218
Views
0
CrossRef citations to date
0
Altmetric
Review

Pharmacogenomics of Lipid-Lowering Agents: the Impact on Efficacy and Safety

ORCID Icon, &
Pages 65-86 | Received 20 Apr 2022, Accepted 27 Sep 2022, Published online: 23 Nov 2022

References

  • Maxfield FR , Van MeerG. Cholesterol, the central lipid of mammalian cells. Curr. Opin. Cell Biol.22(4), 422–429 (2010).
  • Momiyama Y , AdachiH , FairweatherD , IshizakaN , SaitaE. Inflammation, atherosclerosis and coronary artery disease. Clin. Med. Insights Cardiol.8(Suppl. 3), S67–S70 (2014).
  • Iaea DB , MaxfieldFR. Cholesterol trafficking and distribution. Essays Biochem.57, 43–55 (2015).
  • Singh IM , ShishehborMH , AnsellBJ. High-density lipoprotein as a therapeutic target: a systematic review. JAMA298(7), 786–798 (2007).
  • Emerging Risk Factors Collaboration , DiAngelantonio E , GaoPet al.Lipid-related markers and cardiovascular disease prediction. JAMA307(23), 2499–2506 (2012).
  • Di Giorgi N , MichelucciE , SmitJMet al. A specific plasma lipid signature associated with high triglycerides and low HDL cholesterol identifies residual CAD risk in patients with chronic coronary syndrome. Atherosclerosis339, 1–11 (2021).
  • Virani SS , MorrisPB , AgarwalaAet al. 2021 ACC expert consensus decision pathway on the management of ASCVD risk reduction in patients with persistent hypertriglyceridemia: a report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol.78(9), 960–993 (2021).
  • Auer J , BerentR , EberB. Lessons learned from statin trials. Clin. Cardiol.24(4), 277–280 (2001).
  • Pirillo A , CasulaM , OlmastroniE , NorataGD , CatapanoAL. Global epidemiology of dyslipidaemias. Nat. Rev. Cardiol.18(10), 689–700 (2021).
  • Meisel C , GerloffT , KirchheinerJet al. Implications of pharmacogenetics for individualizing drug treatment and for study design. J. Mol. Med. (Berl.)81(3), 154–167 (2003).
  • Kitzmiller JP , MikulikEB , DaukiAM , MurkherjeeC , LuzumJA. Pharmacogenomics of statins: understanding susceptibility to adverse effects. Pharmgenomics Pers. Med.9, 97–106 (2016).
  • Blais JE , WeiY , YapKKWet al. Trends in lipid-modifying agent use in 83 countries. Atherosclerosis328, 44–51 (2021).
  • Cholesterol Treatment Trialists C , FulcherJ , O’ConnellRet al.Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet385(9976), 1397–1405 (2015).
  • Cholesterol Treatment Trialists’ (CTT) Collaboration , HerringtonWG , EmbersonJet al.Impact of renal function on the effects of LDL cholesterol lowering with statin-based regimens: a meta-analysis of individual participant data from 28 randomised trials. Lancet Diabetes Endocrinol.4(10), 829–839 (2016).
  • Virani SS , MorrisPB , AgarwalaAet al. 2021 ACC expert consensus decision pathway on the management of ASCVD risk reduction in patients with persistent hypertriglyceridemia. J. Am. Coll. Cardiol.78(9), 960–993 (2021).
  • Goldstein JL , BrownMS. Regulation of the mevalonate pathway. Nature343(6257), 425–430 (1990).
  • Slater EE , MacDonaldJS. Mechanism of action and biological profile of HMG CoA reductase inhibitors. A new therapeutic alternative. Drugs36(Suppl. 3), S72–S82 (1988).
  • Mihos CG , SalasMJ , SantanaO. The pleiotropic effects of the hydroxy-methyl-glutaryl-CoA reductase inhibitors in cardiovascular disease: a comprehensive review. Cardiol. Rev.18(6), 298–304 (2010).
  • Neuvonen PJ , NiemiM , BackmanJT. Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin. Pharmacol. Ther.80(6), 565–581 (2006).
  • Neuvonen PJ , BackmanJT , NiemiM. Pharmacokinetic comparison of the potential over-the-counter statins simvastatin, lovastatin, fluvastatin and pravastatin. Clin. Pharmacokinet.47(7), 463–474 (2008).
  • Neuvonen PJ . Drug interactions with HMG-CoA reductase inhibitors (statins): the importance of CYP enzymes, transporters and pharmacogenetics. Curr. Opin. Investig. Drugs11(3), 323–332 (2010).
  • Niemi M , PasanenMK , NeuvonenPJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol. Rev.63(1), 157–181 (2011).
  • Keskitalo JE , KurkinenKJ , NeuvoneniPJ , NiemiM. ABCB1 haplotypes differentially affect the pharmacokinetics of the acid and lactone forms of simvastatin and atorvastatin. Clin. Pharmacol. Ther.84(4), 457–461 (2008).
  • Pasanen MK , NeuvonenM , NeuvonenPJ , NiemiM. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet. Genomics16(12), 873–879 (2006).
  • Niemi M , PasanenMK , NeuvonenPJ. SLCO1B1 polymorphism and sex affect the pharmacokinetics of pravastatin but not fluvastatin. Clin. Pharmacol. Ther.80(4), 356–366 (2006).
  • Niemi M , ArnoldKA , BackmanJTet al. Association of genetic polymorphism in ABCC2 with hepatic multidrug resistance-associated protein 2 expression and pravastatin pharmacokinetics. Pharmacogenet. Genomics16(11), 801–808 (2006).
  • Gislason GH , RasmussenJN , AbildstromSZet al. Long-term compliance with beta-blockers, angiotensin-converting enzyme inhibitors, and statins after acute myocardial infarction. Eur. Heart J.27(10), 1153–1158 (2006).
  • Blackburn DF , DobsonRT , BlackburnJL , WilsonTW , StangMR , SemchukWM. Adherence to statins, beta-blockers and angiotensin-converting enzyme inhibitors following a first cardiovascular event: a retrospective cohort study. Can. J. Cardiol.21(6), 485–488 (2005).
  • Mitchell D , GuertinJR , IlizaAC , Fanton-AitaF , LelorierJ. Economic evaluation of a pharmacogenomics test for statin-induced myopathy in cardiovascular high-risk patients initiating a statin. Mol. Diagn. Ther.21(1), 95–105 (2017).
  • Abd TT , JacobsonTA. Statin-induced myopathy: a review and update. Expert Opin. Drug Saf.10(3), 373–387 (2011).
  • Sirtori CR , MombelliG , TrioloM , LaaksonenR. Clinical response to statins: mechanism(s) of variable activity and adverse effects. Ann. Med.44(5), 419–432 (2012).
