1,016
Views
0
CrossRef citations to date
0
Altmetric
Review

Clinical Application of Targeted and Genome-Wide Technologies: Can we Predict Treatment Responses in Chronic Lymphocytic Leukemia?

, &
Pages 361-376 | Published online: 06 Jun 2013

References

  • Vardiman JW , HarrisNL, BrunningRD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood100(7) , 2292–2302 (2002).
  • Estey EH . Acute myeloid leukemia: 2012 update on diagnosis, risk stratification, and management. Am. J. Hematol.87(1) , 89–99 (2012).
  • Sullivan C , PengC, ChenY, LiD, LiS. Targeted therapy of chronic myeloid leukemia. Biochem. Pharmacol.80(5) , 584–591 (2010).
  • Tallman MS , BrennerB, Serna Jde L et al. Meeting report. Acute promyelocytic leukemia-associated coagulopathy, 21 January 2004, London, United Kingdom. Leuk. Res.29(3) , 347–351 (2005).
  • Howlader N , NooneA, KrapchoM et al. SEER Cancer Statistics Review 1975–2009 (Vintage 2009 Populations). National Cancer Institute, MD, USA (2012).
  • Zenz T , MertensD, KuppersR, DohnerH, StilgenbauerS. From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat. Rev. Cancer10(1) , 37–50 (2010).
  • Clifford R , SchuhA. State-of-the-art management of patients suffering from chronic lymphocytic leukemia. Clin. Med. Insights Oncol.6 , 165–178 (2012).
  • Hallek M , FischerK, Fingerle-RowsonG et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, Phase 3 trial. Lancet 376(9747) , 1164–1174 (2010).
  • Robak T , DmoszynskaA, Solal-CelignyP et al. Rituximab plus fludarabine and cyclophosphamide prolongs progression-free survival compared with fludarabine and cyclophosphamide alone in previously treated chronic lymphocytic leukemia. J. Clin. Oncol. 28(10) , 1756–1765 (2010).
  • Dohner H , StilgenbauerS, BennerA et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N. Engl. J. Med. 343(26) , 1910–1916 (2000).
  • Dohner H , StilgenbauerS, FischerK, BentzM, LichterP. Cytogenetic and molecular cytogenetic analysis of B cell chronic lymphocytic leukemia: specific chromosome aberrations identify prognostic subgroups of patients and point to loci of candidate genes. Leukemia11(Suppl. 2) , S19–S24 (1997).
  • Klein U , LiaM, CrespoM et al. The DLEU2/miR-15a/16–1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 17(1) , 28–40 (2010).
  • Zenz T , EichhorstB, BuschR et al. TP53 mutation and survival in chronic lymphocytic leukemia. J. Clin. Oncol.28(29) , 4473–4479 (2010).
  • Stankovic T , KiddAM, SutcliffeA et al. ATM mutations and phenotypes in ataxia-telangiectasia families in the British Isles: expression of mutant ATM and the risk of leukemia, lymphoma, and breast cancer. Am. J. Hum. Genet. 62(2) , 334–345 (1998).
  • Puente XS , PinyolM, QuesadaV et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475(7354) , 101–105 (2011).
  • Schuh A , BecqJ, HumphrayS et al. Monitoring chronic lymphocytic leukemia progression by whole genome sequencing reveals heterogeneous clonal evolution patterns. Blood 120(20) , 4191–4196 (2012).
  • Cramer P , HallekM. Prognostic factors in chronic lymphocytic leukemia – what do we need to know? Nat. Rev. Clin. Oncol.8(1) , 38–47 (2011).
  • Oldenhuis CN , OostingSF, GietemaJA, de Vries EG. Prognostic versus predictive value of biomarkers in oncology. Eur. J. Cancer44(7) , 946–953 (2008).
  • Zenz T , FrohlingS, MertensD, DohnerH, StilgenbauerS. Moving from prognostic to predictive factors in chronic lymphocytic leukaemia (CLL). Best Pract. Res. Clin. Haematol.23(1) , 71–84 (2010).
  • Malek SN . The biology and clinical significance of acquired genomic copy number aberrations and recurrent gene mutations in chronic lymphocytic leukemia. Oncogene doi:10.1038/onc.2012.411 (2012) (Epub ahead of print).
