371
Views
35
CrossRef citations to date
0
Altmetric
Review

The Role of Circular RNAs in Therapy Resistance of Patients With Solid Tumors

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 469-490 | Received 26 Jun 2020, Accepted 11 Sep 2020, Published online: 14 Oct 2020

References

  • Sanger HL , KlotzG, RiesnerD, GrossHJ, KleinschmidtAK. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl Acad. Sci. USA73(11), 3852–3856 (1976).
  • Hsu MT , Coca-PradosM. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature280(5720), 339–340 (1979).
  • Kos A , DijkemaR, ArnbergAC, VanDer Meide PH, SchellekensH. The hepatitis delta (delta) virus possesses a circular RNA. Nature323(6088), 558–560 (1986).
  • Nigro JM , ChoKR, FearonERet al. Scrambled exons. Cell64(3), 607–613 (1991).
  • Chen X , HanP, ZhouT, GuoX, SongX, LiY. circRNADb: a comprehensive database for human circular RNAs with protein-coding annotations. Sci. Rep.6, 34985 (2016).
  • Pamudurti NR , BartokO, JensMet al. Translation of CircRNAs. Mol. Cell66(1), 9–21e27 (2017).
  • Salzman J , GawadC, WangPL, LacayoN, BrownPO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE7(2), e30733 (2012).
  • Li Z , HuangC, BaoCet al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol.22(3), 256–264 (2015).
  • Zhang Y , ZhangXO, ChenTet al. Circular intronic long noncoding RNAs. Mol. Cell51(6), 792–806 (2013).
  • Li J , SunD, PuW, WangJ, PengY. Circular RNAs in cancer: biogenesis, function, and clinical significance. Trends Cancer6(4), 319–336 (2020).
  • Barrett SP , WangPL, SalzmanJ. Circular RNA biogenesis can proceed through an exon-containing lariat precursor. Elife4, e07540 (2015).
  • Zhang XO , WangHB, ZhangY, LuX, ChenLL, YangL. Complementary sequence-mediated exon circularization. Cell159(1), 134–147 (2014).
  • Ashwal-Fluss R , MeyerM, PamudurtiNRet al. circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell56(1), 55–66 (2014).
  • Conn SJ , PillmanKA, ToubiaJet al. The RNA binding protein quaking regulates formation of circRNAs. Cell160(6), 1125–1134 (2015).
  • Ivanov A , MemczakS, WylerEet al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep.10(2), 170–177 (2015).
  • Noto JJ , SchmidtCA, MateraAG. Engineering and expressing circular RNAs via tRNA splicing. RNA Biol.14(8), 978–984 (2017).
  • Jeck WR , SharplessNE. Detecting and characterizing circular RNAs. Nat. Biotechnol.32(5), 453–461 (2014).
  • Dong R , ZhangXO, ZhangY, MaXK, ChenLL, YangL. CircRNA-derived pseudogenes. Cell Res.26(6), 747–750 (2016).
  • Hansen TB , JensenTI, ClausenBHet al. Natural RNA circles function as efficient microRNA sponges. Nature495(7441), 384–388 (2013).
  • Abdelmohsen K , PandaAC, MunkRet al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol.14(3), 361–369 (2017).
  • Legnini I , DiTimoteo G, RossiFet al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol. Cell66(1), 22–37, e29 (2017).
  • Shen B , WangZ, LiZ, SongH, DingX. Circular RNAs: an emerging landscape in tumor metastasis. Am. J. Cancer Res.9(4), 630–643 (2019).
  • Wu J , QiX, LiuLet al. Emerging epigenetic regulation of circular RNAs in human cancer. Mol. Ther. Nucleic Acids16, 589–596 (2019).
  • Zhou R , WuY, WangWet al. Circular RNAs (circRNAs) in cancer. Cancer Lett.425, 134–142 (2018).
  • Bachmayr-Heyda A , ReinerAT, AuerKet al. Correlation of circular RNA abundance with proliferation--exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci. Rep.5, 8057 (2015).
