263
Views
0
CrossRef citations to date
0
Altmetric
Review

Pharmacogenomics in the Treatment of Lung Cancer: an Update

, , &
Pages 1751-1760 | Published online: 02 Oct 2015

References

  • Siegel RL , MillerKD , JemalA . Cancer statistics, 2015 . CA Cancer J. Clin.65 , 5 – 29 ( 2015 ).
  • Globocan, fact sheets by cancer . http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx .
  • Scagliotti G , NovelloS . Adjuvant chemotherapy after complete resection for early stage NSCLC . Lung Cancer42 , 47 – 51 ( 2003 ).
  • Vogel F . Moderne probleme der humangenetik . Ergeb. Inn. Med. Kinderheilkd.12 , 52 – 125 ( 1959 ).
  • Meyer UA . Pharmacogenetics – five decades of therapeutic lessons from genetic diversity . Nat. Rev. Genet.5 , 669 – 676 ( 2004 ).
  • Gazdar AF . Personalized medicine and inhibition of EGFR signaling in lung cancer . N. Engl. J. Med.361 , 1018 – 1020 ( 2009 ).
  • Huang YT , HeistRS , ChirieacLRet al. Genome-wide analysis of survival in early-stage non-small-cell lung cancer . J. Clin. Oncol.27 , 2660 – 2667 ( 2009 ).
  • Zhang Y , MartensJW , YuJXet al. Copy number alterations that predict metastatic capability of human breast cancer . Cancer Res.69 , 3795 – 3801 ( 2009 ).
  • Savonarola A , PalmirottaR , GuadagniF , SilvestrisF . Pharmacogenetics and pharmacogenomics: role of mutational analysis in anti-cancer targeted therapy . Pharmacogenomics J.12 , 277 – 286 ( 2012 ).
  • Kratz JR , HeJ , Van Den EedenSKet al. A practical molecular assay to predict survival in resected non-squamous, non-small-cell lung cancer: development and international validation studies . Lancet379 , 823 – 832 ( 2012 ).
  • Pearson TA , ManolioTA . How to interpret a genome-wide association study . JAMA299 , 1335 – 1344 ( 2008 ).
  • Manolio TA . Genomewide association studies and assessment of the risk of disease . N. Engl. J. Med.363 , 166 – 176 ( 2010 ).
  • Tang S , PanY , WangYet al. Genome-wide association study of survival in early-stage non-small cell lung cancer . Ann. Surg. Oncol.22 , 630 – 635 ( 2014 ).
  • Han JY , LeeYS , ShinESet al. A genome-wide association study of survival in small-cell lung cancer patients treated with irinotecan plus cisplatin chemotherapy . Pharmacogenomics J.14 , 20 – 27 ( 2013 ).
  • Florea AM , BüsselbergD . Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects . Cancers (Basel)3 , 1351 – 1371 ( 2011 ).
  • Long DF , ReptaAJ . Cisplatin: chemistry, distribution and biotransformation . Biopharm. Drug Dispos.2 , 1 – 16 ( 1981 ).
  • Siddik ZH . Cisplatin: mode of cytotoxic action and molecular basis of resistance . Oncogene22 , 7265 – 7279 ( 2003 ).
  • Olaussen KA , DunantA , FouretPet al. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy . N. Engl. J. Med.355 , 983 – 991 ( 2006 ).
  • Bepler G , WilliamsC , SchellMJet al. Randomized International Phase III Trial of ERCC1 and RRM1 expression-based chemotherapy versus gemcitabine/carboplatin in advanced non-small-cell lung cancer . J. Clin. Oncol.31 , 2404 – 2412 ( 2013 ).
  • Wislez M , BarlesiF , BesseBet al. Customized adjuvant Phase II trial in patients with non-small-cell lung cancer: IFCT-0801 TASTE . J. Clin. Oncol.32 , 1256 – 1261 ( 2014 ).
  • Tibaldi C1 , GiovannettiE , VasileEet al. Correlation of CDA, ERCC1, and XPD polymorphisms with response and survival in gemcitabine/cisplatin-treated advanced non-small cell lung cancer patients . Clin. Cancer Res.14 , 1797 – 1803 ( 2008 ).
  • Sigmond J , BackusHH , WoutersDet al. Induction of resistance to the multitargeted antifolate pemetrexed (ALIMTA) in WiDr human colon cancer cells is associated with thymidylate synthase overexpression . Biochem. Pharmacol.66 , 431 – 438 ( 2003 ).