  • Hillmen P . Using the biology of chronic lymphocytic leukemia to choose treatment. Hematology Am. Soc. Hematol. Educ. Program2011 , 104–109 (2011).
  • Moreno C , MontserratE. New prognostic markers in chronic lymphocytic leukemia. Blood Rev.22(4) , 211–219 (2008).
  • Dohner H , FischerK, BentzM et al. p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias. Blood 85(6) , 1580–1589 (1995).
  • Catovsky D , RichardsS, MatutesE et al. Assessment of fludarabine plus cyclophosphamide for patients with chronic lymphocytic leukaemia (the LRF CLL4 trial): a randomised controlled trial. Lancet 370(9583) , 230–239 (2007).
  • Grever MR , LucasDM, DewaldGW et al. Comprehensive assessment of genetic and molecular features predicting outcome in patients with chronic lymphocytic leukemia: results from the US Intergroup Phase III trial E2997. J. Clin. Oncol. 25(7) , 799–804 (2007).
  • Saddler C , OuilletteP, KujawskiL et al. Comprehensive biomarker and genomic analysis identifies p53 status as the major determinant of response to MDM2 inhibitors in chronic lymphocytic leukemia. Blood 111(3) , 1584–1593 (2008).
  • Malcikova J , SmardovaJ, RocnovaL et al. Monoallelic and biallelic inactivation of TP53 gene in chronic lymphocytic leukemia: selection, impact on survival, and response to DNA damage. Blood 114(26) , 5307–5314 (2009).
  • Zenz T , HabeS, DenzelT et al. Detailed analysis of p53 pathway defects in fludarabine-refractory chronic lymphocytic leukemia (CLL): dissecting the contribution of 17p deletion, TP53 mutation, p53-p21 dysfunction, and miR34a in a prospective clinical trial. Blood 114(13) , 2589–2597 (2009).
  • Rossi D , CerriM, DeambrogiC et al. The prognostic value of TP53 mutations in chronic lymphocytic leukemia is independent of Del17p13: implications for overall survival and chemorefractoriness. Clin. Cancer Res. 15(3) , 995–1004 (2009).
  • Oscier D , WadeR, DavisZ et al. Prognostic factors identified three risk groups in the LRF CLL4 trial, independent of treatment allocation. Haematologica 95(10) , 1705–1712 (2010).
  • Ouillette P , CollinsR, ShakhanS et al. Acquired genomic copy number aberrations and survival in chronic lymphocytic leukemia. Blood 118(11) , 3051–3061 (2011).
  • Gonzalez D , MartinezP, WadeR et al. Mutational status of the TP53 gene as a predictor of response and survival in patients with chronic lymphocytic leukemia: results from the LRF CLL4 trial. J. Clin. Oncol. 29(16) , 2223–2229 (2011).
  • Pospisilova S , GonzalezD, MalcikovaJ et al. ERIC recommendations on TP53 mutation analysis in chronic lymphocytic leukemia. Leukemia 26(7) , 1458–1461 (2012).
  • Oscier D , DeardenC, EremE et al. Guidelines on the diagnosis, investigation and management of chronic lymphocytic leukaemia. Br. J. Haematol. 159(5) , 541–564 (2012).
  • Skowronska A , ParkerA, AhmedG et al. Biallelic ATM inactivation significantly reduces survival in patients treated on the United Kingdom Leukemia Research Fund Chronic Lymphocytic Leukemia 4 trial. J. Clin. Oncol. 30(36) , 4524–4532 (2012).
  • Tsimberidou AM , TamC, AbruzzoLV et al. Chemoimmunotherapy may overcome the adverse prognostic significance of 11q deletion in previously untreated patients with chronic lymphocytic leukemia. Cancer 115(2) , 373–380 (2009).
  • Dewald GW , BrockmanSR, PaternosterSF et al. Chromosome anomalies detected by interphase fluorescence in situ hybridization: correlation with significant biological features of B-cell chronic lymphocytic leukaemia. Br. J. Haematol. 121(2) , 287–295 (2003).
  • Shanafelt TD , WitzigTE, FinkSR et al. Prospective evaluation of clonal evolution during long-term follow-up of patients with untreated early-stage chronic lymphocytic leukemia. J. Clin. Oncol. 24(28) , 4634–4641 (2006).