  • Zhou F , WangD, WeiWet al. Comprehensive profiling of circular RNA expressions reveals potential diagnostic and prognostic biomarkers in multiple myeloma. BMC Cancer20(1), 40 (2020).
  • Kartal-Yandim M , Adan-GokbulutA, BaranY. Molecular mechanisms of drug resistance and its reversal in cancer. Crit. Rev. Biotechnol.36(4), 716–726 (2016).
  • Ding C , YiX, WuXet al. Exosome-mediated transfer of circRNA circNFIX enhances temozolomide resistance in glioma. Cancer Lett.479, 1–12 (2020).
  • Zhao C , GaoY, GuoR, LiH, YangB. Microarray expression profiles and bioinformatics analysis of mRNAs, lncRNAs, and circRNAs in the secondary temozolomide-resistant glioblastoma. Invest. New Drugs38(5), 1227–1235 (2019).
  • Kun-Peng Z , Xiao-LongM, Chun-LinZ. Overexpressed circPVT1, a potential new circular RNA biomarker, contributes to doxorubicin and cisplatin resistance of osteosarcoma cells by regulating ABCB1. Int. J. Biol. Sci.14(3), 321–330 (2018).
  • Kun-Peng Z , Xiao-LongM, LeiZ, Chun-LinZ, Jian-PingH, Tai-ChengZ. Screening circular RNA related to chemotherapeutic resistance in osteosarcoma by RNA sequencing. Epigenomics10(10), 1327–1346 (2018).
  • Zhu KP , ZhangCL, MaXL, HuJP, CaiT, ZhangL. Analyzing the interactions of mRNAs and ncRNAs to predict competing endogenous RNA networks in osteosarcoma chemo-resistance. Mol. Ther.27(3), 518–530 (2019).
  • Hu Y , GuJ, ShenHet al. Circular RNA LARP4 correlates with decreased Enneking stage, better histological response, and prolonged survival profiles, and it elevates chemosensitivity to cisplatin and doxorubicin via sponging microRNA-424 in osteosarcoma. J. Clin. Lab. Anal.34(2), e23045 (2020).
  • Zhang H , YanJ, LangX, ZhuangY. Expression of circ_001569 is upregulated in osteosarcoma and promotes cell proliferation and cisplatin resistance by activating the Wnt/beta-catenin signaling pathway. Oncol. Lett.16(5), 5856–5862 (2018).
  • Shuai M , HongJ, HuangD, ZhangX, TianY. Upregulation of circRNA_0000285 serves as a prognostic biomarker for nasopharyngeal carcinoma and is involved in radiosensitivity. Oncol. Lett.16(5), 6495–6501 (2018).
  • Chen L , ZhouH, GuanZ. CircRNA_000543 knockdown sensitizes nasopharyngeal carcinoma to irradiation by targeting miR-9/platelet-derived growth factor receptor B axis. Biochem. Biophys. Res. Commun.512(4), 786–792 (2019).
  • Zhu D , ShaoM, YangJet al. Curcumin enhances radiosensitization of nasopharyngeal carcinoma via mediating regulation of tumor stem-like cells by a circRNA Network. J. Cancer11(8), 2360–2370 (2020).
  • Hong X , LiuN, LiangYet al. Circular RNA CRIM1 functions as a ceRNA to promote nasopharyngeal carcinoma metastasis and docetaxel chemoresistance through upregulating FOXQ1. Mol. Cancer19(1), 33 (2020).
  • Wu Y , ZhangY, NiuMet al. Whole-transcriptome analysis of CD133+CD144+ cancer stem cells derived from human laryngeal squamous cell carcinoma cells. Cell Physiol. Biochem.47(4), 1696–1710 (2018).
  • Liu F , ZhangJ, QinLet al. Circular RNA EIF6 (Hsa_circ_0060060) sponges miR-144-3p to promote the cisplatin-resistance of human thyroid carcinoma cells by autophagy regulation. Aging (Albany NY)10(12), 3806–3820 (2018).