  • Zhou C , RenS , ZhouSet al. Predictive effects of ERCC1 and XRCC3 SNP on efficacy of platinum-based chemotherapy in advanced NSCLC patients . Jpn. J. Clin. Oncol.40 , 954 – 960 ( 2010 ).
  • Matullo G , PalliD , PelusoMet al. XRCC1, XRCC3, XPD gene polymorphisms, smoking and (32)P-DNA adducts in a sample of healthy subjects . Carcinogenesis22 , 1437 – 1445 ( 2001 ).
  • Britten CD , IzbickaE , HilsenbeckSet al. Activity of the multitargeted antifolate LY231514 in the human tumor cloning assay . Cancer Chemother. Pharmacol.44 , 105 – 110 ( 1999 ).
  • Scagliotti GV , ParikhP , von PawelJet al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer . J. Clin. Oncol.26 , 3543 – 3551 ( 2008 ).
  • Tanaka F , WadaH , FukuiY , FukushimaM . Thymidylate synthase (TS) gene expression in primary lung cancer patients: a large-scale study in Japanese population . Ann. Oncol.22 , 1791 – 1797 ( 2011 ).
  • Wang L , WangR , PanY , SunY , ZhangJ , ChenH . The pemetrexed-containing treatments in the non-small cell lung cancer is -/low thymidylate synthase expression better than +/high thymidylate synthase expression: a meta-analysis . BMC Cancer14 , 205 ( 2014 ).
  • Chang MH , AhnJS , LeeJet al. The efficacy of pemetrexed as a third- or fourth-line therapy and the significance of thymidylate synthase expression in patients with advanced non-small cell lung cancer . Lung Cancer69 , 323 – 329 ( 2010 ).
  • Sun JM , AhnJS , JungSHet al. Pemetrexed plus cisplatin versus gemcitabine plus cisplatin according to thymidylated synthase expression in nonsquamous non-small-cell lung cancer: a biomarker-stratified randomized Phase II trial . J. Clin. Oncol.33 ( 22 ), 2450 – 2456 ( 2015 ).
  • Tiseo M , GiovannettiE , TibaldiCet al. Pharmacogenetic study of patients with advanced non-small cell lung cancer (NSCLC) treated with second-line pemetrexed or pemetrexed-carboplatin . Lung Cancer78 , 92 – 99 ( 2012 ).
  • Krawczyk P , KucharczykT , KowalskiDMet al. Polymorphisms in TS, MTHFR and ERCC1 genes as predictive markers in first-line platinum and pemetrexed therapy in NSCLC patients . J. Cancer Res. Clin. Oncol.140 , 2047 – 2057 ( 2014 ).
  • Smit EF , SocinskiMA , MullaneyBPet al. Biomarker analysis in a Phase III study of pemetrexed-carboplatin versus etoposide-carboplatin in chemonaive patients with extensive-stage small-cell lung cancer . Ann. Oncol.23 , 1723 – 1729 ( 2012 ).
  • Achiwa H , OguriT , SatoS , MaedaH , NiimiT , UedaR . Determinants of sensitivity and resistance to gemcitabine: the roles of human equilibrative nucleoside transporter 1 and deoxycytidine kinase in non-small cell lung cancer . Cancer Sci.95 , 753 – 757 ( 2004 ).
  • Oguri T , AchiwaH , MuramatsuHet al. The absence of human equilibrative nucleoside transporter 1 expression predicts nonresponse to gemcitabine-containing chemotherapy in non-small cell lung cancer . Cancer Lett.256 , 112 – 119 ( 2007 ).
  • Rosell R , DanenbergKD , AlberolaVet al. Ribonucleotide reductase messenger RNA expression and survival in gemcitabine/cisplatin-treated advanced non-small cell lung cancer patients . Clin. Cancer Res.10 , 1318 – 1325 ( 2004 ).
  • Rosell R . Pharmacogenomics and gemcitabine . Ann. Oncol.17 , v13 – v16 ( 2006 ).
  • Dong X , HaoY , WeiY , YinQ , DuJ , ZhaoX . Response to first-line chemotherapy in patients with non-small cell lung cancer according to RRM1 expression . PLoS ONE9 , e92320 ( 2014 ).
  • Wong A , SooRA , YongWP , InnocentiF . Clinical pharmacology and pharmacogenetics of gemcitabine . Drug Metab. Rev.41 , 77 – 88 ( 2009 ).
  • Sugiyama E , KaniwaN , KimSRet al. Pharmacokinetics of gemcitabine in Japanese cancer patients: the impact of a cytidine deaminase polymorphism . J. Clin. Oncol.25 , 32 – 42 ( 2007 ).
