203
Views
0
CrossRef citations to date
0
Altmetric
Review

Human Pluripotent Stem Cells in Pharmacological and Toxicological Screening: New Perspectives for Personalized Medicine

, , , , , & show all
Pages 347-364 | Published online: 31 May 2011

Bibliography

  • Thomson JA , Itskovitz-EldorJ, ShapiroSS et al.: Embryonic stem cell lines derived from human blastocysts.Science282(5391) , 1145–1147 (1998).
  • Borstlap J , LuongMX, RookeHM et al.: International stem cell registries.In Vitro Cell Dev. Biol. Anim.46(3–4) , 242–246 (2010).
  • McDevitt TC , PalecekSP: Innovation in the culture and derivation of pluripotent human stem cells.Curr. Opin. Biotechnol.19(5) , 527–533 (2008).
  • Stacey GN , CoboF, NietoA, TalaveraP, HealyL, ConchaA: The development of ‘feeder‘ cells for the preparation of clinical grade hES cell lines: challenges and solutions.J. Biotechnol.125(4) , 583–588 (2006).
  • Stojkovic P , LakoM, StewartR et al.: An autogeneic feeder cell system that efficiently supports growth of undifferentiated human embryonic stem cells.Stem Cells23(3) , 306–314 (2005).
  • Ludwig TE , BergendahlV, LevensteinME, YuJ, ProbascoMD, ThomsonJA: Feeder-independent culture of human embryonic stem cells.Nat. Methods3(8) , 637–646 (2006).
  • Li Y , PowellS, BrunetteE, LebkowskiJ, MandalamR: Expansion of human embryonic stem cells in defined serum-free medium devoid of animal-derived products.Biotechnol. Bioeng.91(6) , 688–698 (2005).
  • Rodin S , DomogatskayaA, StromS et al.: Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511.Nat. Biotechnol.28(6) , 611–615 (2010).
  • Ellerstrom C , StrehlR, MoyaK et al.: Derivation of a xeno-free human embryonic stem cell line.Stem Cells24(10) , 2170–2176 (2006).
  • Ludwig TE , LevensteinME, JonesJM et al.: Derivation of human embryonic stem cells in defined conditions.Nat. Biotechnol.24(2) , 185–187 (2006).
  • Skottman H , DilberMS, HovattaO: The derivation of clinical-grade human embryonic stem cell lines.FEBS Lett.580(12) , 2875–2878 (2006).
  • Crook JM , PeuraTT, KravetsL et al.: The generation of six clinical-grade human embryonic stem cell lines.Cell Stem Cell1(5) , 490–494 (2007).
  • Lin G , XuRH: Progresses and challenges in optimization of human pluripotent stem cell culture.Curr. Stem Cell Res. Ther.5(3) , 207–214 (2010).
  • Adewumi O , AflatoonianB, Ahrlund-RichterL et al.: Characterization of human embryonic stem cell lines by the International Stem Cell Initiative.Nat. Biotechnol.25(7) , 803–816 (2007).
  • Baker DE , HarrisonNJ, MaltbyE et al.: Adaptation to culture of human embryonic stem cells and oncogenesis in vivo.Nat. Biotechnol.25(2) , 207–215 (2007).
  • Cowan CA , KlimanskayaI, McmahonJ et al.: Derivation of embryonic stem-cell lines from human blastocysts.N. Engl. J. Med.350(13) , 1353–1356 (2004).
  • Draper JS , SmithK, GokhaleP et al.: Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells.Nat. Biotechnol.22(1) , 53–54 (2004).
  • Rosler ES , FiskGJ, AresX et al.: Long-term culture of human embryonic stem cells in feeder-free conditions.Dev. Dyn.229(2) , 259–274 (2004).
  • Terstegge S , LaufenbergI, PochertJ et al.: Automated maintenance of embryonic stem cell cultures.Biotechnol. Bioeng.96(1) , 195–201 (2007).
  • Fernandes AM , FernandesTG, DiogoMM, Da Silva CL, Henrique D, Cabral JM: Mouse embryonic stem cell expansion in a microcarrier-based stirred culture system. J. Biotechnol.132(2) , 227–236 (2007).
  • Itskovitz-Eldor J , SchuldinerM, KarsentiD et al.: Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers.Mol. Med.6(2) , 88–95 (2000).
  • Murry CE , KellerG: Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development.Cell132(4) , 661–680 (2008).