  • Gao D , ZhangX, LiuBet al. Screening circular RNA related to chemotherapeutic resistance in breast cancer. Epigenomics9(9), 1175–1188 (2017).
  • Liu Y , DongY, ZhaoL, SuL, LuoJ. Circular RNAMTO1 suppresses breast cancer cell viability and reverses monastrol resistance through regulating the TRAF4/Eg5 axis. Int. J. Oncol.53(4), 1752–1762 (2018).
  • Uhr K , SieuwertsAM, DeWeerd Vet al. Association of microRNA-7 and its binding partner CDR1-AS with the prognosis and prediction of 1(st)-line tamoxifen therapy in breast cancer. Sci. Rep.8(1), 9657 (2018).
  • Yang W , YangX, WangXet al. Silencing CDR1as enhances the sensitivity of breast cancer cells to drug resistance by acting as a miR-7 sponge to down-regulate REGgamma. J. Cell Mol. Med.23(8), 4921–4932 (2019).
  • Liang Y , SongX, LiYet al. Targeting the circBMPR2/miR-553/USP4 axis as a potent therapeutic approach for breast cancer. Mol. Ther. Nucleic Acids17, 347–361 (2019).
  • Sang Y , ChenB, SongXet al. circRNA_0025202 regulates tamoxifen sensitivity and tumor progression via regulating the miR-182-5p/FOXO3a axis in breast cancer. Mol. Ther.27(9), 1638–1652 (2019).
  • Liang Y , SongX, LiYet al. circKDM4C suppresses tumor progression and attenuates doxorubicin resistance by regulating miR-548p/PBLD axis in breast cancer. Oncogene38(42), 6850–6866 (2019).
  • Ma J , FangL, YangQet al. Posttranscriptional regulation of AKT by circular RNA angiomotin-like 1 mediates chemoresistance against paclitaxel in breast cancer cells. Aging (Albany NY)11(23), 11369–11381 (2019).
  • Yang W , GongP, YangY, YangC, YangB, RenL. Circ-ABCB10 contributes to paclitaxel resistance in breast cancer through Let-7a-5p/DUSP7 axis. Cancer Manag. Res.12, 2327–2337 (2020).
  • Wang W , WangJ, ZhangX, LiuG. Serum circSETDB1 is a promising biomarker for predicting response to platinum-taxane-combined chemotherapy and relapse in high-grade serous ovarian cancer. Onco Targets Ther.12, 7451–7457 (2019).
  • Zhao Z , JiM, WangQ, HeN, LiY. Circular RNA Cdr1as upregulates SCAI to suppress cisplatin resistance in ovarian cancer via miR-1270 suppression. Mol. Ther. Nucleic Acids18, 24–33 (2019).
  • Zhang S , ChengJ, QuanCet al. circCELSR1 (hsa_circ_0063809) contributes to paclitaxel resistance of ovarian cancer cells by regulating FOXR2 expression via miR-1252. Mol. Ther. Nucleic Acids19, 718–730 (2020).
  • Chen M , AiG, ZhouJ, MaoW, LiH, GuoJ. circMTO1 promotes tumorigenesis and chemoresistance of cervical cancer via regulating miR-6893. Biomed. Pharmacother.117, 109064 (2019).
  • Guo J , ChenM, AiG, MaoW, LiH, ZhouJ. Hsa_circ_0023404 enhances cervical cancer metastasis and chemoresistance through VEGFA and autophagy signaling by sponging miR-5047. Biomed. Pharmacother.115, 108957 (2019).
  • Wu G , SunY, XiangZet al. Preclinical study using circular RNA 17 and micro RNA 181c-5p to suppress the enzalutamide-resistant prostate cancer progression. Cell Death Dis.10(2), 37 (2019).
  • Greene J , BairdAM, CaseyOet al. Circular RNAs are differentially expressed in prostate cancer and are potentially associated with resistance to enzalutamide. Sci. Rep.9(1), 10739 (2019).
  • Shen Z , ZhouL, ZhangC, XuJ. Reduction of circular RNA Foxo3 promotes prostate cancer progression and chemoresistance to docetaxel. Cancer Lett.468, 88–101 (2020).
