197
Views
0
CrossRef citations to date
0
Altmetric
Review

Metabolomic Profiling in Colorectal Cancer: Opportunities for Personalized Medicine

, &
Pages 741-755 | Published online: 10 Sep 2013

References

  • Fearnhead NS , WildingJL, BodmerWF. Genetics of colorectal cancer: hereditary aspects and overview of colorectal tumorigenesis. Br. Med. Bull.64 , 27–43 (2002).
  • Marshall JR . Prevention of colorectal cancer: diet, chemoprevention, and lifestyle. Gastroenterol. Clin. North Am.37(1) , 73–82 (2008).
  • McGarr SE , RidlonJM, HylemonPB. Diet, anaerobic bacterial metabolism, and colon cancer: a review of the literature. J. Clin. Gastroenterol.39(2) , 98–109 (2005).
  • Leddin D , HuntR, ChampionM et al. Canadian Association of Gastroenterology and the Canadian Digestive Health Foundation: Guidelines on colon cancer screening. Can. J. Gastroenterol. 18(2) , 93–99 (2004).
  • Rex DK , JohnsonDA, AndersonJC et al. American College of Gastroenterology guidelines for colorectal cancer screening 2009 [corrected]. Am. J. Gastroenterol. 104(3) , 739–750 (2009).
  • O‘Leary BA , OlynykJK, NevilleAM, PlatellCF. Cost–effectiveness of colorectal cancer screening: comparison of community-based flexible sigmoidoscopy with fecal occult blood testing and colonoscopy. J. Gastroenterol. Hepatol.19(1) , 38–47 (2004).
  • LaPointe LC , PedersenSK, DunneR et al. Discovery and validation of molecular biomarkers for colorectal adenomas and cancer with application to blood testing. PLoS ONE 7(1) , e29059 (2012).
  • Wang H , TsoVK, SlupskyCM, FedorakRN. Metabolomics and detection of colorectal cancer in humans: a systematic review. Future Oncol.6(9) , 1395–1406 (2010).
  • Ang CS , PhungJ, NiceEC. The discovery and validation of colorectal cancer biomarkers. Biomed. Chromatogr.25(1–2) , 82–99 (2011).
  • Cheng Y , XieG, ChenT et al. Distinct urinary metabolic profile of human colorectal cancer. J. Proteome Res. 11(2) , 1354–1363 (2012).
  • Romero R , EspinozaJ, GotschF et al. The use of high-dimensional biology (genomics, transcriptomics, proteomics, and metabolomics) to understand the preterm parturition syndrome. BJOG 113(Suppl. 3) , 118–135 (2006).
  • Nambiar PR , GuptaRR, MisraV. An “omics” based survey of human colon cancer. Mutat. Res.693(1–2) , 3–18 (2010).
  • Griffin JL , ShockcorJP. Metabolic profiles of cancer cells. Nat. Rev. Cancer4(7) , 551–561 (2004).
  • Kleivi K , LindGE, DiepCB et al. Gene expression profiles of primary colorectal carcinomas, liver metastases, and carcinomatoses. Mol. Cancer 6 , 2 (2007).
  • Solmi R , UgoliniG, RosatiG et al. Microarray-based identification and RT-PCR test screening for epithelial-specific mRNAs in peripheral blood of patients with colon cancer. BMC Cancer 6 , 250 (2006).
  • Komori T , TakemasaI, HiguchiH et al. Identification of differentially expressed genes involved in colorectal carcinogenesis using a cDNA microarray. J. Exp. Clin. Cancer Res. 23(3) , 521–527 (2004).
  • Backert S , GelosM, KobalzU et al. Differential gene expression in colon carcinoma cells and tissues detected with a cDNA array. Int. J. Cancer 82(6) , 868–874 (1999).
  • Chen WD , HanZJ, SkoletskyJ et al. Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene. J. Natl Cancer Inst. 97(15) , 1124–1132 (2005).