  • Postmus I , VerschurenJJ , DeCraen AJet al. Pharmacogenetics of statins: achievements, whole-genome analyses and future perspectives. Pharmacogenomics13(7), 831–840 (2012).
  • Kuivenhoven JA , JukemaJW , ZwindermanAHet al. The role of a common variant of the cholesteryl ester transfer protein gene in the progression of coronary atherosclerosis. The Regression Growth Evaluation Statin Study Group. N. Engl. J. Med.338(2), 86–93 (1998).
  • Leschziner GD , AndrewT , PirmohamedM , JohnsonMR. ABCB1 genotype and PGP expression, function and therapeutic drug response: a critical review and recommendations for future research. Pharmacogenomics J.7(3), 154–179 (2007).
  • Keskitalo JE , KurkinenKJ , NeuvonenM , BackmanJT , NeuvonenPJ , NiemiM. No significant effect of ABCB1 haplotypes on the pharmacokinetics of fluvastatin, pravastatin, lovastatin, and rosuvastatin. Br. J. Clin. Pharmacol.68(2), 207–213 (2009).
  • Klein I , SarkadiB , VaradiA. An inventory of the human ABC proteins. Biochim. Biophys. Acta1461(2), 237–262 (1999).
  • Wang D , JohnsonAD , PappAC , KroetzDL , SadeeW. Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA stability. Pharmacogenet. Genomics15(10), 693–704 (2005).
  • Kajinami K , BrousseauME , OrdovasJM , SchaeferEJ. Polymorphisms in the multidrug resistance-1 (MDR1) gene influence the response to atorvastatin treatment in a gender-specific manner. Am. J. Cardiol.93(8), 1046–1050 (2004).
  • Salacka A , Binczak-KuletaA , KaczmarczykM , HornowskaI , SafranowK , ClarkJS. Possible association of ABCB1:c.3435T>C polymorphism with high-density-lipoprotein-cholesterol response to statin treatment – a pilot study. Bosn. J. Basic Med. Sci.14(3), 144–149 (2014).
  • Hoenig MR , WalkerPJ , GurnseyC , BeadleK , JohnsonL. The C3435T polymorphism in ABCB1 influences atorvastatin efficacy and muscle symptoms in a high-risk vascular cohort. J. Clin. Lipidol.5(2), 91–96 (2011).
  • Melhem AL , ChourasiaMK , BigossiMet al. Common statin intolerance variants in ABCB1 and LILRB5 show synergistic effects on statin response: an observational study using electronic health records. Front. Genet.12, 713181 (2021).
  • Fiegenbaum M , DaSilveira FR , VanDer Sand CRet al. The role of common variants of ABCB1, CYP3A4, and CYP3A5 genes in lipid-lowering efficacy and safety of simvastatin treatment. Clin. Pharmacol. Ther.78(5), 551–558 (2005).
  • Becker ML , VisserLE , Van SchaikRH , HofmanA , UitterlindenAG , StrickerBH. Influence of genetic variation in CYP3A4 and ABCB1 on dose decrease or switching during simvastatin and atorvastatin therapy. Pharmacoepidemiol. Drug Saf.19(1), 75–81 (2010).
  • Li Q , HongJ , WuJet al. The role of common variants of ABCB1 and CYP7A1 genes in serum lipid levels and lipid-lowering efficacy of statin treatment: a meta-analysis. J. Clin. Lipidol.8(6), 618–629 (2014).
  • Morimoto K , UedaS , SekiNet al. OATP-C(OATP01B1)*15 is associated with statin-induced myopathy in hypercholesterolemic patients. Clin. Pharmacol. Ther.77(2), P21–P21 (2005).
  • Dean M , HamonY , ChiminiG. The human ATP-binding cassette (ABC) transporter superfamily. J. Lipid Res.42(7), 1007–1017 (2001).
  • Dean M , RzhetskyA , AllikmetsR. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res.11(7), 1156–1166 (2001).
  • Cuperus FJ , ClaudelT , GautherotJ , HalilbasicE , TraunerM. The role of canalicular ABC transporters in cholestasis. Drug Metab. Dispos.42(4), 546–560 (2014).
  • Horsey AJ , CoxMH , SarwatS , KerrID. The multidrug transporter ABCG2: still more questions than answers. Biochem. Soc. Trans.44(3), 824–830 (2016).
  • Fohner AE , BrackmanDJ , GiacominiKM , AltmanRB , KleinTE. PharmGKB summary: very important pharmacogene information for ABCG2. Pharmacogenet. Genomics27(11), 420–427 (2017).
  • Huang L , WangY , GrimmS. ATP-dependent transport of rosuvastatin in membrane vesicles expressing breast cancer resistance protein. Drug Metab. Dispos.34(5), 738–742 (2006).
  • Kitamura S , MaedaK , WangY , SugiyamaY. Involvement of multiple transporters in the hepatobiliary transport of rosuvastatin. Drug Metab. Dispos.36(10), 2014–2023 (2008).
  • Hirano M , MaedaK , MatsushimaS , NozakiY , KusuharaH , SugiyamaY. Involvement of BCRP (ABCG2) in the biliary excretion of pitavastatin. Mol. Pharmacol.68(3), 800–807 (2005).
  • Yanase K , TsukaharaS , MitsuhashiJ , SugimotoY. Functional SNPs of the breast cancer resistance protein – therapeutic effects and inhibitor development. Cancer Lett.234(1), 73–80 (2006).
  • Furukawa T , WakabayashiK , TamuraAet al. Major SNP (Q141K) variant of human ABC transporter ABCG2 undergoes lysosomal and proteasomal degradations. Pharm. Res.26(2), 469–479 (2009).
  • Imai Y , NakaneM , KageKet al. C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance. Mol. Cancer Ther.1(8), 611–616 (2002).
  • Keskitalo JE , ZolkO , FrommMF , KurkinenKJ , NeuvonenPJ , NiemiM. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin. Pharmacol. Ther.86(2), 197–203 (2009).
  • Tomlinson B , HuM , LeeVWet al. ABCG2 polymorphism is associated with the low-density lipoprotein cholesterol response to rosuvastatin. Clin. Pharmacol. Ther.87(5), 558–562 (2010).
  • Mirošević Skvrce N , MacolićŠarinić V , ŠimićI , GanociL , MuačevićKatanec D , BožinaN. ABCG2 gene polymorphisms as risk factors for atorvastatin adverse reactions: a case–control study. Pharmacogenomics16(8), 803–815 (2015).
  • Shek AB , KurbanovRD , AbdullaevaGJet al. Simvastatin intolerance genetic determinants: some features in ethnic Uzbek patients with coronary artery disease. Arch. Med. Sci. Atheroscler. Dis.2, e68–e75 (2017).