  • Joannides AJ , Fiore-HericheC, BattersbyAA et al.: A scaleable and defined system for generating neural stem cells from human embryonic stem cells.Stem Cells25(3) , 731–737 (2007).
  • Kang SM , ChoMS, SeoH et al.: Efficient induction of oligodendrocytes from human embryonic stem cells.Stem Cells25(2) , 419–424 (2007).
  • Laflamme MA , ChenKY, NaumovaAV et al.: Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts.Nat. Biotechnol.25(9) , 1015–1024 (2007).
  • D‘Amour KA , BangAG, EliazerS et al.: Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells.Nat. Biotechnol.24(11) , 1392–1401 (2006).
  • Keller G : Embryonic stem cell differentiation: emergence of a new era in biology and medicine.Genes Dev.19(10) , 1129–1155 (2005).
  • Olsen AL , StachuraDL, WeissMJ: Designer blood: creating hematopoietic lineages from embryonic stem cells.Blood107(4) , 1265–1275 (2006).
  • Kroon E , MartinsonLA, KadoyaK et al.: Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo.Nat. Biotechnol.26(4) , 443–452 (2008).
  • Takahashi K , YamanakaS: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Cell126(4) , 663–676 (2006).
  • Yu J , HuK, Smuga-OttoK et al.: Human induced pluripotent stem cells free of vector and transgene sequences.Science324(5928) , 797–801 (2009).
  • Zaehres H , KoglerG, Arauzo-BravoMJ et al.: Induction of pluripotency in human cord blood unrestricted somatic stem cells.Exp. Hematol.38(9) , 809–818, 818.e1–2 (2010).
  • Sun N , PanettaNJ, GuptaDM et al.: Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells.Proc. Natl Acad. Sci. USA106(37) , 15720–15725 (2009).
  • Liu H , YeZ, KimY, SharkisS, JangYY: Generation of endoderm-derived human induced pluripotent stem cells from primary hepatocytes.Hepatology51(5) , 1810–1819 (2010).
  • Aasen T , RayaA, BarreroMJ et al.: Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes.Nat. Biotechnol.26(11) , 1276–1284 (2008).
  • Loh YH , HartungO, LiH et al.: Reprogramming of T cells from human peripheral blood.Cell Stem Cell7(1) , 15–19 (2010).
  • Seki T , YuasaS, OdaM et al.: Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells.Cell Stem Cell7(1) , 11–14 (2010).
  • Staerk J , DawlatyMM, GaoQ et al.: Reprogramming of human peripheral blood cells to induced pluripotent stem cells.Cell Stem Cell7(1) , 20–24 (2010).
  • Buchholz DE , HikitaST, RowlandTJ et al.: Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells.Stem Cells27(10) , 2427–2434 (2009).
  • Kim JB , SebastianoV, WuG et al.: Oct4-induced pluripotency in adult neural stem cells.Cell136(3) , 411–419 (2009).
  • Heng JC , FengB, HanJ et al.: The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells.Cell Stem Cell6(2) , 167–174 (2010).
  • Picanço-Castro V , Russo-CarbolanteE, ReisLC et al.: Pluripotent reprogramming of fibroblasts by lentiviral-mediated insertion of SOX2, C-MYC, and TCL-1A.Stem Cells Dev.20(1) , 169–180 (2010).
  • Takahashi K , TanabeK, OhnukiM et al.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors.Cell131(5) , 861–872 (2007).
  • Brambrink T , ForemanR, WelsteadGG et al.: Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells.Cell Stem Cell2(2) , 151–159 (2008).
  • Soldner F , HockemeyerD, BeardC et al.: Parkinson‘s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors.Cell136(5) , 964–977 (2009).
  • Stadtfeld M , NagayaM, UtikalJ, WeirG, HochedlingerK: Induced pluripotent stem cells generated without viral integration.Science322(5903) , 945–949 (2008).
  • Kim D , KimCH, MoonJI et al.: Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins.Cell Stem Cell4(6) , 472–476 (2009).
  • Warren L , ManosPD, AhfeldtT et al.: Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA.Cell Stem Cell7(5) , 618–630 (2010).
  • Okita K , NakagawaM, HyenjongH, IchisakaT, YamanakaS: Generation of mouse induced pluripotent stem cells without viral vectors.Science322(5903) , 949–953 (2008).
  • Kaji K , NorrbyK, PacaA, MileikovskyM, MohseniP, WoltjenK: Virus-free induction of pluripotency and subsequent excision of reprogramming factors.Nature458(7239) , 771–775 (2009).