  • Leung WK , ToKF, ManEP et al. Quantitative detection of promoter hypermethylation in multiple genes in the serum of patients with colorectal cancer. Am. J. Gastroenterol. 100(10) , 2274–2279 (2005).
  • Ward DG , SuggettN, ChengY et al. Identification of serum biomarkers for colon cancer by proteomic analysis. Br J. Cancer 94(12) , 1898–1905 (2006).
  • Mazzanti R , SolazzoM, FantappieO et al. Differential expression proteomics of human colon cancer. Am. J. Physiol. Gastrointest. Liver Physiol. 290(6) , G1329–G1338 (2006).
  • Roblick UJ , HirschbergD, HabermannJK et al. Sequential proteome alterations during genesis and progression of colon cancer. Cell. Mol. Life Sci. 61(10) , 1246–1255 (2004).
  • Ritchie SA , AhiahonuPW, JayasingheD et al. Reduced levels of hydroxylated, polyunsaturated ultra long-chain fatty acids in the serum of colorectal cancer patients: implications for early screening and detection. BMC Med. 8 , 13 (2010).
  • Kaddurah-Daouk R , KristalBS, WeinshilboumRM. Metabolomics: a global biochemical approach to drug response and disease. Annu. Rev. Pharmacol. Toxicol.48 , 653–683 (2008).
  • Williams MD , ReevesR, ResarLS, HillHH Jr. Metabolomics of colorectal cancer: past and current analytical platforms. Anal. Bioanal. Chem.405(15) , 5013–5030 (2013).
  • Nicholson JK , LindonJC, HolmesE. ‘Metabonomics‘: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica29(11) , 1181–1189 (1999).
  • Oliver SG . Functional genomics: lessons from yeast. Phil. Trans. R. Soc. Lond. B.357(1417) , 17–23 (2002).
  • Chan EC , KohPK, MalM et al. Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J. Proteome Res. 8(1) , 352–361 (2009).
  • Wang M , LamersRJ, KorthoutHA et al. Metabolomics in the context of systems biology: bridging traditional Chinese medicine and molecular pharmacology. Phytother. Res. 19(3) , 173–182 (2005).
  • Abrahams E , GinsburgGS, SilverM. The Personalized Medicine Coalition: goals and strategies. Am. J. Pharmacogenomics5(6) , 345–355 (2005).
  • Sun J , BegerRD, SchnachenbergLK. Metabolomics as a tool for personalizing medicine: 2012 update. Per. Med.10(2) , 149–161 (2013).
  • Qiu Y , CaiG, SuM et al. Serum metabolite profiling of human colorectal cancer using GC-TOFMS and UPLC-QTOFMS. J. Proteome Res. 8(10) , 4844–4850 (2009).
  • Boger DL , HenriksenSJ, CravattBF. Oleamide: an endogenous sleep-inducing lipid and prototypical member of a new class of biological signaling molecules. Curr. Pharm. Des.4(4) , 303–314 (1998).
  • Thomas EA , CarsonMJ, NealMJ, SutcliffeJG. Unique allosteric regulation of 5-hydroxytryptamine receptor-mediated signal transduction by oleamide. Proc. Natl Acad. Sci. USA94(25) , 14115–14119 (1997).
  • Tan B , QiuY, ZouX et al. Metabonomics identifies serum metabolite markers of colorectal cancer. J. Proteome Res. 12(6) , 3000–3009 (2013).
  • Kondo Y , NishiumiS, ShinoharaM et al. Serum fatty acid profiling of colorectal cancer by gas chromatography/mass spectrometry. Biomark. Med. 5(4) , 451–460 (2011).
  • Nomura DK , LongJZ, NiessenS et al. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 140(1) , 49–61 (2010).