  • Mirošević Skvrce N , BozinaN , ZibarL , BarisicI , PejnovicL , MacolićŠarinić V. CYP2C9 and ABCG2 polymorphisms as risk factors for developing adverse drug reactions in renal transplant patients taking fluvastatin: a case–control study. Pharmacogenomics14(12), 1419–1431 (2013).
  • Liu M , WuXJ , ZhaoGLet al. Effects of polymorphisms in NR1H4, NR1I2, SLCO1B1, and ABCG2 on the pharmacokinetics of rosuvastatin in healthy Chinese volunteers. J. Cardiovasc. Pharmacol.68(5), 383–390 (2016).
  • Kim Y , YoonS , ChoiYet al. Influence of OATP1B1 and BCRP polymorphisms on the pharmacokinetics and pharmacodynamics of rosuvastatin in elderly and young Korean subjects. Sci. Rep.9(1), 19410 (2019).
  • Birmingham BK , BujacSR , ElsbyRet al. Impact of ABCG2 and SLCO1B1 polymorphisms on pharmacokinetics of rosuvastatin, atorvastatin and simvastatin acid in Caucasian and Asian subjects: a class effect? Eur. J. Clin. Pharmacol. 71(3), 341–355 (2015).
  • Choi HY , BaeKS , ChoSHet al. Impact of CYP2D6, CYP3A5, CYP2C19, CYP2A6, SLCO1B1, ABCB1, and ABCG2 gene polymorphisms on the pharmacokinetics of simvastatin and simvastatin acid. Pharmacogenet. Genomics25(12), 595–608 (2015).
  • Zhang D , DingY , WangXet al. Effects of ABCG2 and SLCO1B1 gene variants on inflammation markers in patients with hypercholesterolemia and diabetes mellitus treated with rosuvastatin. Eur. J. Clin. Pharmacol.76(7), 939–946 (2020).
  • Kashihara Y , IeiriI , YoshikadoTet al. Small-dosing clinical study: pharmacokinetic, pharmacogenomic (SLCO2B1 and ABCG2), and interaction (atorvastatin and grapefruit juice) profiles of 5 probes for OATP2B1 and BCRP. J. Pharm. Sci.106(9), 2688–2694 (2017).
  • Kim TE , ShinD , GuNet al. The effect of genetic polymorphisms in SLCO2B1 on the lipid-lowering efficacy of rosuvastatin in healthy adults with elevated low-density lipoprotein. Basic Clin. Pharmacol. Toxicol.121(3), 195–201 (2017).
  • Ieiri I , SuwannakulS , MaedaKet al. SLCO1B1 (OATP1B1, an uptake transporter) and ABCG2 (BCRP, an efflux transporter) variant alleles and pharmacokinetics of pitavastatin in healthy volunteers. Clin. Pharmacol. Ther.82(5), 541–547 (2007).
  • Ferrari M , GuastiL , MarescaAet al. Association between statin-induced creatine kinase elevation and genetic polymorphisms in SLCO1B1, ABCB1 and ABCG2. Eur. J. Clin. Pharmacol.70(5), 539–547 (2014).
  • Bai X , ZhangB , WangPet al. Effects of SLCO1B1 and GATM gene variants on rosuvastatin-induced myopathy are unrelated to high plasma exposure of rosuvastatin and its metabolites. Acta Pharmacol. Sin.40(4), 492–499 (2019).
  • Bailey KM , RomaineSP , JacksonBMet al. Hepatic metabolism and transporter gene variants enhance response to rosuvastatin in patients with acute myocardial infarction: the GEOSTAT-1 study. Circ. Cardiovasc. Genet.3(3), 276–285 (2010).
  • Soko ND , ChimusaE , MasimirembwaC , DandaraC. An African-specific profile of pharmacogene variants for rosuvastatin plasma variability: limited role for SLCO1B1 c.521T>C and ABCG2 c.421A>C. Pharmacogenomics J.19(3), 240–248 (2019).
  • Zhao G , LiuM , WuXet al. Effect of polymorphisms in CYP3A4, PPARA, NR1I2, NFKB1, ABCG2 and SLCO1B1 on the pharmacokinetics of lovastatin in healthy Chinese volunteers. Pharmacogenomics18(1), 65–75 (2017).
  • Nguyen TD , MarkovaS , LiuWet al. Functional characterization of ABCC2 promoter polymorphisms and allele-specific expression. Pharmacogenomics J.13(5), 396–402 (2013).
  • Ellis LC , HawksworthGM , WeaverRJ. ATP-dependent transport of statins by human and rat MRP2/Mrp2. Toxicol. Appl. Pharmacol.269(2), 187–194 (2013).
  • Megaraj V , ZhaoT , PaumiCM , GerkPM , KimRB , VoreM. Functional analysis of nonsynonymous single nucleotide polymorphisms of multidrug resistance-associated protein 2 (ABCC2). Pharmacogenet. Genomics21(8), 506–515 (2011).
  • Becker ML , ElensLL , VisserLEet al. Genetic variation in the ABCC2 gene is associated with dose decreases or switches to other cholesterol-lowering drugs during simvastatin and atorvastatin therapy. Pharmacogenomics J.13(3), 251–256 (2013).
  • Oh ES , KimCO , ChoSK , ParkMS , ChungJY. Impact of ABCC2, ABCG2 and SLCO1B1 polymorphisms on the pharmacokinetics of pitavastatin in humans. Drug Metab. Pharmacokinet.28(3), 196–202 (2013).
  • Cooper-Dehoff RM , NiemiM , RamseyLBet al. The Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for SLCO1B1, ABCG2, and CYP2C9 and statin-associated musculoskeletal symptoms. Clin. Pharmacol. Ther. doi:10.1002/cpt.2557 (2022). ( Epub ahead of print).
  • Oshiro C , MangraviteL , KleinT , AltmanR. PharmGKB very important pharmacogene: SLCO1B1. Pharmacogenet. Genomics20(3), 211–216 (2010).
  • Wang Y , TianY , LvPet al. The effect of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and 2-hydroxyatorvastatin in healthy Chinese people. Pharmazie72(6), 365–368 (2017).
  • Woo HI , KimSR , HuhW , KoJW , LeeSY. Association of genetic variations with pharmacokinetics and lipid-lowering response to atorvastatin in healthy Korean subjects. Drug Des. Devel. Ther.11, 1135–1146 (2017).
  • Donnelly L , DoneyA , TavendaleRet al. Common nonsynonymous substitutions in SLCO1B1 predispose to statin intolerance in routinely treated individuals with Type 2 diabetes: a Go-DARTS study. Clin. Pharmacol. Ther.89(2), 210–216 (2011).
  • Link E , ParishS , ArmitageJet al. SLCO1B1 variants and statin-induced myopathy – a genomewide study. N. Engl. J. Med.359(8), 789–799 (2008).