  • Oscier DG , GardinerAC, MouldSJ et al. Multivariate analysis of prognostic factors in CLL: clinical stage, IGVH gene mutational status, and loss or mutation of the p53 gene are independent prognostic factors. Blood 100(4) , 1177–1184 (2002).
  • Zenz T , KroberA, SchererK et al. Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long-term follow-up. Blood 112(8) , 3322–3329 (2008).
  • Stilgenbauer S , ZenzT, WinklerD et al. Subcutaneous alemtuzumab in fludarabine-refractory chronic lymphocytic leukemia: clinical results and prognostic marker analyses from the CLL2H study of the German Chronic Lymphocytic Leukemia Study Group. J. Clin. Oncol. 27(24) , 3994–4001 (2009).
  • Pettitt AR , JacksonR, CarruthersS et al. Alemtuzumab in combination with methylprednisolone is a highly effective induction regimen for patients with chronic lymphocytic leukemia and deletion of TP53 : final results of the national cancer research institute CLL206 trial. J. Clin. Oncol. 30(14) , 1647–1655 (2012).
  • Khaja R , ZhangJ, MacdonaldJR et al. Genome assembly comparison identifies structural variants in the human genome. Nat. Genet. 38(12) , 1413–1418 (2006).
  • Redon R , IshikawaS, FitchKR et al. Global variation in copy number in the human genome. Nature 444(7118) , 444–454 (2006).
  • Beroukhim R , MermelCH, PorterD et al. The landscape of somatic copy-number alteration across human cancers. Nature 463(7283) , 899–905 (2010).
  • Knight SJ , YauC, CliffordR et al. Quantification of subclonal distributions of recurrent genomic aberrations in paired pre-treatment and relapse samples from patients with B-cell chronic lymphocytic leukemia. Leukemia 26(7) , 1564–1575 (2012).
  • Edelmann J , HolzmannK, MillerF et al. High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations. Blood 120(24) , 4783–4794 (2012).
  • Hagenkord JM , MonzonFA, KashSF, LillebergS, XieQ, KantJA. Array-based karyotyping for prognostic assessment in chronic lymphocytic leukemia: performance comparison of Affymetrix 10.2.0, 250K Nsp, and SNP6.0 arrays. J. Mol. Diagn.12(2) , 184–196 (2010).
  • Lehmann S , OgawaS, RaynaudSD et al. Molecular allelokaryotyping of early-stage, untreated chronic lymphocytic leukemia. Cancer 112(6) , 1296–1305 (2008).
  • Zenz T , BennerA, DohnerH, StilgenbauerS. Chronic lymphocytic leukemia and treatment resistance in cancer: the role of the p53 pathway. Cell Cycle7(24) , 3810–3814 (2008).
  • Gunnarsson R , StaafJ, JanssonM et al. Screening for copy-number alterations and loss of heterozygosity in chronic lymphocytic leukemia – a comparative study of four differently designed, high resolution microarray platforms. Genes Chromosomes Cancer 47(8) , 697–711 (2008).
  • Conlin LK , ThielBD, BonnemannCG et al. Mechanisms of mosaicism, chimerism and uniparental disomy identified by single nucleotide polymorphism array analysis. Hum. Mol. Genet. 19(7) , 1263–1275 (2010).
  • Tuna M , KnuutilaS, MillsGB. Uniparental disomy in cancer. Trends Mol. Med.15(3) , 120–128 (2009).
  • Tan DS , LambrosMB, NatrajanR, Reis-FilhoJS. Getting it right: designing microarray (and not ‘microawry‘) comparative genomic hybridization studies for cancer research. Lab. Invest.87(8) , 737–754 (2007).
  • Barrett MT , SchefferA, Ben-DorA et al. Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proc. Natl Acad. Sci. USA 101(51) , 17765–17770 (2004).
  • Zhang L , ZnoykoI, CostaLJ et al. Clonal diversity analysis using SNP microarray: a new prognostic tool for chronic lymphocytic leukemia. Cancer Genet. 204(12) , 654–665 (2011).
  • Miecznikowski JC , GaileDP, LiuS, ShepherdL, NowakN. A new normalizing algorithm for BAC CGH arrays with quality control metrics. J. Biomed. Biotechnol.2011 , 860732 (2011).