  • Yang YJ , LeeSH, HongSJ, ChungBC. Comparison of fatty acid profiles in the serum of patients with prostate cancer and benign prostatic hyperplasia. Clin. Biochem.32(6) , 405–409 (1999).
  • Connolly JM , ColemanM, RoseDP. Effects of dietary fatty acids on DU145 human prostate cancer cell growth in athymic nude mice. Nutr. Cancer29(2) , 114–119 (1997).
  • Kriat M , Vion-DuryJ, Confort-GounyS et al. Analysis of plasma lipids by NMR spectroscopy: application to modifications induced by malignant tumors. J. Lipid Res. 34(6) , 1009–1019 (1993).
  • Ritchie SA , TonitaJ, AlviR et al. Low-serum GTA-446 anti-inflammatory fatty acid levels as a new risk factor for colon cancer. Int. J. Cancer 132(2) , 355–362 (2013).
  • Berger M , GrayJA, RothBL. The expanded biology of serotonin. Annu. Rev. Med.60 , 355–366 (2009).
  • Bertini I , CacciatoreS, JensenBV et al. Metabolomic NMR fingerprinting to identify and predict survival of patients with metastatic colorectal cancer. Cancer Res. 72(1) , 356–364 (2012).
  • Ma Y , ZhangP, WangF et al. An integrated proteomics and metabolomics approach for defining oncofetal biomarkers in the colorectal cancer. Ann. Surg. 255(4) , 720–730 (2012).
  • Qiu Y , CaiG, SuM et al. Urinary metabonomic study on colorectal cancer. J. Proteome Res. 9(3) , 1627–1634 (2010).
  • Chen JL , FanJ, YanLS et al. Urine metabolite profiling of human colorectal cancer by capillary electrophoresis mass spectrometry based on MRB. Gastroenterol. Res. Pract. 2012 , 125890 (2012).
  • Zhao L , WangH, SunX, DingY. Comparative proteomic analysis identifies proteins associated with the development and progression of colorectal carcinoma. FEBS J.277(20) , 4195–4204 (2010).
  • Shrubsole MJ , CaiQ, WenW et al. Urinary prostaglandin E2 metabolite and risk for colorectal adenoma. Cancer Prev. Res. (Phila.) 5(2) , 336–342 (2012).
  • Saric J , WangY, LiJ et al. Species variation in the fecal metabolome gives insight into differential gastrointestinal function. J. Proteome Res. 7(1) , 352–360 (2008).
  • Monleón D , MoralesJM, BarrasaA et al. Metabolite profiling of fecal water extracts from human colorectal cancer. NMR Biomed. 22(3) , 342–348 (2009).
  • Hassig CA , TongJK, SchreiberSL. Fiber-derived butyrate and the prevention of colon cancer. Chem. Biol.4(11) , 783–789 (1997).
  • Pouillart PR . Role of butyric acid and its derivatives in the treatment of colorectal cancer and hemoglobinopathies. Life Sci.63(20) , 1739–1760 (1998).
  • Boffa LC , LuptonJR, MarianiMR et al. Modulation of colonic epithelial cell proliferation, histone acetylation, and luminal short chain fatty acids by variation of dietary fiber (wheat bran) in rats. Cancer Res. 52(21) , 5906–5912 (1992).
  • Domon-Dell C , WangQ, KimS et al. Stimulation of the intestinal Cdx2 homeobox gene by butyrate in colon cancer cells. Gut 50(4) , 525–529 (2002).
  • Hague A , ParaskevaC. The short-chain fatty acid butyrate induces apoptosis in colorectal tumour cell lines. Eur. J. Cancer Prev.4(5) , 359–364 (1995).
  • Abrahamse SL , Pool-ZobelBL, RechkemmerG. Potential of short chain fatty acids to modulate the induction of DNA damage and changes in the intracellular calcium concentration by oxidative stress in isolated rat distal colon cells. Carcinogenesis20(4) , 629–634 (1999).