  • Gilbert JA , SalavaggioneOE , JiYet al. Gemcitabine pharmacogenomics: cytidine deaminase and deoxycytidylate deaminase gene resequencing and functional genomics . Clin. Cancer Res.12 , 1794 – 1803 ( 2006 ).
  • Joerger M , BurgersJA , BaasPet al. Gene polymorphisms, pharmacokinetics, and hematological toxicity in advanced non-small-cell lung cancer patients receiving cisplatin/gemcitabine . Cancer Chemother. Pharmacol.69 , 25 – 33 ( 2012 ).
  • Okazaki T , JavleM , TanakaM , AbbruzzeseJL , LiD . Single nucleotide polymorphisms of gemcitabine metabolic genes and pancreatic cancer survival and drug toxicity . Clin. Cancer Res.16 , 320 – 329 ( 2010 ).
  • Schiff PB , FantJ , HorwitzSB . Promotion of microtubule assembly in vitro by taxol . Nature277 , 665 – 667 ( 1979 ).
  • Yared JA , TkaczukKHR . Update on taxane development: new analogs and new formulations . Drug Des. Devel. Ther.6 , 371 – 384 ( 2012 ).
  • Kennedy RD , QuinnJE , JohnstonPG , HarkinDP . BRCA1: mechanisms of inactivation and implications for management of patients . Lancet360 , 1007 – 1014 ( 2002 ).
  • Taron M1 , RosellR , FelipEet al. BRCA1 mRNA expression levels as an indicator of chemoresistance in lung cancer . Hum. Mol. Genet.13 , 2443 – 2449 ( 2004 ).
  • Rosell R , Perez-RocaL , SanchezJJet al. Customized treatment in non-small-cell lung cancer based on EGFR mutations and BRCA1 mRNA expression . PLoS ONE4 , e5133 ( 2009 ).
  • Moran T , CoboM , DomineMet al. Interim analysis of the Spanish Lung Cancer Group (SLCG) BRCA1-RAP80 Expression Customization (BREC) randomized Phase III trial of customized therapy in advanced non-small cell lung cancer (NSCLC) patients (p) (NCT00617656/GECP-BREC) . ASCO Meet. Abstr.31 , LBA8002 ( 2013 ).
  • Zhao HY , HuangH , HuZHet al. Evaluations of biomarkers associated with sensitivity to 5-fluorouracil and taxanes for recurrent/advanced breast cancer patients treated with capecitabine-based first-line chemotherapy . Anticancer Drugs23 , 534 – 542 ( 2012 ).
  • Lynch TJ , BellDW , SordellaRet al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib . N. Engl. J. Med.350 , 2129 – 2139 ( 2004 ).
  • Paez JG , JännePA , LeeJCet al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy . Science304 , 1497 – 1500 ( 2004 ).
  • Kwak EL , BangYJ , CamidgeDRet al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer . N. Engl. J. Med.363 , 1693 – 1703 ( 2010 ).
  • Hirsch FR , ScagliottiGV , LangerCJ , Varella-GarciaM , FranklinWA . Epidermal growth factor family of receptors in preneoplasia and lung cancer: perspectives for targeted therapies . Lung Cancer41 ( Suppl. 1 ), S29 – S42 ( 2003 ).
  • Kurie JM , ShinHJ , LeeJSet al. Increased epidermal growth factor receptor expression in metaplastic bronchial epithelium . Clin. Cancer Res.2 , 1787 – 1793 ( 1996 ).
  • Franklin WA , VeveR , HirschFR , HelfrichBA , BunnPA . Epidermal growth factor receptor family in lung cancer and premalignancy . Semin. Oncol.29 , 3 – 14 ( 2002 ).
  • Mok TS , WuYL , ThongprasertSet al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma . N. Engl. J. Med.361 , 947 – 957 ( 2009 ).
  • Rosell R , CarcerenyE , GervaisRet al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised Phase 3 trial . Lancet Oncol.13 , 239 – 246 ( 2012 ).
  • Yang JC , HirshV , SchulerMet al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations . J. Clin. Oncol.31 , 3327 – 3334 ( 2013 ).
  • Ninomiya T , TakigawaN , IchiharaEet al. Afatinib prolongs survival compared with gefitinib in an epidermal growth factor receptor-driven lung cancer model . Mol. Cancer Ther.12 , 589 – 597 ( 2013 ).