  • Yan L , LiuG, CaoH, ZhangH, ShaoF. Hsa_circ_0035483 sponges hsa-miR-335 to promote the gemcitabine-resistance of human renal cancer cells by autophagy regulation. Biochem. Biophys. Res. Commun.519(1), 172–178 (2019).
  • Yuan W , ZhouR, WangJet al. Circular RNA Cdr1as sensitizes bladder cancer to cisplatin by upregulating APAF1 expression through miR-1270 inhibition. Mol. Oncol.13(7), 1559–1576 (2019).
  • Chi BJ , ZhaoDM, LiuLet al. Downregulation of hsa_circ_0000285 serves as a prognostic biomarker for bladder cancer and is involved in cisplatin resistance. Neoplasma66(2), 197–202 (2019).
  • Su Y , YangW, JiangNet al. Hypoxia-elevated circELP3 contributes to bladder cancer progression and cisplatin resistance. Int. J. Biol. Sci.15(2), 441–452 (2019).
  • Su H , LinF, DengXet al. Profiling and bioinformatics analyses reveal differential circular RNA expression in radioresistant esophageal cancer cells. J. Transl. Med.14(1), 225 (2016).
  • He Y , MingyanE, WangC, LiuG, ShiM, LiuS. CircVRK1 regulates tumor progression and radioresistance in esophageal squamous cell carcinoma by regulating miR-624-3p/PTEN/PI3K/AKT signaling pathway. Int. J. Biol. Macromol.125, 116–123 (2019).
  • Xiong W , AiYQ, LiYFet al. Microarray analysis of circular RNA expression profile associated with 5-fluorouracil-based chemoradiation resistance in colorectal cancer cells. Biomed. Res. Int.2017, 8421614 (2017).
  • Wang L , PengX, LuX, WeiQ, ChenM, LiuL. Inhibition of hsa_circ_0001313 (circCCDC66) induction enhances the radio-sensitivity of colon cancer cells via tumor suppressor miR-338-3p: effects of cicr_0001313 on colon cancer radio-sensitivity. Pathol. Res. Pract.215(4), 689–696 (2019).
  • Lin YC , YuYS, LinHH, HsiaoKY. Oxaliplatin-induced DHX9 phosphorylation promotes oncogenic circular RNA CCDC66 expression and development of chemoresistance. Cancers (Basel)12(3), 697 (2020).
  • Abu N , HonKW, JeyaramanSet al. Identification of differentially expressed circular RNAs in chemoresistant colorectal cancer. Epigenomics11(8), 875–884 (2019).
  • Jian X , HeH, ZhuJet al. Hsa_circ_001680 affects the proliferation and migration of CRC and mediates its chemoresistance by regulating BMI1 through miR-340. Mol. Cancer19(1), 20 (2020).
  • Ren TJ , LiuC, HouJF, ShanFX. CircDDX17 reduces 5-fluorouracil resistance and hinders tumorigenesis in colorectal cancer by regulating miR-31-5p/KANK1 axis. Eur. Rev. Med. Pharmacol. Sci.24(4), 1743–1754 (2020).
  • Wang X , ZhangH, YangHet al. Exosome-delivered circRNA promotes glycolysis to induce chemoresistance through the miR-122-PKM2 axis in colorectal cancer. Mol. Oncol.14(3), 539–555 (2020).
  • Li C , LiM, XueY. Downregulation of circRNA CDR1as specifically triggered low-dose diosbulbin-B induced gastric cancer cell death by regulating miR-7-5p/REGgamma axis. Biomed. Pharmacother.120, 109462 (2019).
  • Huang X , LiZ, ZhangQet al. Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression. Mol. Cancer18(1), 71 (2019).
  • Liu YY , ZhangLY, DuWZ. Circular RNA circ-PVT1 contributes to paclitaxel resistance of gastric cancer cells through the regulation of ZEB1 expression by sponging miR-124-3p. Biosci. Rep.39(12), BSR20193045 (2019).