  • Alkan C , CoeBP, EichlerEE. Genome structural variation discovery and genotyping. Nat. Rev. Genet.12(5) , 363–376 (2011).
  • Gunderson KL , SteemersFJ, LeeG, MendozaLG, CheeMS. A genome-wide scalable SNP genotyping assay using microarray technology. Nat. Genet.37(5) , 549–554 (2005).
  • Oliphant A , BarkerDL, StuelpnagelJR, CheeMS. BeadArray technology: enabling an accurate, cost–effective approach to high-throughput genotyping. BioTechniques (Suppl. 56–58) , 60–51 (2002).
  • Biesecker LG , SpinnerNB. A genomic view of mosaicism and human disease. Nat. Rev. Genet.14(5) , 307–320 (2013).
  • Gonzalez JR , Rodriguez-SantiagoB, CaceresA et al. A fast and accurate method to detect allelic genomic imbalances underlying mosaic rearrangements using SNP array data. BMC Bioinformatics 12 , 166 (2011).
  • Markello TC , Carlson-DonohoeH, SincanM et al. Sensitive quantification of mosaicism using high density SNP arrays and the cumulative distribution function. Mol. Genet. Metab. 105(4) , 665–671 (2012).
  • Bruno DL , StarkZ, AmorDJ et al. Extending the scope of diagnostic chromosome analysis: detection of single gene defects using high-resolution SNP microarrays. Hum. Mutat. 32(12) , 1500–1506 (2011).
  • Grubor V , KrasnitzA, TrogeJE et al. Novel genomic alterations and clonal evolution in chronic lymphocytic leukemia revealed by representational oligonucleotide microarray analysis (ROMA). Blood 113(6) , 1294–1303 (2009).
  • Gunn SR , BollaAR, BarronLL et al. Array CGH analysis of chronic lymphocytic leukemia reveals frequent cryptic monoallelic and biallelic deletions of chromosome 22q11 that include the PRAME gene. Leuk. Res. 33(9) , 1276–1281 (2009).
  • Rodriguez AE , RobledoC, GarciaJL et al. Identification of a novel recurrent gain on 20q13 in chronic lymphocytic leukemia by array CGH and gene expression profiling. Ann. Oncol. 23(8) , 2138–2146 (2012).
  • Sellick GS , WadeR, RichardsS, OscierDG, CatovskyD, HoulstonRS. Scan of 977 nonsynonymous SNPs in CLL4 trial patients for the identification of genetic variants influencing prognosis. Blood111(3) , 1625–1633 (2008).
  • Pfeifer D , PanticM, SkatullaI et al. Genome-wide analysis of DNA copy number changes and LOH in CLL using high-density SNP arrays. Blood 109(3) , 1202–1210 (2007).
  • Gunn SR , MohammedMS, GorreME et al. Whole-genome scanning by array comparative genomic hybridization as a clinical tool for risk assessment in chronic lymphocytic leukemia. J. Mol. Diagn. 10(5) , 442–451 (2008).
  • Kay NE , Eckel-PassowJE, BraggioE et al. Progressive but previously untreated CLL patients with greater array CGH complexity exhibit a less durable response to chemoimmunotherapy. Cancer Genet. Cytogenet. 203(2) , 161–168 (2010).
  • Van Den Neste E , RobinV, FrancartJ et al. Chromosomal translocations independently predict treatment failure, treatment-free survival and overall survival in B-cell chronic lymphocytic leukemia patients treated with cladribine. Leukemia 21(8) , 1715–1722 (2007).
  • Gunnarsson R , MansouriL, IsakssonA et al. Array-based genomic screening at diagnosis and during follow-up in chronic lymphocytic leukemia. Haematologica 96(8) , 1161–1169 (2011).
  • Braggio E , KayNE, VanwierS et al. Longitudinal genome-wide analysis of patients with chronic lymphocytic leukemia reveals complex evolution of clonal architecture at disease progression and at the time of relapse. Leukemia 26(7) , 1698–1701 (2012).
  • Mian M , RinaldiA, MensahAA et al. Large genomic aberrations detected by SNP array are independent prognosticators of a shorter time to first treatment in chronic lymphocytic leukemia patients with normal FISH. Ann. Oncol. 24(5) , 1378–1384 (2013).