  • Woltjen K , MichaelIP, MohseniP et al.: piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells.Nature458(7239) , 766–770 (2009).
  • Yusa K , RadR, TakedaJ et al.: Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon.Nat. Methods6(5) , 363–369 (2009).
  • Lyssiotis CA , ForemanRK, StaerkJ et al.: Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4.Proc. Natl Acad. Sci. USA106(22) , 8912–8917 (2009).
  • Zhu S , LiW, ZhouH et al.: Reprogramming of human primary somatic cells by OCT4 and chemical compounds.Cell Stem Cell7(6) , 651–655 (2010).
  • Hanna J , WernigM, MarkoulakiS et al.: Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin.Science318(5858) , 1920–1923 (2007).
  • Raya A , Rodriguez-PizaI, GuenecheaG et al.: Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells.Nature460(7251) , 53–59 (2009).
  • Wernig M , ZhaoJP, PruszakJ et al.: Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson‘s disease.Proc. Natl Acad. Sci. USA105(15) , 5856–5861 (2008).
  • Carvajal-Vergara X , SevillaA, D‘SouzaSL et al.: Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome.Nature465(7299) , 808–812 (2010).
  • Lee G , PapapetrouEP, KimH et al.: Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs.Nature461(7262) , 402–406 (2009).
  • Ruiz JC : Generation of adipose stromal cell-derived hepatic cells.Methods Mol. Biol.702 , 249–260 (2010).
  • Szabo E , RampalliS, RisuenoRM et al.: Direct conversion of human fibroblasts to multilineage blood progenitors.Nature468(7323) , 521–526 (2010).
  • Vierbuchen T , OstermeierA, PangZP, KokubuY, SudhofTC, WernigM: Direct conversion of fibroblasts to functional neurons by defined factors.Nature463(7284) , 1035–1041 (2010).
  • Ieda M , FuJD, Delgado-OlguinP et al.: Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors.Cell142(3) , 375–386 (2010).
  • Xu Y , ZhuX, HahmHS et al.: Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules.Proc. Natl Acad. Sci. USA107(18) , 8129–8134 (2010).
  • Cabaniols JP , MathisL, DelendaC: Targeted gene modifications in drug discovery and development.Curr. Opin. Pharmacol.9(5) , 657–663 (2009).
  • Frecha C , SzecsiJ, CossetFL, VerhoeyenE: Strategies for targeting lentiviral vectors.Curr. Gene Ther.8(6) , 449–460 (2008).
  • Qasim W , VinkCA, ThrasherAJ: Hybrid lentiviral vectors.Mol. Ther.18(7) , 1263–1267 (2010).
  • Dissen GA , LomnicziA, NeffTL et al.: In vivo manipulation of gene expression in non-human primates using lentiviral vectors as delivery vehicles.Methods49(1) , 70–77 (2009).
  • Garcia-Perez JL , MorellM, ScheysJO et al.: Epigenetic silencing of engineered L1 retrotransposition events in human embryonic carcinoma cells.Nature466(7307) , 769–773 (2010).
  • Matsui T , LeungD, MiyashitaH et al.: Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET.Nature464(7290) , 927–931 (2010).
  • Ivics Z , HackettPB, PlasterkRH, IzsvakZ: Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells.Cell91(4) , 501–510 (1997).
  • Miskey C , IzsvakZ, PlasterkRH, IvicsZ: The Frog Prince: a reconstructed transposon from Rana pipiens with high transpositional activity in vertebrate cells.Nucleic Acids Res.31(23) , 6873–6881 (2003).
  • Ding S , WuX, LiG, HanM, ZhuangY, XuT: Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice.Cell122(3) , 473–483 (2005).
  • Balciunas D , WangensteenKJ, WilberA et al.: Harnessing a high cargo-capacity transposon for genetic applications in vertebrates.PLoS Genet.2(11) , e169 (2006).
  • Cadinanos J , BradleyA: Generation of an inducible and optimized piggyBac transposon system.Nucleic Acids Res.35(12) , e87 (2007).
  • Mates L , ChuahMK, BelayE et al.: Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates.Nat. Genet.41(6) , 753–761 (2009).
  • Izsvak Z , HackettPB, CooperLJ, IvicsZ: Translating Sleeping Beauty transposition into cellular therapies: victories and challenges.Bioessays32(9) , 756–767 (2010).
