigation of the metabolism of rufinamide and its interaction with valproate . Drug Metab. Lett.5 ( 4 ), 280 – 289 ( 2011 ).
  • Perucca E , CloydJ , CritchleyD , FuseauE . Rufinamide: clinical pharmacokinetics and concentration-response relationships in patients with epilepsy . Epilepsia49 ( 7 ), 1123 – 1141 ( 2008 ).
  • Abramov Y , SandPK . Oxybutynin for treatment of urge urinary incontinence and overactive bladder: an updated review . Expert Opin. Pharmacother.5 ( 11 ), 2351 – 2359 ( 2004 ).
  • McDonagh MSMS , SeloverDD , SantaJJ , ThakurtaSS . Drug Class Review: Agents for Overactive Bladder: Final Report Update 4 [Internet] . Oregon Health & Science University , Portland, OR, USA . www.ncbi.nlm.nih.gov/pubmed/21089246
  • Douchamps J , DerenneF , StockisA , GangjiD , JuventM , HerchuelzA . The pharmacokinetics of oxybutynin in man . Eur. J. Clin. Pharmacol.35 ( 5 ), 515 – 520 ( 1988 ).
  • Hughes KM , LangJC , LazareRet al. Measurement of oxybutynin and its N-desethyl metabolite in plasma, and its application to pharmacokinetic studies in young, elderly and frail elderly volunteers . Xenobiotica22 ( 7 ), 859 – 869 ( 1992 ).
  • Mizushima H , TakanakaK , AbeK , FukazawaI , IshizukaH . Stereoselective pharmacokinetics of oxybutynin and N-desethyloxybutynin in vitro and in vivo . Xenobiotica37 ( 1 ), 59 – 73 ( 2007 ).
  • Yaïch M , PoponM , MédardY , AigrainEJ . In-vitro cytochrome P450 dependent metabolism of oxybutynin to N-deethyloxybutynin in humans . Pharmacogenetics8 ( 5 ), 449 – 451 ( 1998 ).
  • Takahashi S , KatohM , SaitohT , NakajimaM , YokoiT . Allosteric kinetics of human carboxylesterase 1: species differences and interindividual variability . J. Pharm. Sci.97 ( 12 ), 5434 – 5445 ( 2008 ).
  • Blais DR , LynRK , JoyceMAet al. Activity-based protein profiling identifies a host enzyme, carboxylesterase 1, which is differentially active during hepatitis C virus replication . J. Biol. Chem.285 ( 33 ), 25602 – 25612 ( 2010 ).
  • Crow JA , MiddletonBL , BorazjaniA , HatfieldMJ , PotterPM , RossMK . Inhibition of carboxylesterase 1 is associated with cholesteryl ester retention in human THP-1 monocyte/macrophages . Biochim. Biophys. Acta1781 ( 10 ), 643 – 654 ( 2008 ).
  • Dolinsky VW , GilhamD , AlamM , VanceDE , LehnerR . Triacylglycerol hydrolase: role in intracellular lipid metabolism . Cell. Mol. Life Sci.61 ( 13 ), 1633 – 1651 ( 2004 ).
  • Becker A , BöttcherA , LacknerKJet al. Purification, cloning, and expression of a human enzyme with acyl coenzyme A: cholesterol acyltransferase activity, which is identical to liver carboxylesterase . Arterioscler. Thromb.14 ( 8 ), 1346 – 1355 ( 1994 ).
  • Bora PS , GurugeBL , MillerDD , ChaitmanBR , RuyleMS . Purification and characterization of human heart fatty acid ethyl ester synthase/carboxylesterase . J. Mol. Cell. Cardiol.28 ( 9 ), 2027 – 2032 ( 1996 ).
  • Cushman I , CushmanSM , PotterPM , CaseyPJ . Control of RhoA methylation by carboxylesterase I . J. Biol. Chem.288 ( 26 ), 19177 – 19183 ( 2013 ).
  • Macintyre S , SamolsD , DaileyP . Two carboxylesterases bind C-reactive protein within the endoplasmic reticulum and regulate its secretion during the acute phase response . J. Biol. Chem.269 ( 39 ), 24496 – 24503 ( 1994 ).
  • Islam M , WaheedA , ShahG , TomatsuS , SlyW . Human egasyn binds beta-glucuronidase but neither the esterase active site of egasyn nor the C terminus of beta-glucuronidase is involved in their interaction . Arch. Biochem. Biophys.372 ( 1 ), 53 – 61 ( 1999 ).
  • Ridsdale R , NaC-L , XuY , GreisKD , WeaverT . Comparative proteomic analysis of lung lamellar bodies and lysosome-related organelles . PLoS ONE6 ( 1 ), e16482 ( 2011 ).
  • Marrades MP , González-MuniesaP , MartínezJA , Moreno-AliagaMJ . A dysregulation in CES1, APOE and other lipid metabolism-related genes is associated to cardiovascular risk factors linked to obesity . Obes. Facts3 ( 5 ), 312 – 318 ( 2010 ).