  • Xue M , LiG, FangX, WangL, JinY, ZhouQ. hsa_circ_0081143 promotes cisplatin resistance in gastric cancer by targeting miR-646/CDK6 pathway. Cancer Cell Int.19, 25 (2019).
  • Huang XX , ZhangQ, HuHet al. A novel circular RNA circFN1 enhances cisplatin resistance in gastric cancer via sponging miR-182-5p. J. Cell. Biochem.doi:10.1002/jcb.29641 (2020).
  • Xu QY , XieMJ, HuangJ, WangZW. Effect of circ MTHFD2 on resistance to pemetrexed in gastric cancer through regulating expression of miR-124. Eur Rev Med Pharmacol. Sci.23(23), 10290–10299 (2019).
  • Chen Y , YuanB, WuZ, DongY, ZhangL, ZengZ. Microarray profiling of circular RNAs and the potential regulatory role of hsa_circ_0071410 in the activated human hepatic stellate cell induced by irradiation. Gene629, 35–42 (2017).
  • Chen H , LiuS, LiM, HuangP, LiX. circ_0003418 inhibits tumorigenesis and cisplatin chemoresistance through Wnt/beta-catenin pathway in hepatocellular carcinoma. Onco Targets Ther.12, 9539–9549 (2019).
  • Luo Y , FuY, HuangRet al. CircRNA_101505 sensitizes hepatocellular carcinoma cells to cisplatin by sponging miR-103 and promotes oxidored-nitro domain-containing protein 1 expression. Cell Death Discov.5, 121 (2019).
  • Yang W , LiuY, GaoR, XiuZ, SunT. Knockdown of cZNF292 suppressed hypoxic human hepatoma SMMC7721 cell proliferation, vasculogenic mimicry, and radioresistance. Cell. Signal.60, 122–135 (2019).
  • Wu MY , TangYP, LiuJJ, LiangR, LuoXL. Global transcriptomic study of circRNAs expression profile in sorafenib resistant hepatocellular carcinoma cells. J. Cancer11(10), 2993–3001 (2020).
  • Lu Q , FangT. Circular RNA SMARCA5 correlates with favorable clinical tumor features and prognosis, and increases chemotherapy sensitivity in intrahepatic cholangiocarcinoma. J. Clin. Lab. Anal.34(4), e23138 (2020).
  • Shao F , HuangM, MengF, HuangQ. Circular RNA signature predicts gemcitabine resistance of pancreatic ductal adenocarcinoma. Front. Pharmacol.9, 584 (2018).
  • Xu C , YuY, DingF. Microarray analysis of circular RNA expression profiles associated with gemcitabine resistance in pancreatic cancer cells. Oncol. Rep.40(1), 395–404 (2018).
  • Liu Y , XiaL, DongLet al. CircHIPK3 promotes gemcitabine (GEM) resistance in pancreatic cancer cells by sponging miR-330-5p and targets RASSF1. Cancer Manag. Res.12, 921–929 (2020).
  • Xu N , ChenS, LiuYet al. Profiles and bioinformatics analysis of differentially expressed circrnas in taxol-resistant non-small cell lung cancer cells. Cell Physiol. Biochem.48(5), 2046–2060 (2018).
  • Li X , YangB, RenHet al. Hsa_circ_0002483 inhibited the progression and enhanced the Taxol sensitivity of non-small cell lung cancer by targeting miR-182-5p. Cell Death Dis.10(12), 953 (2019).
  • Wu Z , GongQ, YuY, ZhuJ, LiW. Knockdown of circ-ABCB10 promotes sensitivity of lung cancer cells to cisplatin via miR-556-3p/AK4 axis. BMC Pulm. Med.20(1), 10 (2020).
  • Huang MS , YuanFQ, GaoYet al. Circular RNA screening from EIF3a in lung cancer. Cancer Med.8(9), 4159–4168 (2019).
  • Zhou Y , ZhengX, XuBet al. Circular RNA hsa_circ_0004015 regulates the proliferation, invasion, and TKI drug resistance of non-small cell lung cancer by miR-1183/PDPK1 signaling pathway. Biochem. Biophys. Res. Commun.508(2), 527–535 (2019).