  • Grabundzija I , IrgangM, MatesL et al.: Comparative analysis of transposable element vector systems in human cells.Mol. Ther.18(6) , 1200–1209 (2010).
  • Liu G , GeurtsAM, YaeK et al.: Target-site preferences of Sleeping Beauty transposons.J. Mol. Biol.346(1) , 161–173 (2005).
  • Williams DA : Sleeping beauty vector system moves toward human trials in the United States.Mol. Ther.16(9) , 1515–1516 (2008).
  • Chen YT , FurushimaK, HouPS et al.: PiggyBac transposon-mediated, reversible gene transfer in human embryonic stem cells.Stem Cells Dev.19(6) , 763–771 (2010).
  • Orban TI , ApatiA, NemethA et al.: Applying a “double-feature” promoter to identify cardiomyocytes differentiated from human embryonic stem cells following transposon-based gene delivery.Stem Cells27(5) , 1077–1087 (2009).
  • Wang W , LinC, LuD et al.: Chromosomal transposition of PiggyBac in mouse embryonic stem cells.Proc. Natl Acad. Sci. USA105(27) , 9290–9295 (2008).
  • Wilber A , LinehanJL, TianX et al.: Efficient and stable transgene expression in human embryonic stem cells using transposon-mediated gene transfer.Stem Cells25(11) , 2919–2927 (2007).
  • Bowers WJ , MastrangeloMA, HowardDF, SoutherlandHA, Maguire-ZeissKA, FederoffHJ: Neuronal precursor-restricted transduction via in utero CNS gene delivery of a novel bipartite HSV amplicon/transposase hybrid vector.Mol. Ther.13(3) , 580–588 (2006).
  • De Silva S , MastrangeloMA, LottaLT Jr et al.: Extending the transposable payload limit of Sleeping Beauty (SB) using the herpes simplex virus (HSV)/SB amplicon-vector platform. Gene Ther.17(3) , 424–431 (2010).
  • Staunstrup NH , MoldtB, MatesL et al.: Hybrid lentivirus-transposon vectors with a random integration profile in human cells.Mol. Ther.17(7) , 1205–1214 (2009).
  • Vink CA , GasparHB, GabrielR et al.: Sleeping beauty transposition from nonintegrating lentivirus.Mol. Ther.17(7) , 1197–1204 (2009).
  • Ivics Z , KatzerA, StuweEE, FiedlerD, KnespelS, IzsvakZ: Targeted Sleeping Beauty transposition in human cells.Mol. Ther.15(6) , 1137–1144 (2007).
  • Cabaniols JP , PaquesF: Robust cell line development using meganucleases.Methods Mol. Biol.435 , 31–45 (2008).
  • Redondo P , PrietoJ, MunozIG et al.: Molecular basis of Xeroderma pigmentosum group C DNA recognition by engineered meganucleases.Nature456(7218) , 107–111 (2008).
  • Fougerousse F , BullenP, HerasseM et al.: Human-mouse differences in the embryonic expression patterns of developmental control genes and disease genes.Hum. Mol. Genet.9(2) , 165–173 (2000).
  • Freeze HH : Human disorders in N-glycosylation and animal models.Biochim. Biophys. Acta1573(3) , 388–393 (2002).
  • Grayson BE , KievitP, SmithMS, GroveKL: Critical determinants of hypothalamic appetitive neuropeptide development and expression: species considerations.Front. Neuroendocrinol.31(1) , 16–31 (2010).
  • Ding S , WuTY, BrinkerA et al.: Synthetic small molecules that control stem cell fate.Proc. Natl Acad. Sci. USA100(13) , 7632–7637 (2003).
  • Genschow E , SpielmannH, ScholzG et al.: Validation of the embryonic stem cell test in the international ECVAM validation study on three in vitro embryotoxicity tests.Altern. Lab. Anim.32(3) , 209–244 (2004).
  • Stummann TC , HarengL, BremerS: Embryotoxicity hazard assessment of cadmium and arsenic compounds using embryonic stem cells.Toxicology252(1–3) , 118–122 (2008).
  • Piersma AH : Alternative methods for developmental toxicity testing.Basic Clin. Pharmacol. Toxicol.98(5) , 427–431 (2006).
  • De Jong E , DoedeeAM, Reis-FernandesMA, NauH, PiersmaAH: Potency ranking of valproic acid analogues as to inhibition of cardiac differentiation of embryonic stem cells in comparison to their in vivo embryotoxicity.Reprod. Toxicol. (2010) (Epub ahead of print).