  • Nagashima S , YagyuH , TakahashiNet al. Depot-specific expression of lipolytic genes in human adipose tissues – association among CES1 expression, triglyceride lipase activity and adiposity . J. Atheroscler. Thromb.18 ( 3 ), 190 – 199 ( 2011 ).
  • Wei E , Ben AliY , LyonJet al. Loss of TGH/Ces3 in mice decreases blood lipids, improves glucose tolerance, and increases energy expenditure . Cell Metabol.11 ( 3 ), 183 – 193 ( 2010 ).
  • Lusis AJ , TominoS , PaigenK . Isolation, characterization, and radioimmunoassay of murine egasyn, a protein stabilizing glucuronidase membrane binding . J. Biol. Chem.251 ( 24 ), 7753 – 7760 ( 1976 ).
  • Medda S , SwankRT . Egasyn, a protein which determines the subcellular distribution of beta-glucuronidase, has esterase activity . J. Biol. Chem.260 ( 29 ), 15802 – 15808 ( 1985 ).
  • Brandt E , HeymannE , MentleinR . Selective inhibition of rat liver carboxylesterases by various organophosphorus diesters in vivo and in vitro . Biochem. Pharmacol.29 ( 13 ), 1927 – 1931 ( 1980 ).
  • Heymann E . Estimation of inhibitory organophosphates with purified pig liver carboxylesterase . Chem. Biol. Interact.119 – 120 , 577 – 586 ( 1999 ).
  • Maxwell DM , BrechtKM . Carboxylesterase: specificity and spontaneous reactivation of an endogenous scavenger for organophosphorus compounds . J Appl. Toxicol.21 ( Suppl. 1 ), S103 – S107 ( 2001 ).
  • Satoh T , SuzukiS , KawaiN , NakamuraT , HosokawaM . Toxicological significance in the cleavage of esterase-beta-glucuronidase complex in liver microsomes by organophosphorus compounds . Chem. Biol. Interact.119 – 120 , 471 – 478 ( 1999 ).
  • Fujikawa Y , SatohT , SuganumaAet al. Extremely sensitive biomarker of acute organophosphorus insecticide exposure . Hum. Exp. Toxicol.24 ( 6 ), 333 – 336 ( 2005 ).
  • Patti GJ , YanesO , SiuzdakG . Innovation: metabolomics: the apogee of the omics trilogy . Nat. Rev. Mol. Cell Biol.13 ( 4 ), 263 – 269 ( 2012 ).
  • Kaddurah-Daouk R , KristalBS , WeinshilboumRM . Metabolomics: a global biochemical approach to drug response and disease . Annu. Rev. Pharmacol. Toxicol.48 , 653 – 683 ( 2008 ).
  • Li X , SnyderM . Metabolites as global regulators: a new view of protein regulation: systematic investigation of metabolite-protein interactions may help bridge the gap between genome-wide association studies and small molecule screening studies . Bioessays33 ( 7 ), 485 – 489 ( 2011 ).
  • Williams PA , CosmeJ , VinkovicDMet al. Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone . Science305 ( 5684 ), 683 – 686 ( 2004 ).
  • Woods CM , FernandezC , KunzeKL , AtkinsWM . Allosteric activation of cytochrome P450 3A4 by α-naphthoflavone: branch point regulation revealed by isotope dilution analysis . Biochemistry50 ( 46 ), 10041 – 10051 ( 2011 ).
  • Shin K-H , ChoiMH , LimKS , YuK-S , JangI-J , ChoJ-Y . Evaluation of endogenous metabolic markers of hepatic CYP3A activity using metabolic profiling and midazolam clearance . Clin. Pharmacol. Ther.94 ( 5 ), 601 – 609 ( 2013 ).
  • Tay-Sontheimer J , ShiremanLM , BeyerRPet al. Detection of an endogenous urinary biomarker associated with CYP2D6 activity using global metabolomics . Pharmacogenomics15 ( 16 ), 1947 – 1962 ( 2014 ).
  • Penno MB , DvorchikBH , VesellES . Genetic variation in rates of antipyrine metabolite formation: a study in uninduced twins . Proc. Natl Acad. Sci. USA78 ( 8 ), 5193 – 5196 ( 1981 ).
  • Rasmussen BB , BrixTH , KyvikKO , Br⊘senK . The interindividual differences in the 3-demthylation of caffeine alias CYP1A2 is determined by both genetic and environmental factors . Pharmacogenetics12 ( 6 ), 473 – 478 ( 2002 ).
  • Rahmioglu N , Le GallG , HeatonJet al. Prediction of variability in CYP3A4 induction using a combined 1H NMR metabonomics and targeted UPLC-MS approach . J. Proteome Res.10 ( 6 ), 2807 – 2816 ( 2011 ).
  • Xiao D , ChenY-T , YangD , YanB . Age-related inducibility of carboxylesterases by the antiepileptic agent phenobarbital and implications in drug metabolism and lipid accumulation . Biochem. Pharmacol.84 ( 2 ), 232 – 239 ( 2012 ).
  • Jernås M , OlssonB , ArnerPet al. Regulation of carboxylesterase 1 (CES1) in human adipose tissue . Biochem. Biophys. Res. Commun.383 ( 1 ), 63 – 67 ( 2009 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.