  • Costa C , MolinaMA , DrozdowskyjAet al. The impact of EGFR T790M mutations and BIM mRNA expression on outcome in patients with EGFR-mutant NSCLC treated with erlotinib or chemotherapy in the randomized Phase III EURTAC trial . Clin. Cancer Res.20 , 2001 – 2010 ( 2014 ).
  • Sequist LV , SoriaJC , GoldmanJWet al. Rociletinib in EGFR-mutated non-small-cell lung cancer . N. Engl. J. Med.372 , 1700 – 1709 ( 2015 ).
  • Jänne PA , YangJC , KimDWet al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer . N. Engl. J. Med.372 , 1689 – 1699 ( 2015 ).
  • Soda M , ChoiYL , EnomotoMet al. Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer . Nature448 , 561 – 566 ( 2007 ).
  • Takeuchi K , SodaM , TogashiYet al. RET, ROS1 and ALK fusions in lung cancer . Nat. Med.18 , 378 – 381 ( 2012 ).
  • Camidge DR , BangYJ , KwakELet al. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a Phase 1 study . Lancet Oncol.13 , 1011 – 1019 ( 2012 ).
  • Kim DW , AhnMJ , ShiYet al. Results of a global Phase II study with crizotinib in advanced ALK-positive non-small cell lung cancer (NSCLC) . ASCO Meet. Abstr.30 , 7533 ( 2012 ).
  • Shaw AT , KimDW , NakagawaKet al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer . N. Engl. J. Med.368 , 2385 – 2394 ( 2013 ).
  • Zhong L1 , PengX , HidalgoGEet al. Antibodies to HSP70 and HSP90 in serum in non-small cell lung cancer patients . Cancer Detect. Prev.27 , 285 – 290 ( 2003 ).
  • Shimamura T , ShapiroGI . Heat shock protein 90 inhibition in lung cancer . J. Thorac. Oncol.3 , S152 – S159 ( 2008 ).
  • Pillai RN , RamalingamSS . Heat shock protein 90 inhibitors in non-small-cell lung cancer . Curr. Opin. Oncol.26 , 159 – 164 ( 2014 ).
  • Ou SHI , BangYJ , CamidgeDRet al. Efficacy and safety of crizotinib in patients with advanced ROS1-rearranged non-small cell lung cancer (NSCLC) . ASCO Meet. Abstr.31 , 8032 ( 2013 ).
  • Scheffler M , SchultheisA , TeixidoCet al. ROS1 rearrangements in lung adenocarcinoma: prognostic impact, therapeutic options and genetic variability . Oncotarget6 , 10577 – 10585 ( 2015 ).
  • Weiss J , SosML , SeidelDet al. Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer . Sci. Transl. Med.2 , 62ra93 ( 2010 ).
  • Hammerman PS , SosML , RamosAHet al. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer . Cancer Discov.1 , 78 – 89 ( 2011 ).
  • Reis-Filho JS , SimpsonPT , TurnerNCet al. FGFR1 emerges as a potential therapeutic target for lobular breast carcinomas . Clin. Cancer Res.12 , 6652 – 6662 ( 2006 ).
  • Turner N , PearsonA , SharpeRet al. FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer . Cancer Res.70 , 2085 – 2094 ( 2010 ).
  • Wu YM , SuF , Kalyana-SundaramSet al. Identification of targetable FGFR gene fusions in diverse cancers . Cancer Discov.3 , 636 – 647 ( 2013 ).
  • Search of: FGFR1 NSCLC – list results – ClinicalTrials.gov . www.clinicaltrials.gov/ct2/results?term=FGFR1+NSCLC&Search=Search .
  • Chen D , ZhangLQ , HuangJFet al. BRAF mutations in patients with non-small cell lung cancer: a systematic review and meta-analysis . PLoS ONE9 , e101354 ( 2014 ).
  • Marchetti A , FelicioniL , MalatestaSet al. Clinical features and outcome of patients with non-small-cell lung cancer harboring BRAF mutations . J. Clin. Oncol.29 , 3574 – 3579 ( 2011 ).
  • Cardarella S , OginoA , NishinoMet al. Clinical, pathologic, and biologic features associated with BRAF mutations in non-small cell lung cancer . Clin. Cancer Res.19 , 4532 – 4540 ( 2013 ).
  • Haura EB , TanvetyanonT , ChiapporiAet al. Phase I/II study of the Src inhibitor dasatinib in combination with erlotinib in advanced non-small-cell lung cancer . J. Clin. Oncol.28 , 1387 – 1394 ( 2010 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.