  • Pal R , MamidiMK, DasAK et al.: Human embryonic stem cell proliferation and differentiation as parameters to evaluate developmental toxicity.J. Cell Physiol.226(6) , 1583–1595 (2011).
  • Coecke S , GoldbergAM, AllenS et al.: Workgroup report: incorporating in vitro alternative methods for developmental neurotoxicity into international hazard and risk assessment strategies.Environ. Health Perspect.115(6) , 924–931 (2007).
  • Betts KS : Growing knowledge: using stem cells to study developmental neurotoxicity.Environ. Health Perspect.118(10) , A432–A437 (2010).
  • Bushway PJ , MercolaM: High-throughput screening for modulators of stem cell differentiation.Methods Enzymol.414 , 300–316 (2006).
  • Wu X , DingS, DingQ, GrayNS, SchultzPG: Small molecules that induce cardiomyogenesis in embryonic stem cells.J. Am. Chem. Soc.126(6) , 1590–1591 (2004).
  • Ventura C , MaioliM, AsaraY et al.: Butyric and retinoic mixed ester of hyaluronan. A novel differentiating glycoconjugate affording a high throughput of cardiogenesis in embryonic stem cells.J. Biol. Chem.279(22) , 23574–23579 (2004).
  • Wang Y , ChenG, SongT, MaoG, BaiH: Enhancement of cardiomyocyte differentiation from human embryonic stem cells.Sci. China Life Sci.53(5) , 581–589 (2010).
  • Gaur M , RitnerC, SieversR et al.: Timed inhibition of p38MAPK directs accelerated differentiation of human embryonic stem cells into cardiomyocytes.Cytotherapy12(6) , 807–817 (2010).
  • Moretti A , BellinM, WellingA et al.: Patient-specific induced pluripotent stem-cell models for long-QT syndrome.N. Engl. J. Med.363(15) , 1397–1409 (2010).
  • Itzhaki I , MaizelsL, HuberI et al.: Modelling the long QT syndrome with induced pluripotent stem cells.Nature471(7337) , 225–229 (2011).
  • Yazawa M , HsuehB, JiaX et al.: Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome.Nature471 , 230–234 (2011).
  • Buzanska L , ZychowiczM, RuizA et al.: Neural stem cells from human cord blood on bioengineered surfaces – novel approach to multiparameter bio-tests.Toxicology270(1) , 35–42 (2010).
  • Ebert AD , SvendsenCN: Human stem cells and drug screening: opportunities and challenges.Nat. Rev. Drug Discov.9(5) , 367–372 (2010).
  • Gomez-Lechon MJ , LahozA, GombauL, CastellJV, DonatoMT: In vitro evaluation of potential hepatotoxicity induced by drugs.Curr. Pharm. Des.16(17) , 1963–1977 (2010).
  • Hewitt NJ , LechonMJ, HoustonJB et al.: Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies.Drug Metab. Rev.39(1) , 159–234 (2007).
  • Castell JV , JoverR, Martinez-JimenezCP, Gomez-LechonMJ: Hepatocyte cell lines: their use, scope and limitations in drug metabolism studies.Expert Opin. Drug Metab. Toxicol.2(2) , 183–212 (2006).
  • Baxter MA , RoweC, AlderJ et al.: Generating hepatic cell lineages from pluripotent stem cells for drug toxicity screening.Stem Cell Res.5(1) , 4–22 (2010).
  • Jasmund I , SchwientekS, AcikgozA, LangschA, MachensHG, BaderA: The influence of medium composition and matrix on long-term cultivation of primary porcine and human hepatocytes.Biomol. Eng.24(1) , 59–69 (2007).
  • Kamiya A , KinoshitaT, MiyajimaA: Oncostatin M and hepatocyte growth factor induce hepatic maturation via distinct signaling pathways.FEBS Lett.492(1–2) , 90–94 (2001).
  • Kamiya A , KinoshitaT, ItoY et al.: Fetal liver development requires a paracrine action of oncostatin M through the gp130 signal transducer.EMBO J.18(8) , 2127–2136 (1999).
  • Inamura M , KawabataK, TakayamaK et al.: Efficient generation of hepatoblasts from human ES cells and iPS cells by transient overexpression of homeobox geneHEX. Mol. Ther.19(2) , 400–407 (2011).