  • O‘Malley DP , GiudiceC, ChangAS et al. Comparison of array comparative genomic hybridization (aCGH) to FISH and cytogenetics in prognostic evaluation of chronic lymphocytic leukemia. Int. J. Lab. Hematol. 33(3) , 238–244 (2011).
  • Gunn SR , HibbardMK, IsmailSH et al. Atypical 11q deletions identified by array CGH may be missed by FISH panels for prognostic markers in chronic lymphocytic leukemia. Leukemia 23(5) , 1011–1017 (2009).
  • Hagenkord JM , MonzonFA, KashSF, LillebergS, XieQ, KantJA. Array-based karyotyping for prognostic assessment in chronic lymphocytic leukemia: performance comparison of affymetrix 10.2.0, 250K Nsp, and SNP6.0 arrays. J. Mol. Diagn.12(2) , 184–196 (2010).
  • Sherry ST , WardMH, KholodovM et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29(1) , 308–311 (2001).
  • International Hapmap C. The International HapMap Project. Nature426(6968) , 789–796 (2003).
  • Iafrate AJ , FeukL, RiveraMN et al. Detection of large-scale variation in the human genome. Nat. Genet. 36(9) , 949–951 (2004).
  • Lappalainen I , LopezJ, SkipperL et al. DbVar and DGVa: public archives for genomic structural variation. Nucleic Acids Res. 41(Database issue) , D936–D941 (2013).
  • Metzker ML . Sequencing technologies – the next generation. Nat. Rev. Genet.11(1) , 31–46 (2010).
  • Gargis AS , KalmanL, BerryMW et al. Assuring the quality of next-generation sequencing in clinical laboratory practice. Nat. Biotechnol. 30(11) , 1033–1036 (2012).
  • Clark MJ , ChenR, LamHY et al. Performance comparison of exome DNA sequencing technologies. Nat. Biotechnol. 29(10) , 908–914 (2011).
  • Bamshad MJ , NgSB, BighamAW et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev. Genet. 12(11) , 745–755 (2011).
  • Gibson G . Rare and common variants: twenty arguments. Nat. Rev. Genet.13(2) , 135–145 (2011).
  • Ansorge WJ . Next-generation DNA sequencing techniques. New Biotechnol.25(4) , 195–203 (2009).
  • Fabbri G , RasiS, RossiD et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J. Exp. Med. 208(7) , 1389–1401 (2011).
  • Wang L , LawrenceMS, WanY et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N. Engl. J. Med.365(26) , 2497–2506 (2011).
  • Mansouri L , CahillN, GunnarssonR et al. NOTCH1 and SF3B1 mutations can be added to the hierarchical prognostic classification in chronic lymphocytic leukemia. Leukemia27(2) , 512–514 (2013).
  • Landau DA , CarterSL, StojanovP et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152(4) , 714–726 (2013).
  • Ellisen LW , BirdJ, WestDC et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66(4) , 649–661 (1991).
  • Rossi D , RasiS, FabbriG et al. Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood 119(2) , 521–529 (2012).
  • Rossi D , RasiS, SpinaV et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood 121(8) , 1403–1412 (2013).
  • Lopez C , DelgadoJ, CostaD et al. Different distribution of NOTCH1 mutations in chronic lymphocytic leukemia with isolated trisomy 12 or associated with other chromosomal alterations. Genes Chromosomes Cancer 51(9) , 881–889 (2012).
  • Quesada V , CondeL, VillamorN et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat. Genet. 44(1) , 47–52 (2012).
  • Rosati E , SabatiniR, RampinoG et al. Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. Blood 113(4) , 856–865 (2009).
  • Fatima K , ParachaRZ, QadriI. Post-transcriptional silencing of Notch2 mRNA in chronic lymphocytic [corrected] leukemic cells of B-CLL patients. Mol. Biol. Rep.39(5) , 5059–5067 (2012).
  • Oscier DG , Rose-ZerilliMJ, WinkelmannN et al. The clinical significance of NOTCH1 and SF3B1 mutations in the UK LRF CLL4 trial. Blood 121(3) , 468–475 (2013).
  • Villamor N , CondeL, Martinez-TrillosA et al. NOTCH1 mutations identify a genetic subgroup of chronic lymphocytic leukemia patients with high risk of transformation and poor outcome. Leukemia27(5) , 1100–1106 (2013).