  • Dong Y , XuT, ZhongSet al. Circ_0076305 regulates cisplatin resistance of non-small cell lung cancer via positively modulating STAT3 by sponging miR-296-5p. Life Sci.239, 116984 (2019).
  • Li YH , XuCL, HeCJ, PuHH, LiuJL, WangY. circMTDH.4/miR-630/AEG-1 axis participates in the regulation of proliferation, migration, invasion, chemoresistance, and radioresistance of NSCLC. Mol. Carcinog.59(2), 141–153 (2020).
  • Xu Y , JiangT, WuC, ZhangY. CircAKT3 inhibits glycolysis balance in lung cancer cells by regulating miR-516b-5p/STAT3 to inhibit cisplatin sensitivity. Biotechnol. Lett.42(7), 1123–1135 (2020).
  • Xiao G , HuangW, ZhanY, LiJ, TongW. CircRNA_103762 promotes multidrug resistance in NSCLC by targeting DNA damage inducible transcript 3 (CHOP). J. Clin. Lab. Anal.e23252 (2020).
  • Joseph NA , ChiouSH, LungZet al. The role of HGF-MET pathway and CCDC66 cirRNA expression in EGFR resistance and epithelial-to-mesenchymal transition of lung adenocarcinoma cells. J. Hematol. Oncol.11(1), 74 (2018).
  • Yu W , PengW, ShaH, LiJ. Hsa_circ_0003998 promotes chemoresistance via modulation of miR-326 in lung adenocarcinoma cells. Oncol. Res.27(5), 623–628 (2019).
  • Mao Y , XuR. Circular RNA CDR1-AS contributes to pemetrexed and cisplatin chemoresistance through EGFR/PI3K signaling pathway in lung adenocarcinoma. Biomed. Pharmacother.123, 109771 (2020).
  • Zheng F , XuR. CircPVT1 contributes to chemotherapy resistance of lung adenocarcinoma through miR-145-5p/ABCC1 axis. Biomed. Pharmacother.124, 109828 (2020).
  • Huang W , YangY, WuJet al. Circular RNA cESRP1 sensitises small cell lung cancer cells to chemotherapy by sponging miR-93-5p to inhibit TGF-beta signalling. Cell Death Differ.27(5), 1709–1727 (2020).
  • Domenichini A , AdamskaA, FalascaM. ABC transporters as cancer drivers: potential functions in cancer development. Biochim. Biophys. Acta Gen. Subj.1863(1), 52–60 (2019).
  • Bleau AM , HuseJT, HollandEC. The ABCG2 resistance network of glioblastoma. Cell Cycle8(18), 2936–2944 (2009).
  • Nguyen HS , ShabaniS, AwadAJ, KaushalM, DoanN. Molecular markers of therapy-resistant glioblastoma and potential strategy to combat resistance. Int. J. Mol. Sci.19(6), 1765 (2018).
  • Lindsey BA , MarkelJE, KleinermanES. Osteosarcoma overview. Rheumatol. Ther.4(1), 25–43 (2017).
  • Scholten DJ , TimmerCM2nd, PeacockJD, PelleDW, WilliamsBO, SteensmaMR. Down regulation of Wnt signaling mitigates hypoxia-induced chemoresistance in human osteosarcoma cells. PLoS ONE9(10), e111431 (2014).
  • Marur S , ForastiereAA. Head and neck squamous cell carcinoma: update on epidemiology, diagnosis, and treatment. Mayo Clin. Proc.91(3), 386–396 (2016).
  • Caudell JJ , Torres-RocaJF, GilliesRJet al. The future of personalised radiotherapy for head and neck cancer. Lancet Oncol.18(5), e266–e273 (2017).
  • Tang H , ZhangJ, GuoQ. Research progress on the regulation of tumor initiation and development by the forkhead box Q1 gene. J. Cancer Res. Ther.14(1), 6–11 (2018).