  • Nishizato Y , IeiriI , SuzukiHet al. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin. Pharmacol. Ther.73(6), 554–565 (2003).
  • Ide T , SasakiT , MaedaK , HiguchiS , SugiyamaY , IeiriI. Quantitative population pharmacokinetic analysis of pravastatin using an enterohepatic circulation model combined with pharmacogenomic information on SLCO1B1 and ABCC2 polymorphisms. J. Clin. Pharmacol.49(11), 1309–1317 (2009).
  • Li LM , ChenL , DengGHet al. SLCO1B1 *15 haplotype is associated with rifampin-induced liver injury. Mol. Med. Rep.6(1), 75–82 (2012).
  • Iwai M , SuzukiH , IeiriI , OtsuboK , SugiyamaY. Functional analysis of single nucleotide polymorphisms of hepatic organic anion transporter OATP1B1 (OATP-C). Pharmacogenetics14(11), 749–757 (2004).
  • Ho RH , TironaRG , LeakeBFet al. Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology130(6), 1793–1806 (2006).
  • Degorter MK , TironaRG , SchwarzUIet al. Clinical and pharmacogenetic predictors of circulating atorvastatin and rosuvastatin concentrations in routine clinical care. Circ. Cardiovasc. Genet.6(4), 400–408 (2013).
  • Pasanen MK , FredriksonH , NeuvonenPJ , NiemiM. Different effects of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin. Clin. Pharmacol. Ther.82(6), 726–733 (2007).
  • Sivkov A , ChernusN , GorenkovR , SivkovS , SivkovaS , SavinaT. Relationship between genetic polymorphism of drug transporters and the efficacy of rosuvastatin, atorvastatin and simvastatin in patients with hyperlipidemia. Lipids Health Dis.20(1), 157 (2021).
  • Merćep I , RadmanI , TrkuljaVet al. Loss of function polymorphisms in SLCO1B1 (c.521T>C, rs4149056) and ABCG2 (c.421C>A, rs2231142) genes are associated with adverse events of rosuvastatin: a case–control study. Eur. J. Clin. Pharmacol.78(2), 227–236 (2022).
  • Liu JE , LiuXY , ChenSet al. SLCO1B1 521T>C polymorphism associated with rosuvastatin-induced myotoxicity in Chinese coronary artery disease patients: a nested case–control study. Eur. J. Clin. Pharmacol.73(11), 1409–1416 (2017).
  • Ramakumari N , IndumathiB , KatkamSK , KutalaVK. Impact of pharmacogenetics on statin-induced myopathy in South-Indian subjects. Indian Heart J.70(Suppl. 3), S120–S125 (2018).
  • Lee N , MaedaK , FukizawaSet al. Microdosing clinical study to clarify pharmacokinetic and pharmacogenetic characteristics of atorvastatin in Japanese hypercholesterolemic patients. Drug Metab. Pharmacokinet.34(6), 387–395 (2019).
  • Mori D , KashiharaY , YoshikadoTet al. Effect of OATP1B1 genotypes on plasma concentrations of endogenous OATP1B1 substrates and drugs, and their association in healthy volunteers. Drug Metab. Pharmacokinet.34(1), 78–86 (2019).
  • Rajput TA , NaveedAK , FarooqiZR , KhanS. Effects of two functionally important SLCO1B1 gene polymorphisms on pharmacokinetics of atorvastatin. Pak. J. Pharm. Sci.30(4), 1363–1370 (2017).
  • Turner RM , FontanaV , ZhangJEet al. A genome-wide association study of circulating levels of atorvastatin and its major metabolites. Clin. Pharmacol. Ther.108(2), 287–297 (2020).
  • Voora D , BayeJ , McDermaidAet al. SLCO1B1*5 allele is associated with atorvastatin discontinuation and adverse muscle symptoms in the context of routine care. Clin. Pharmacol. Ther. doi:10.1002/cpt.2527 (2022). ( Epub ahead of print).
  • Hou Q , LiS , LiL , LiY , SunX , TianH. Association between SLCO1B1 gene T521C polymorphism and statin-related myopathy risk: a meta-analysis of case–control studies. Medicine (Baltimore)94(37), e1268 (2015).
  • Xiang Q , ChenSQ , MaLYet al. Association between SLCO1B1 T521C polymorphism and risk of statin-induced myopathy: a meta-analysis. Pharmacogenomics J.18(6), 721–729 (2018).
  • Bakar NS , NeelyD , AveryP , BrownC , DalyAK , KamaliF. Genetic and clinical factors are associated with statin-related myotoxicity of moderate severity: a case-control study. Clin. Pharmacol. Ther.104(1), 178–187 (2018).
  • Du Y , WangS , ChenZ , SunS , ZhaoZ , LiX. Association of SLCO1B1 polymorphisms and atorvastatin safety and efficacy: a meta-analysis. Curr. Pharm. Des.24(34), 4044–4050 (2018).
  • Lu B , SunL , SeraydarianMet al. Effect of SLCO1B1 T521C on statin-related myotoxicity with use of lovastatin and atorvastatin. Clin. Pharmacol. Ther.110(3), 733–740 (2021).
  • Linskey DW , EnglishJD , PerryDAet al. Association of SLCO1B1 c.521T>C (rs4149056) with discontinuation of atorvastatin due to statin-associated muscle symptoms. Pharmacogenet. Genomics30(9), 208–211 (2020).
  • Meyer Zu Schwabedissen HE , AlbersM , BaumeisterSEet al. Function-impairing polymorphisms of the hepatic uptake transporter SLCO1B1 modify the therapeutic efficacy of statins in a population-based cohort. Pharmacogenet. Genomics25(1), 8–18 (2015).
  • Brunham LR , LansbergPJ , ZhangLet al. Differential effect of the rs4149056 variant in SLCO1B1 on myopathy associated with simvastatin and atorvastatin. Pharmacogenomics J.12(3), 233–237 (2012).
  • Drogari E , RagiaG , MollakiV , ElensL , Van SchaikRH , ManolopoulosVG. POR*28 SNP is associated with lipid response to atorvastatin in children and adolescents with familial hypercholesterolemia. Pharmacogenomics15(16), 1963–1972 (2014).
  • Dou Y , ZhuX , WangQ , TianX , ChengJ , ZhangE. Meta-analysis of the SLCO1B1 c.521T>C variant reveals slight influence on the lipid-lowering efficacy of statins. Ann. Lab. Med.35(3), 329–335 (2015).
  • Li JH , SuchindranS , ShahSH , KrausWE , GinsburgGS , VooraD. SLCO1B1 genetic variants, long-term low-density lipoprotein cholesterol levels and clinical events in patients following cardiac catheterization. Pharmacogenomics16(5), 449–458 (2015).