  • Fabbri M , UraniC, SaccoMG, ProcacciantiC, GribaldoL. Whole genome analysis and microRNAs regulation in HepG2 cells exposed to cadmium. Altex29(2) , 173–182 (2012).
  • Sportoletti P , BaldoniS, CavalliL et al. NOTCH1 PEST domain mutation is an adverse prognostic factor in B-CLL. Br. J. Haematol.151(4) , 404–406 (2010).
  • Shedden K , LiY, OuilletteP, MalekSN. Characteristics of chronic lymphocytic leukemia with somatically acquired mutations in NOTCH1 exon 34. Leukemia26(5) , 1108–1110 (2012).
  • Del Giudice I , RossiD, ChiarettiS et al. NOTCH1 mutations in +12 chronic lymphocytic leukemia (CLL) confer an unfavorable prognosis, induce a distinctive transcriptional profiling and refine the intermediate prognosis of +12 CLL. Haematologica97(3) , 437–441 (2012).
  • Stilgenbauer S BR, Andrea Schnaiter, Paschka P et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. 53rd Annual Meeting and Exposition of the American Society of Hematology . Atlanta, GA, USA 10–13 December 2013.
  • Rosati E , SabatiniR, De Falco F et al. gamma-Secretase inhibitor I induces apoptosis in chronic lymphocytic leukemia cells by proteasome inhibition, endoplasmic reticulum stress increase and notch down-regulation. Int. J. Cancer132(8) , 1940–1953 (2013).
  • Visconte V , MakishimaH, JankowskaA et al. SF3B1, a splicing factor is frequently mutated in refractory anemia with ring sideroblasts. Leukemia26(3) , 542–545 (2012).
  • Schwaederle M , GhiaE, RassentiLZ et al. Subclonal evolution involving SF3B1 mutations in chronic lymphocytic leukemia. Leukemia 27(5) , 1214–1217 (2013).
  • Papaemmanuil E , CazzolaM, BoultwoodJ et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N. Engl. J. Med. 365(15) , 1384–1395 (2011).
  • Rossi D , FangazioM, RasiS et al. Disruption of BIRC3 associates with fludarabine chemorefractoriness in TP53 wild-type chronic lymphocytic leukemia. Blood 119(12) , 2854–2862 (2012).
  • Zenz T , GribbenJG, HallekM, DohnerH, KeatingMJ, StilgenbauerS. Risk categories and refractory CLL in the era of chemoimmunotherapy. Blood119(18) , 4101–4107 (2012).
  • Stilgenbauer S , LiebischP, JamesMR et al. Molecular cytogenetic delineation of a novel critical genomic region in chromosome bands 11q22.3–923.1 in lymphoproliferative disorders. Proc. Natl Acad. Sci. USA 93(21) , 11837–11841 (1996).
  • Kanduri M , TobinG, AleskogA, NilssonK, RosenquistR. The novel NF-kappaB inhibitor IMD-0354 induces apoptosis in chronic lymphocytic leukemia. Blood Cancer J.1(3) , e12 (2011).
  • Hertlein E , WagnerAJ, JonesJ et al. 17-DMAG targets the nuclear factor-kappaB family of proteins to induce apoptosis in chronic lymphocytic leukemia: clinical implications of HSP90 inhibition. Blood 116(1) , 45–53 (2010).
  • Ding L , LeyTJ, LarsonDE et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481(7382) , 506–510 (2012).
  • Keats JJ , ChesiM, EganJB et al. Clonal competition with alternating dominance in multiple myeloma. Blood 120(5) , 1067–1076 (2012).
  • Walter MJ , ShenD, DingL et al. Clonal architecture of secondary acute myeloid leukemia. N. Engl. J. Med. 366(12) , 1090–1098 (2012).
  • Mamanova L , CoffeyAJ, ScottCE et al. Target-enrichment strategies for next-generation sequencing. Nat. Methods 7(2) , 111–118 (2010).
  • Domenech E , Gomez-LopezG, Gzlez-PenaD et al. New mutations in chronic lymphocytic leukemia identified by target enrichment and deep sequencing. PloS ONE 7(6) , e38158 (2012).
  • Woyach JA , JohnsonAJ, ByrdJC. The B-cell receptor signaling pathway as a therapeutic target in CLL. Blood120(6) , 1175–1184 (2012).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.