  • D‘amour KA , AgulnickAD, EliazerS, KellyOG, KroonE, BaetgeEE: Efficient differentiation of human embryonic stem cells to definitive endoderm.Nat. Biotechnol.23(12) , 1534–1541 (2005).
  • Duan Y , CatanaA, MengY et al.: Differentiation and enrichment of hepatocyte-like cells from human embryonic stem cells in vitro and in vivo.Stem Cells25(12) , 3058–3068 (2007).
  • Momose Y , MatsunagaT, MuraiK, TakezawaT, OhmoriS: Differentiation of monkey embryonic stem cells into hepatocytes and mRNA expression of cytochrome p450 enzymes responsible for drug metabolism: comparison of embryoid body formation conditions and matrices.Biol. Pharm. Bull.32(4) , 619–626 (2009).
  • Rashid ST , CorbineauS, HannanN et al.: Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells.J. Clin. Invest.120(9) , 3127–3136 (2010).
  • Yan Y , YangD, ZarnowskaED et al.: Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells.Stem Cells23(6) , 781–790 (2005).
  • Zhang XQ , ZhangSC: Differentiation of neural precursors and dopaminergic neurons from human embryonic stem cells.Methods Mol. Biol.584 , 355–366 (2010).
  • Hu BY , ZhangSC: Directed differentiation of neural-stem cells and subtype-specific neurons from hESCs.Methods Mol. Biol.636 , 123–137 (2010).
  • Li XJ , DuZW, ZarnowskaED et al.: Specification of motoneurons from human embryonic stem cells.Nat. Biotechnol.23(2) , 215–221 (2005).
  • Braam SR , DenningC, van den Brink S et al.: Improved genetic manipulation of human embryonic stem cells. Nat. Methods5(5) , 389–392 (2008).
  • Hohenstein KA , PyleAD, ChernJY, LockLF, DonovanPJ: Nucleofection mediates high-efficiency stable gene knockdown and transgene expression in human embryonic stem cells.Stem Cells26(6) , 1436–1443 (2008).
  • Schneider BL , SeehusCR, CapowskiEE, AebischerP, ZhangSC, SvendsenCN: Over-expression of α-synuclein in human neural progenitors leads to specific changes in fate and differentiation.Hum. Mol. Genet.16(6) , 651–666 (2007).
  • Ebert AD , YuJ, RoseFF Jr et al.: Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature457(7227) , 277–280 (2009).
  • Laverty H , BensonC, CartwrightE et al.: How can we improve our understanding of cardiovascular safety liabilities to develop safer medicines?: Report on the Medical Research Council Centre for Drug Safety Science workshop on ‘Cardiovascular Toxicity of Medicines‘.Br. J. Pharmacol. doi: 10.1111/j.1476-5381.2011.01255.x (2011) (Epub ahead of print).
  • Kirchhof P , BreithardtG, EckardtL: Primary prevention of sudden cardiac death.Heart92(12) , 1873–1878 (2006).
  • Moss AJ , KassRS: Long QT syndrome: from channels to cardiac arrhythmias.J. Clin. Invest.115(8) , 2018–2024 (2005).
  • Lacerda AE , KuryshevYA, ChenY et al.: Alfuzosin delays cardiac repolarization by a novel mechanism.J. Pharmacol. Exp. Ther.324(2) , 427–433 (2008).
  • Towart R , LindersJT, HermansAN et al.: Blockade of the I(Ks) potassium channel: an overlooked cardiovascular liability in drug safety screening?J. Pharmacol. Toxicol. Methods60(1) , 1–10 (2009).
  • Rudy Y , AckermanMJ, BersDM et al.: Systems approach to understanding electromechanical activity in the human heart: a national heart, lung, and blood institute workshop summary.Circulation118(11) , 1202–1211 (2008).
  • Mummery C , Ward-van Oostwaard D, Doevendans P et al.: Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation107(21) , 2733–2740 (2003).
  • Xu C , PoliceS, RaoN et al.: Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells.Circ. Res.91(6) , 501–508 (2002).
  • Yang L , SoonpaaMH, AdlerED, CarpenterMK: Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population.Nature453(7194) , 524–528 (2008).
  • Gadue P , HuberTL, PaddisonPJ, KellerGM: Wnt and TGF-β signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells.Proc. Natl Acad. Sci. USA103(45) , 16806–16811 (2006).
  • Lindsley RC , GillJG, KybaM, MurphyTL, MurphyKM: Canonical Wnt signaling is required for development of embryonic stem cell-derived mesoderm.Development133(19) , 3787–3796 (2006).