  • Kitzmiller JP , LuzumJA , DaukiA , KraussRM , MedinaMW. Candidate-gene study of functional polymorphisms in SLCO1B1 and CYP3A4/5 and the cholesterol-lowering response to simvastatin. Clin. Transl. Sci.10(3), 172–177 (2017).
  • Oni-Orisan A , HoffmannTJ , RanatungaDet al. Characterization of statin low-density lipoprotein cholesterol dose-response using electronic health records in a large population-based cohort. Circ. Genom. Precis. Med.11(9), e002043 (2018).
  • Wu X , GongC , WeinstockJet al. Associations of the SLCO1B1 polymorphisms with hepatic function, baseline lipid levels, and lipid-lowering response to simvastatin in patients with hyperlipidemia. Clin. Appl. Thromb. Hemost.24(Suppl. 9), S240–S247 (2018).
  • Jiang F , ChoiJ-Y , LeeJ-Het al. The influences of SLCO1B1 and ABCB1 genotypes on the pharmacokinetics of simvastatin, in relation to CYP3A4 inhibition. Pharmacogenomics18(5), 459–469 (2017).
  • Wagner JB , Abdel-RahmanS , Van HaandelLet al. Impact of SLCO1B1 genotype on pediatric simvastatin acid pharmacokinetics. J. Clin. Pharmacol.58(6), 823–833 (2018).
  • Thambiah SC , MeorAnuar Shuhaili MFR , ChewBHet al. A pilot study on the association between SLCO1B1 RS4363657 polymorphism and muscle adverse events in adults with newly diagnosed dyslipidaemia who were prescribed a statin: the Malaysian primary health care cohort. Biomarkers24(7), 659–665 (2019).
  • Carr DF , FrancisB , JorgensenALet al. Genomewide association study of statin-induced myopathy in patients recruited using the UK Clinical Practice Research Datalink. Clin. Pharmacol. Ther.106(6), 1353–1361 (2019).
  • Flores-Unzueta S , Sosa-MaciasM , MarchatLAet al. Simvastatin-related myopathy in shift workers: a report of two cases. Drug Metab. Pers. Ther.33(3), 153–156 (2018).
  • Tsamandouras N , DickinsonG , GuoYet al. Identification of the effect of multiple polymorphisms on the pharmacokinetics of simvastatin and simvastatin acid using a population-modeling approach. Clin. Pharmacol. Ther.96(1), 90–100 (2014).
  • Hedman M , AntikainenM , HolmbergCet al. Pharmacokinetics and response to pravastatin in paediatric patients with familial hypercholesterolaemia and in paediatric cardiac transplant recipients in relation to polymorphisms of the SLCO1B1 and ABCB1 genes. Br. J. Clin. Pharmacol.61(6), 706–715 (2006).
  • Türkmen D , MasoliJAH , KuoCL , BowdenJ , MelzerD , PillingLC. Statin treatment effectiveness and the SLCO1B1*5 reduced function genotype: long-term outcomes in women and men. Br. J. Clin. Pharmacol. doi:10.1111/bcp.15245 (2022) ( Epub ahead of print).
  • Rodrigues AC , PerinPM , PurimSGet al. Pharmacogenetics of OATP transporters reveals that SLCO1B1 c.388A>G variant is determinant of increased atorvastatin response. Int. J. Mol. Sci.12(9), 5815–5827 (2011).
  • Prado Y , SaavedraN , ZambranoT , LagosJ , RosalesA , SalazarLA. SLCO1B1 c.388A>G polymorphism is associated with HDL-C levels in response to atorvastatin in Chilean individuals. Int. J. Mol. Sci.16(9), 20609–20619 (2015).
  • Kadam P , AshavaidTF , PondeCK , RajaniRM. Genetic determinants of lipid-lowering response to atorvastatin therapy in an Indian population. J. Clin. Pharm. Ther.41(3), 329–333 (2016).
  • Lu XF , ZhouY , BiKS , ChenXH. Mixed effects of OATP1B1, BCRP and NTCP polymorphisms on the population pharmacokinetics of pravastatin in healthy volunteers. Xenobiotica46(9), 841–849 (2016).
  • Mwinyi J , JohneA , BauerS , RootsI , GerloffT. Evidence for inverse effects of OATP-C (SLC21A6) 5 and 1b haplotypes on pravastatin kinetics. Clin. Pharmacol. Ther.75(5), 415–421 (2004).
  • Wen J , XiongY. OATP1B1 388A>G polymorphism and pharmacokinetics of pitavastatin in Chinese healthy volunteers. J. Clin. Pharm. Ther.35(1), 99–104 (2010).
  • Santos PC , GagliardiAC , MinameMHet al. SLCO1B1 haplotypes are not associated with atorvastatin-induced myalgia in Brazilian patients with familial hypercholesterolemia. Eur. J. Clin. Pharmacol.68(3), 273–279 (2012).
  • Barry AR , BeachJE , PearsonGJ. Prevention and management of statin adverse effects: a practical approach for pharmacists. Can. Pharm. J. (Ott.)151(3), 179–188 (2018).
  • Lamba JK , LinYS , SchuetzEG , ThummelKE. Genetic contribution to variable human CYP3A-mediated metabolism. Adv. Drug Deliv. Rev.54(10), 1271–1294 (2002).
  • Michaels S , WangMZ. The revised human liver cytochrome P450 “Pie”: absolute protein quantification of CYP4F and CYP3A enzymes using targeted quantitative proteomics. Drug Metab. Dispos.42(8), 1241–1251 (2014).
  • Igel M , SudhopT , Von BergmannK. Metabolism and drug interactions of 3-hydroxy-3-methylglutaryl coenzyme A-reductase inhibitors (statins). Eur. J. Clin. Pharmacol.57(5), 357–364 (2001).
  • Prueksaritanont T , MaB , YuN. The human hepatic metabolism of simvastatin hydroxy acid is mediated primarily by CYP3A, and not CYP2D6. Br. J. Clin. Pharmacol.56(1), 120–124 (2003).
  • Transon C , LeemannT , DayerP. In vitro comparative inhibition profiles of major human drug metabolising cytochrome P450 isozymes (CYP2C9, CYP2D6 and CYP3A4) by HMG-CoA reductase inhibitors. Eur. J. Clin. Pharmacol.50(3), 209–215 (1996).
  • Yan MM , WuSS , YingYQ , LuN , ZhongMK. Safety assessment of concurrent statin treatment and evaluation of drug interactions in China. SAGE Open Med.6, 2050312118798278 (2018).
  • Egom EE , HafeezH. Biochemistry of statins. Adv. Clin. Chem.73, 127–168 (2016).