  • Tripathi V , ShinJH, StueltenCH, ZhangYE. TGF-beta-induced alternative splicing of TAK1 promotes EMT and drug resistance. Oncogene38(17), 3185–3200 (2019).
  • Jia Y , ZhouJ, LuoXet al. KLF4 overcomes tamoxifen resistance by suppressing MAPK signaling pathway and predicts good prognosis in breast cancer. Cell. Signal.42, 165–175 (2018).
  • Matissek KJ , OnozatoML, SunSet al. Expressed gene fusions as frequent drivers of poor outcomes in hormone receptor-positive breast cancer. Cancer Discov.8(3), 336–353 (2018).
  • Lee KM , ChoiEJ, KimIA. microRNA-7 increases radiosensitivity of human cancer cells with activated EGFR-associated signaling. Radiother. Oncol.101(1), 171–176 (2011).
  • Yao W , WangX, CaiQ, GaoS, WangJ, ZhangP. TRAF4 enhances osteosarcoma cell proliferation and invasion by Akt signaling pathway. Oncol. Res.22(1), 21–28 (2014).
  • Liu K , WuX, ZangXet al. TRAF4 regulates migration, invasion, and epithelial-mesenchymal transition via PI3K/AKT signaling in hepatocellular carcinoma. Oncol. Res.25(8), 1329–1340 (2017).
  • Zhang J , LiX, YangW, JiangX, LiN. TRAF4 promotes tumorigenesis of breast cancer through activation of Akt. Oncol. Rep.32(3), 1312–1318 (2014).
  • Hong T , DingJ, LiW. miR-7 reverses breast cancer resistance to chemotherapy by targeting MRP1 And BCL2. Onco Targets Ther.12, 11097–11105 (2019).
  • Liu Y , AoX, DingWet al. Critical role of FOXO3a in carcinogenesis. Mol. Cancer17(1), 104 (2018).
  • Grunewald T , LedermannJA. Targeted therapies for ovarian cancer. Best Pract. Res. Clin. Obstet. Gynaecol.41, 139–152 (2017).
  • Hansen RK , MundA, PoulsenSLet al. SCAI promotes DNA double-strand break repair in distinct chromosomal contexts. Nat. Cell Biol.18(12), 1357–1366 (2016).
  • Li B , HuangW, CaoN, LouG. Forkhead-box R2 promotes metastasis and growth by stimulating angiogenesis and activating hedgehog signaling pathway in ovarian cancer. J. Cell. Biochem.119(9), 7780–7789 (2018).
  • Asadollahi S , MazaheriMN, Karimi-ZarchiM, FesahatFarzaneh. The relationship of FOXR2 gene expression profile with epithelial-mesenchymal transition related markers in epithelial ovarian cancer. Klin. Onkol.33(3), 201–207 (2020).
  • Smith AG , MacleodKF. Autophagy, cancer stem cells and drug resistance. J. Pathol.247(5), 708–718 (2019).
  • Tian T , LiX, HuaZet al. S100A1 promotes cell proliferation and migration and is associated with lymph node metastasis in ovarian cancer. Discov. Med.23(127), 235–245 (2017).
  • Watson PA , AroraVK, SawyersCL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer15(12), 701–711 (2015).
  • Odero-Marah V , HawsawiO, HendersonV, SweeneyJ. Epithelial-mesenchymal transition (EMT) and prostate cancer. Adv. Exp. Med. Biol.1095, 101–110 (2018).
  • Morris MR , LatifF. The epigenetic landscape of renal cancer. Nat. Rev. Nephrol.13(1), 47–60 (2017).
  • Shakeri R , KheirollahiA, DavoodiJ. Apaf-1: regulation and function in cell death. Biochimie135, 111–125 (2017).
  • Malhotra A , SharmaU, PuhanSet al. Stabilization of miRNAs in esophageal cancer contributes to radioresistance and limits efficacy of therapy. Biochimie156, 148–157 (2019).
  • Toulany M , RodemannHP. Phosphatidylinositol 3-kinase/Akt signaling as a key mediator of tumor cell responsiveness to radiation. Semin. Cancer Biol.35, 180–190 (2015).