  • Kattman SJ , WittyAD, GagliardiM et al.: Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines.Cell Stem Cell8(2) , 228–240 (2011).
  • Chen VC , StullR, JooD, ChengX, KellerG: Notch signaling respecifies the hemangioblast to a cardiac fate.Nat. Biotechnol.26(10) , 1169–1178 (2008).
  • Martinez-Fernandez A , NelsonTJ, IkedaY, TerzicA: c-MYC independent nuclear reprogramming favors cardiogenic potential of induced pluripotent stem cells.J. Cardiovasc. Transl. Res.3(1) , 13–23 (2010).
  • Bu L , JiangX, Martin-PuigS et al.: Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages.Nature460(7251) , 113–117 (2009).
  • Moretti A , BellinM, JungCB et al.: Mouse and human induced pluripotent stem cells as a source for multipotent Isl1+ cardiovascular progenitors.FASEB J.24(3) , 700–711 (2010).
  • Gupta MK , IllichDJ, GaarzA et al.: Global transcriptional profiles of beating clusters derived from human induced pluripotent stem cells and embryonic stem cells are highly similar.BMC Dev. Biol.10 , 98 (2010).
  • He JQ , MaY, LeeY, ThomsonJA, KampTJ: Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization.Circ. Res.93(1) , 32–39 (2003).
  • Zhang J , WilsonGF, SoerensAG et al.: Functional cardiomyocytes derived from human induced pluripotent stem cells.Circ. Res.104(4) , e30–e41 (2009).
  • Sartiani L , BettiolE, StillitanoF, MugelliA, CerbaiE, JaconiME: Developmental changes in cardiomyocytes differentiated from human embryonic stem cells: a molecular and electrophysiological approach.Stem Cells25(5) , 1136–1144 (2007).
  • Satin J , KehatI, CaspiO et al.: Mechanism of spontaneous excitability in human embryonic stem cell derived cardiomyocytes.J. Physiol.559(Pt 2) , 479–496 (2004).
  • Binah O , DolnikovK, SadanO et al.: Functional and developmental properties of human embryonic stem cells-derived cardiomyocytes.J. Electrocardiol.40(Suppl. 6) , S192–S196 (2007).
  • Brito-Martins M , HardingSE, AliNN: β(1)- and β(2)-adrenoceptor responses in cardiomyocytes derived from human embryonic stem cells: comparison with failing and non-failing adult human heart.Br. J. Pharmacol.153(4) , 751–759 (2008).
  • Dolnikov K , ShilkrutM, Zeevi-LevinN et al.: Functional properties of human embryonic stem cell-derived cardiomyocytes: intracellular Ca2+ handling and the role of sarcoplasmic reticulum in the contraction.Stem Cells24(2) , 236–245 (2006).
  • Germanguz I , SedanO, Zeevi-LevinN et al.: Molecular characterization and functional properties of cardiomyocytes derived from human inducible pluripotent stem cells.J. Cell Mol. Med.15(1) , 38–51 (2011).
  • Anderson D , SelfT, MellorIR, GohG, HillSJ, DenningC: Transgenic enrichment of cardiomyocytes from human embryonic stem cells.Mol. Ther.15(11) , 2027–2036 (2007).
  • Huber I , ItzhakiI, CaspiO et al.: Identification and selection of cardiomyocytes during human embryonic stem cell differentiation.FASEB J.21(10) , 2551–2563 (2007).
  • Kita-Matsuo H , BarcovaM, PrigozhinaN et al.: Lentiviral vectors and protocols for creation of stable hESC lines for fluorescent tracking and drug resistance selection of cardiomyocytes.PLoS ONE4(4) , e5046 (2009).
  • Xu XQ , ZweigerdtR, SooSY et al.: Highly enriched cardiomyocytes from human embryonic stem cells.Cytotherapy10(4) , 376–389 (2008).
  • Hattori F , ChenH, YamashitaH et al.: Nongenetic method for purifying stem cell-derived cardiomyocytes.Nat. Methods7(1) , 61–66 (2010).
  • Rust W , BalakrishnanT, ZweigerdtR: Cardiomyocyte enrichment from human embryonic stem cell cultures by selection of ALCAM surface expression.Reg. Med.4(2) , 225–237 (2009).
  • Van Hoof D , DormeyerW, BraamSR et al.: Identification of cell surface proteins for antibody-based selection of human embryonic stem cell-derived cardiomyocytes.J. Proteome Res.9(3) , 1610–1618 (2010).