  • Liu A , WuQ , GuoJet al. Statins: adverse reactions, oxidative stress and metabolic interactions. Pharmacol. Ther.195, 54–84 (2019).
  • Kyrklund C , BackmanJT , KivistoKT , NeuvonenM , LaitilaJ , NeuvonenPJ. Rifampin greatly reduces plasma simvastatin and simvastatin acid concentrations. Clin. Pharmacol. Ther.68(6), 592–597 (2000).
  • Mazzu AL , LasseterKC , ShamblenEC , AgarwalV , LettieriJ , SundaresenP. Itraconazole alters the pharmacokinetics of atorvastatin to a greater extent than either cerivastatin or pravastatin. Clin. Pharmacol. Ther.68(4), 391–400 (2000).
  • Vyas KP , KariPH , WangRW , LuAY. Biotransformation of lovastatin – III. Effect of cimetidine and famotidine on in vitro metabolism of lovastatin by rat and human liver microsomes. Biochem. Pharmacol.39(1), 67–73 (1990).
  • Olbricht C , WannerC , EisenhauerTet al. Accumulation of lovastatin, but not pravastatin, in the blood of cyclosporine-treated kidney graft patients after multiple doses. Clin. Pharmacol. Ther.62(3), 311–321 (1997).
  • Arnadottir M , ErikssonLO , ThysellH , KarkasJD. Plasma concentration profiles of simvastatin 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitory activity in kidney transplant recipients with and without ciclosporin. Nephron65(3), 410–413 (1993).
  • Wang RW , KariPH , LuAY , ThomasPE , GuengerichFP , VyasKP. Biotransformation of lovastatin. IV. Identification of cytochrome P450 3A proteins as the major enzymes responsible for the oxidative metabolism of lovastatin in rat and human liver microsomes. Arch. Biochem. Biophys.290(2), 355–361 (1991).
  • Lamba J , HebertJM , SchuetzEG , KleinTE , AltmanRB. PharmGKB summary: very important pharmacogene information for CYP3A5. Pharmacogenet. Genomics22(7), 555–558 (2012).
  • Kuehl P , ZhangJ , LinYet al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet.27(4), 383–391 (2001).
  • Shin J , PaulyDF , PacanowskiMA , LangaeeT , FryeRF , JohnsonJA. Effect of cytochrome P450 3A5 genotype on atorvastatin pharmacokinetics and its interaction with clarithromycin. Pharmacotherapy31(10), 942–950 (2011).
  • Kivistö KT , NiemiM , SchaeffelerEet al. Lipid-lowering response to statins is affected by CYP3A5 polymorphism. Pharmacogenetics14(8), 523–525 (2004).
  • Hermann M , BogsrudMP , MoldenEet al. Exposure of atorvastatin is unchanged but lactone and acid metabolites are increased several-fold in patients with atorvastatin-induced myopathy. Clin. Pharmacol. Ther.79(6), 532–539 (2006).
  • Shek AB , KurbanovRD , AlievaRBet al. Personalized rosuvastatin therapy in problem patients with partial statin intolerance. Arch. Med. Sci. Atheroscler. Dis.3, e83–e89 (2018).
  • Elens L , Van GelderT , HesselinkDA , HaufroidV , Van SchaikRH. CYP3A4*22: promising newly identified CYP3A4 variant allele for personalizing pharmacotherapy. Pharmacogenomics14(1), 47–62 (2013).
  • Elens L , BeckerML , HaufroidVet al. Novel CYP3A4 intron 6 single nucleotide polymorphism is associated with simvastatin-mediated cholesterol reduction in the Rotterdam Study. Pharmacogenet. Genomics21(12), 861–866 (2011).
  • Ragia G , KolovouV , TavridouAet al. No effect of CYP3A4 intron 6 C>T polymorphism (CYP3A4*22) on lipid-lowering response to statins in Greek patients with primary hypercholesterolemia. Drug Metab. Pers. Ther.30(1), 43–48 (2015).
  • Kajinami K , BrousseauME , OrdovasJM , SchaeferEJ. CYP3A4 genotypes and plasma lipoprotein levels before and after treatment with atorvastatin in primary hypercholesterolemia. Am. J. Cardiol.93(1), 104–107 (2004).
  • Gaedigk A , Ingelman-SundbergM , MillerNA , LeederJS , Whirl-CarrilloM , KleinTE. The Pharmacogene Variation (PharmVar) Consortium: incorporation of the Human Cytochrome P450 (CYP) Allele Nomenclature Database. Clin. Pharmacol. Ther.103(3), 399–401 (2018).
  • Nordin C , DahlML , ErikssonM , SjobergS. Is the cholesterol-lowering effect of simvastatin influenced by CYP2D6 polymorphism?Lancet350(9070), 29–30 (1997).
  • Frudakis TN , ThomasMJ , GinjupalliSN , HandelinB , GabrielR , GomezHJ. CYP2D6*4 polymorphism is associated with statin-induced muscle effects. Pharmacogenet.Genomics17(9), 695–707 (2007).
  • Li J , WangX , ZhangZet al. Statin therapy correlated CYP2D6 gene polymorphism and hyperlipidemia. Curr. Med. Res. Opin.30(2), 223–228 (2014).
  • Hirota T , EguchiS , IeiriI. Impact of genetic polymorphisms in CYP2C9 and CYP2C19 on the pharmacokinetics of clinically used drugs. Drug Metab. Pharmacokinet.28(1), 28–37 (2013).
  • Fischer V , JohansonL , HeitzFet al. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor fluvastatin: effect on human cytochrome P-450 and implications for metabolic drug interactions. Drug Metab. Dispos.27(3), 410–416 (1999).
  • Toda T , EliassonE , AskB , InotsumeN , RaneA. Roles of different CYP enzymes in the formation of specific fluvastatin metabolites by human liver microsomes. Basic Clin. Pharmacol. Toxicol.105(5), 327–332 (2009).
  • Hirvensalo P , TornioA , NeuvonenMet al. Enantiospecific pharmacogenomics of fluvastatin. Clin. Pharmacol. Ther.106(3), 668–680 (2019).
  • Baek SD , JangSJ , ParkSEet al. Fatal rhabdomyolysis in a patient with liver cirrhosis after switching from simvastatin to fluvastatin. J. Korean Med. Sci.26(12), 1634–1637 (2011).
  • Takanashi K , TainakaH , KobayashiK , YasumoriT , HosakawaM , ChibaK. CYP2C9 Ile359 and Leu359 variants: enzyme kinetic study with seven substrates. Pharmacogenetics10(2), 95–104 (2000).
  • Alessandrini M , AsfahaS , DodgenTM , WarnichL , PepperMS. Cytochrome P450 pharmacogenetics in African populations. Drug Metab. Rev.45(2), 253–275 (2013).
  • Zhou SF , LiuJP , ChowbayB. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab. Rev.41(2), 89–295 (2009).