  • Porta C , PaglinoC, MoscaA. Targeting PI3K/Akt/mTOR signaling in cancer. Front. Oncol.4, 64 (2014).
  • Hammond WA , SwaikaA, ModyK. Pharmacologic resistance in colorectal cancer: a review. Ther. Adv. Med. Oncol.8(1), 57–84 (2016).
  • Pino MS , ChungDC. The chromosomal instability pathway in colon cancer. Gastroenterology138(6), 2059–2072 (2010).
  • Sunkara KP , GuptaG, HansbroPM, DuaK, BebawyM. Functional relevance of SATB1 in immune regulation and tumorigenesis. Biomed. Pharmacother.104, 87–93 (2018).
  • Armaghany T , WilsonJD, ChuQ, MillsG. Genetic alterations in colorectal cancer. Gastrointest. Cancer Res.5(1), 19–27 (2012).
  • Sherr CJ , BeachD, ShapiroGI. Targeting CDK4 and CDK6: from discovery to therapy. Cancer Discov.6(4), 353–367 (2016).
  • Martinez-Barriocanal A , ArangoD, DopesoH. PVT1 long non-coding RNA in gastrointestinal cancer. Front. Oncol.10, 38 (2020).
  • Bataller R , Sancho-BruP, GinesP, BrennerDA. Liver fibrogenesis: a new role for the renin-angiotensin system. Antioxid. Redox Signal.7(9–10), 1346–1355 (2005).
  • Wang J , TanQ, WangW, YuJ. Mechanism of the regulatory effect of overexpression of circMTO1 on proliferation and apoptosis of hepatoma cells via miR-9-5p/NOX4 axis. Cancer Manag. Res.12, 3915–3925 (2020).
  • Laitala A , ErlerJT. Hypoxic signalling in tumour stroma. Front. Oncol.8, 189 (2018).
  • Kamisawa T , WoodLD, ItoiT, TakaoriK. Pancreatic cancer. Lancet388(10039), 73–85 (2016).
  • Lin Y , GeX, WenYet al. MiRNA-145 increases therapeutic sensibility to gemcitabine treatment of pancreatic adenocarcinoma cells. Oncotarget7(43), 70857–70868 (2016).
  • Zhao Q , ChenS, ZhuZet al. miR-21 promotes EGF-induced pancreatic cancer cell proliferation by targeting Spry2. Cell Death Dis.9(12), 1157 (2018).
  • Fong CW , ChuaMS, MckieABet al. Sprouty 2, an inhibitor of mitogen-activated protein kinase signaling, is down-regulated in hepatocellular carcinoma. Cancer Res.66(4), 2048–2058 (2006).
  • Vizcaino C , MansillaS, PortugalJ. Sp1 transcription factor: a long-standing target in cancer chemotherapy. Pharmacol. Ther.152, 111–124 (2015).
  • Ding Q , ChenY, DongSet al. Astrocyte elevated gene-1 is overexpressed in non-small-cell lung cancer and associated with increased tumour angiogenesis. Interact. Cardiovasc. Thorac. Surg.26(3), 395–401 (2018).
  • Jan YH , LaiTC, YangCJ, LinYF, HuangMS, HsiaoM. Adenylate kinase 4 modulates oxidative stress and stabilizes HIF-1alpha to drive lung adenocarcinoma metastasis. J. Hematol. Oncol.12(1), 12 (2019).
  • Jeck WR , SorrentinoJA, WangKet al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA19(2), 141–157 (2013).
  • Memczak S , PapavasileiouP, PetersO, RajewskyN. Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS ONE10(10), e0141214 (2015).
  • Li Y , ZhengQ, BaoCet al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res.25(8), 981–984 (2015).
  • Dou Y , ChaDJ, FranklinJLet al. Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes. Sci. Rep.6, 37982 (2016).
  • Sharma A . Chemoresistance in cancer cells: exosomes as potential regulators of therapeutic tumor heterogeneity. Nanomedicine12(17), 2137–2148 (2017).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.