  • Zhang Q , JiangJ, HanP et al.: Direct differentiation of atrial and ventricular myocytes from human embryonic stem cells by alternating retinoid signals.Cell Res.21(4) , 579–587 (2011).
  • Zhu WZ , XieY, MoyesKW, GoldJD, AskariB, LaflammeMA: Neuregulin/ErbB signaling regulates cardiac subtype specification in differentiating human embryonic stem cells.Circ. Res.107(6) , 776–786 (2010).
  • Jonsson MK , DukerG, TroppC et al.: Quantified proarrhythmic potential of selected human embryonic stem cell-derived cardiomyocytes.Stem Cell Res.4(3) , 189–200 (2010).
  • Fu JD , JiangP, RushingS, LiuJ, ChiamvimonvatN, LiRA: Na+/Ca2+ exchanger is a determinant of excitation-contraction coupling in human embryonic stem cell-derived ventricular cardiomyocytes.Stem Cells Dev.19(6) , 773–782 (2010).
  • Harding SE , AliNN, Brito-MartinsM, GorelikJ: The human embryonic stem cell-derived cardiomyocyte as a pharmacological model.Pharmacol. Ther.113(2) , 341–353 (2007).
  • Peng S , LacerdaAE, KirschGE, BrownAM, Bruening-WrightA: The action potential and comparative pharmacology of stem cell-derived human cardiomyocytes.J. Pharmacol. Toxicol. Methods61(3) , 277–286 (2010).
  • Caspi O , ItzhakiI, KehatI et al.: In vitro electrophysiological drug testing using human embryonic stem cell derived cardiomyocytes.Stem Cells Dev.18(1) , 161–172 (2009).
  • Gai H , LeungEL, CostantinoPD et al.: Generation and characterization of functional cardiomyocytes using induced pluripotent stem cells derived from human fibroblasts.Cell Biol. Int.33(11) , 1184–1193 (2009).
  • Tanaka T , TohyamaS, MurataM et al.: In vitro pharmacologic testing using human induced pluripotent stem cell-derived cardiomyocytes.Biochem. Biophys. Res. Commun.385(4) , 497–502 (2009).
  • Yokoo N , BabaS, KaichiS et al.: The effects of cardioactive drugs on cardiomyocytes derived from human induced pluripotent stem cells.Biochem. Biophys. Res. Commun.387(3) , 482–488 (2009).
  • Braam SR , TertoolenL, Van De Stolpe A, Meyer T, Passier R, Mummery CL: Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Res.4(2) , 107–116 (2010).
  • Asai Y , TadaM, OtsujiTG, NakatsujiN: Combination of functional cardiomyocytes derived from human stem cells and a highly-efficient microelectrode array system: an ideal hybrid model assay for drug development.Curr. Stem Cell Res. Ther.5(3) , 227–232 (2010).
  • Andersson H , SteelD, AspJ et al.: Assaying cardiac biomarkers for toxicity testing using biosensing and cardiomyocytes derived from human embryonic stem cells.J. Biotechnol.150(1) , 175–181 (2010).
  • Koseki N , DeguchiJ, YamadaT, FunabashiH, SekiT: Usefulness of field potential as a marker of embryonic stem cell-derived cardiomyocytes, and endpoint analysis of embryonic stem cell test.J. Toxicol. Sci.35(6) , 899–909 (2010).
  • Kim MJ , LeeSC, PalS, HanE, SongJM: High-content screening of drug-induced cardiotoxicity using quantitative single cell imaging cytometry on microfluidic device.Lab. Chip11(1) , 104–114 (2010).
  • Stevens KR , PabonL, MuskheliV, MurryCE: Scaffold-free human cardiac tissue patch created from embryonic stem cells.Tissue Eng. Part A15(6) , 1211–1222 (2009).
  • Hansen A , EderA, BonstrupM et al.: Development of a drug screening platform based on engineered heart tissue.Circ. Res.107(1) , 35–44 (2010).
  • Musunuru K , DomianIJ, ChienKR: Stem cell models of cardiac development and disease.Annu. Rev. Cell Dev. Biol.26 , 667–687 (2010).
  • Fabritz L , KirchhofP: Predictable and less predictable unwanted cardiac drugs effects: individual pre-disposition and transient precipitating factors.Basic Clin. Pharmacol. Toxicol.106(3) , 263–268 (2010).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.