  • Lin J , ZhangY , ZhouH , WangX , WangW. CYP2C9 genetic polymorphism is a potential predictive marker for the efficacy of rosuvastatin therapy. Clin. Lab.61(9), 1317–1324 (2015).
  • Kirchheiner J , KudliczD , MeiselCet al. Influence of CYP2C9 polymorphisms on the pharmacokinetics and cholesterol-lowering activity of (-)-3S,5R-fluvastatin and (+)-3R,5S-fluvastatin in healthy volunteers. Clin. Pharmacol. Ther.74(2), 186–194 (2003).
  • Zhou Q , ChenQX , RuanZR , YuanH , XuHM , ZengS. CYP2C9*3(1075A > C), ABCB1 and SLCO1B1 genetic polymorphisms and gender are determinants of inter-subject variability in pitavastatin pharmacokinetics. Pharmazie68(3), 187–194 (2013).
  • Cohen LH , Van LeeuwenRE , Van ThielGC , Van PeltJF , YapSH. Equally potent inhibitors of cholesterol synthesis in human hepatocytes have distinguishable effects on different cytochrome P450 enzymes. Biopharm. Drug Dispos.21(9), 353–364 (2000).
  • Goldstein JA . Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br. J. Clin. Pharmacol.52(4), 349–355 (2001).
  • Rudberg I , MohebiB , HermannM , RefsumH , MoldenE. Impact of the ultrarapid CYP2C19*17 allele on serum concentration of escitalopram in psychiatric patients. Clin. Pharmacol. Ther.83(2), 322–327 (2008).
  • Finkelman RD , WangTD , WangYet al. Effect of CYP2C19 polymorphism on the pharmacokinetics of rosuvastatin in healthy Taiwanese subjects. Clin. Pharmacol. Drug Dev.4(1), 33–40 (2015).
  • Lee HK , HuM , LuiS , HoCS , WongCK , TomlinsonB. Effects of polymorphisms in ABCG2, SLCO1B1, SLC10A1 and CYP2C9/19 on plasma concentrations of rosuvastatin and lipid response in Chinese patients. Pharmacogenomics14(11), 1283–1294 (2013).
  • Elder SJ , LichtensteinAH , PittasAGet al. Genetic and environmental influences on factors associated with cardiovascular disease and the metabolic syndrome. J. Lipid Res.50(9), 1917–1926 (2009).
  • Jermendy G , HorvathT , LittvayLet al. Effect of genetic and environmental influences on cardiometabolic risk factors: a twin study. Cardiovasc. Diabetol.10, 96 (2011).
  • Medina MW , KraussRM. Alternative splicing in the regulation of cholesterol homeostasis. Curr. Opin. Lipidol.24(2), 147–152 (2013).
  • Medina MW , KraussRM. The role of HMGCR alternative splicing in statin efficacy. Trends Cardiovasc. Med.19(5), 173–177 (2009).
  • Leduc V , BourqueL , PoirierJ , DufourR. Role of rs3846662 and HMGCR alternative splicing in statin efficacy and baseline lipid levels in familial hypercholesterolemia. Pharmacogenet. Genomics26(1), 1–11 (2016).
  • Chen YC , ChenYD , LiXet al. The HMG-CoA reductase gene and lipid and lipoprotein levels: the multi-ethnic study of atherosclerosis. Lipids44(8), 733–743 (2009).
  • Chasman DI , PosadaD , SubrahmanyanL , CookNR , StantonVPJr , RidkerPM. Pharmacogenetic study of statin therapy and cholesterol reduction. JAMA291(23), 2821–2827 (2004).
  • Krauss RM , MangraviteLM , SmithJDet al. Variation in the 3-hydroxyl-3-methylglutaryl coenzyme A reductase gene is associated with racial differences in low-density lipoprotein cholesterol response to simvastatin treatment. Circulation117(12), 1537–1544 (2008).
  • Istvan ES , PalnitkarM , BuchananSK , DeisenhoferJ. Crystal structure of the catalytic portion of human HMG-CoA reductase: insights into regulation of activity and catalysis. EMBO J.19(5), 819–830 (2000).
  • Istvan ES , DeisenhoferJ. Structural mechanism for statin inhibition of HMG-CoA reductase. Science292(5519), 1160–1164 (2001).
  • Medina MW , GaoF , RuanW , RotterJI , KraussRM. Alternative splicing of 3-hydroxy-3-methylglutaryl coenzyme A reductase is associated with plasma low-density lipoprotein cholesterol response to simvastatin. Circulation118(4), 355–362 (2008).
  • Yu CY , TheuschE , LoKet al. HNRNPA1 regulates HMGCR alternative splicing and modulates cellular cholesterol metabolism. Hum. Mol. Genet.23(2), 319–332 (2014).
  • Burkhardt R , KennyEE , LoweJKet al. Common SNPs in HMGCR in Micronesians and Whites associated with LDL-cholesterol levels affect alternative splicing of exon13. Arterioscler. Thromb. Vasc. Biol.28(11), 2078–2084 (2008).
  • Chung JY , ChoSK , OhESet al. Effect of HMGCR variant alleles on low-density lipoprotein cholesterol-lowering response to atorvastatin in healthy Korean subjects. J. Clin. Pharmacol.52(3), 339–346 (2012).
  • Ying S , SunYM , LiuXM , AnCY , GaoYY. Effect of ScrF I polymorphism in the 2nd intron of the HMGCR gene on lipid-lowering response to simvastatin in Chinese diabetic patients. Biochem. Biophys. Res. Commun.363(2), 395–398 (2007).
  • Marston NA , GiuglianoRP , ImKet al. Association between triglyceride lowering and reduction of cardiovascular risk across multiple lipid-lowering therapeutic classes: a systematic review and meta-regression analysis of randomized controlled trials. Circulation140(16), 1308–1317 (2019).
  • Silverman MG , FerenceBA , ImKet al. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. JAMA316(12), 1289–1297 (2016).
  • Muallem H , NorthKE , KakokiMet al. Quantitative effects of common genetic variations in the 3′UTR of the human LDL-receptor gene and their associations with plasma lipid levels in the Atherosclerosis Risk in Communities study. Hum. Genet.121(3-4), 421–431 (2007).
  • Strom TB , TvetenK , LaerdahlJK , LerenTP. Mutation G805R in the transmembrane domain of the LDL receptor gene causes familial hypercholesterolemia by inducing ectodomain cleavage of the LDL receptor in the endoplasmic reticulum. FEBS Open Bio.4, 321–327 (2014).
  • Hobbs HH , RussellDW , BrownMS , GoldsteinJL. The LDL receptor locus in familial hypercholesterolemia: mutational analysis of a membrane protein. Annu. Rev. Genet.24, 133–170 (1990).
  • Polisecki E , MuallemH , MaedaNet al. Genetic variation at the LDL receptor and HMG-CoA reductase gene loci, lipid levels, statin response, and cardiovascular disease incidence in PROSPER. Atherosclerosis200(1), 109–114 (2008).
  • Mangravite LM , MedinaMW , CuiJet al. Combined influence of LDLR and HMGCR sequence variation on lipid-lowering response to simvastatin. Arterioscler. Thromb. Vasc. Biol.30(7), 1485–1492 (2010).
  • Van Heek M , FarleyC , ComptonDSet al. Comparison of the activity and disposition of the novel cholesterol absorption inhibitor, SCH58235, and its glucuronide, SCH60663. Br. J. Pharmacol.129(8), 1748–1754 (2000).
  • Altmann SW , DavisHRJr , ZhuLJet al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science303(5661), 1201–1204 (2004).
  • Hegele RA , GuyJ , BanMR , WangJ. NPC1L1 haplotype is associated with inter-individual variation in plasma low-density lipoprotein response to ezetimibe. Lipids Health Dis4, 16 (2005).
  • Valasek MA , ClarkeSL , RepaJJ. Fenofibrate reduces intestinal cholesterol absorption via PPARalpha-dependent modulation of NPC1L1 expression in mouse. J. Lipid Res.48(12), 2725–2735 (2007).
  • Berthold HK , LaaksonenR , LehtimäkiT , GyllingH , KroneW , Gouni-BertholdI. SREBP-1c gene polymorphism is associated with increased inhibition of cholesterol-absorption in response to ezetimibe treatment. Exp. Clin. Endocrinol. Diabetes116(5), 262–267 (2008).
  • Oswald S , KönigJ , LütjohannDet al. Disposition of ezetimibe is influenced by polymorphisms of the hepatic uptake carrier OATP1B1. Pharmacogenet. Genomics18(7), 559–568 (2008).
  • Abifadel M , VarretM , RabèsJPet al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet.34(2), 154–156 (2003).
  • Leren TP . Mutations in the PCSK9 gene in Norwegian subjects with autosomal dominant hypercholesterolemia. Clin. Genet.65(5), 419–422 (2004).
  • Timms KM , WagnerS , SamuelsMEet al. A mutation in PCSK9 causing autosomal-dominant hypercholesterolemia in a Utah pedigree. Hum. Genet.114(4), 349–353 (2004).
  • Cohen J , PertsemlidisA , KotowskiIK , GrahamR , GarciaCK , HobbsHH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat. Genet.37(2), 161–165 (2005).
  • Cohen JC , BoerwinkleE , MosleyTHJr , HobbsHH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med.354(12), 1264–1272 (2006).
  • Benn M , NordestgaardBG , GrandeP , SchnohrP , Tybjaerg-HansenA. PCSK9 R46L, low-density lipoprotein cholesterol levels, and risk of ischemic heart disease: 3 independent studies and meta-analyses. J. Am. Coll. Cardiol.55(25), 2833–2842 (2010).
  • Bossé Y , PascotA , DumontMet al. Influences of the PPAR alpha-L162V polymorphism on plasma HDL(2)-cholesterol response of abdominally obese men treated with gemfibrozil. Genet. Med.4(4), 311–315 (2002).
  • Foucher C , RattierS , FlavellDMet al. Response to micronized fenofibrate treatment is associated with the peroxisome-proliferator-activated receptors alpha G/C intron7 polymorphism in subjects with Type 2 diabetes. Pharmacogenetics14(12), 823–829 (2004).
  • Clee SM , ZwindermanAH , EngertJCet al. Common genetic variation in ABCA1 is associated with altered lipoprotein levels and a modified risk for coronary artery disease. Circulation103(9), 1198–1205 (2001).
  • Liu Y , OrdovasJM , GaoGet al. Pharmacogenetic association of the APOA1/C3/A4/A5 gene cluster and lipid responses to fenofibrate: the Genetics of Lipid Lowering Drugs and Diet Network study. Pharmacogenet. Genomics19(2), 161–169 (2009).
  • Lai CQ , ArnettDK , CorellaDet al. Fenofibrate effect on triglyceride and postprandial response of apolipoprotein A5 variants: the GOLDN study. Arterioscler. Thromb. Vasc. Biol.27(6), 1417–1425 (2007).
  • Brautbar A , CovarrubiasD , BelmontJet al. Variants in the APOA5 gene region and the response to combination therapy with statins and fenofibric acid in a randomized clinical trial of individuals with mixed dyslipidemia. Atherosclerosis219(2), 737–742 (2011).
  • Basak A . Inhibitors of proprotein convertases. J. Mol. Med. (Berl.)83(11), 844–855 (2005).
  • Seidah NG , BenjannetS , WickhamLet al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc. Natl Acad. Sci. USA100(3), 928–933 (2003).
  • Khatib R , WilsonF. Pharmacology of medications used in the treatment of atherosclerotic cardiovascular disease. In: Encyclopedia of Cardiovascular Research and Medicine.VasanRS, SawyerDB ( Eds). Elsevier, Oxford, UK, 68–88 (2018).
  • Horton JD , CohenJC , HobbsHH. Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem. Sci.32(2), 71–77 (2007).
  • Chapman MJ . Fibrates in 2003: therapeutic action in atherogenic dyslipidaemia and future perspectives. Atherosclerosis171(1), 1–13 (2003).
  • Keating GM , OrmrodD. Micronised fenofibrate: an updated review of its clinical efficacy in the management of dyslipidaemia. Drugs62(13), 1909–1944 (2002).
  • Hossain MA , TsujitaM , GonzalezFJ , YokoyamaS. Effects of fibrate drugs on expression of ABCA1 and HDL biogenesis in hepatocytes. J. Cardiovasc. Pharmacol.51(3), 258–266 (2008).
  • Guo Q , WangP-R , MilotDPet al. Regulation of lipid metabolism and gene expression by fenofibrate in hamsters. Biochim. Biophys. Acta Mol. Cell Biol. Lipids1533(3), 220–232 (2001).
  • Tsai MY , OrdovasJM , LiNet al. Effect of fenofibrate therapy and ABCA1 polymorphisms on high-density lipoprotein subclasses in the Genetics of Lipid Lowering Drugs and Diet Network. Mol. Genet. Metab.100(2), 118–122 (2010).
  • Van Bochove K , Van SchalkwijkDB , ParnellLDet al. Clustering by plasma lipoprotein profile reveals two distinct subgroups with positive lipid response to fenofibrate therapy. PLOS ONE7(6), e38072 (2012).
  • House JS , Motsinger-ReifAA. Fibrate pharmacogenomics: expanding past the genome. Pharmacogenomics21(4), 293–306 (2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.