  • Jimenez B , MirnezamiR, KinrossJ et al. 1H HR-MAS NMR spectroscopy of tumor-induced local metabolic “field-effects” enables colorectal cancer staging and prognostication. J. Proteome Res. 12(2) , 959–968 (2013).
  • Chen W , ZhouX, HuangD, ChenF, DuX. Metabolic profiling of human colorectal cancer using high resolution 1H nuclear magnetic resonance spectroscopy. Clin. J. Chem.29 , 2511–2519 (2011).
  • Hirayama A , KamiK, SugimotoM et al. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res. 69(11) , 4918–4925 (2009).
  • Tessem MB , SelnaesKM, SjursenW et al. Discrimination of patients with microsatellite instability colon cancer using 1H HR MAS MR spectroscopy and chemometric analysis. J. Proteome Res. 9(7) , 3664–3670 (2010).
  • Chae YK , KangWY, KimSH et al. combining information of common metabolites reveals global differences between colorectal cancerous and normal tissues. Bull. Korean Chem. Soc. 31(2) , 379–383 (2010).
  • Mal M , KohPK, CheahPY, ChanEC. Metabotyping of human colorectal cancer using two-dimensional gas chromatography mass spectrometry. Anal. Bioanal. Chem.403(2) , 483–493 (2012).
  • Mal M , KohPK, CheahPY, ChanEC. Development and validation of a gas chromatography/mass spectrometry method for the metabolic profiling of human colon tissue. Rapid Commun. Mass Spectrom.23(4) , 487–494 (2009).
  • Righi V , DuranteC, CocchiM et al. Discrimination of healthy and neoplastic human colon tissues by ex vivo HR-MAS NMR spectroscopy and chemometric analyses. J. Proteome Res. 8(4) , 1859–1869 (2009).
  • Piotto M , Moussallieh F-M, Dillmann B et al. Metabolic characterization of primary human colorectal cancers using high resolution magic angle spinning 1H magnetic resonance spectroscopy. Metabolomics5 , 292–301 (2009).
  • Warburg O . On the origin of cancer cells. Science123(3191) , 309–314 (1956).
  • Burg MB . Molecular basis of osmotic regulation. Am. J. Physiol.268(6 Pt 2) , F983–F996 (1995).
  • Droge W . Autophagy and aging – importance of amino acid levels. Mech. Ageing Dev.125(3) , 161–168 (2004).
  • Mizushima N , KlionskyDJ. Protein turnover via autophagy: implications for metabolism. Annu. Rev. Nutr.27 , 19–40 (2007).
  • Sato K , TsuchiharaK, FujiiS et al. Autophagy is activated in colorectal cancer cells and contributes to the tolerance to nutrient deprivation. Cancer Res. 67(20) , 9677–9684 (2007).
  • Nishiumi S , KobayashiT, IkedaA et al. A novel serum metabolomics-based diagnostic approach for colorectal cancer. PLoS ONE 7(7) , e40459 (2012).
  • Andre N , SchmiegelW. Chemoradiotherapy for colorectal cancer. Gut54(8) , 1194–1202 (2005).
  • Claudino WM , GoncalvesPH, Di Leo A, Philip PA, Sarkar FH. Metabolomics in cancer: a bench-to-bedside intersection. Crit. Rev. Oncol. Hematol.84(1) , 1–7 (2012).
  • Zarbo RJ , MeierFA, RaabSS. Error detection in anatomic pathology. Arch. Pathol. Lab. Med.129(10) , 1237–1245 (2005).
  • Farshidfar F , WeljieAM, KopciukK et al. Serum metabolomic profile as a means to distinguish stage of colorectal cancer. Genome Med. 4(5) , 42 (2012).
  • Nicholson JK , EverettJR, LindonJC. Longitudinal pharmacometabonomics for predicting patient responses to therapy: drug metabolism, toxicity and efficacy. Expert Opin. Drug Metab. Toxicol.8(2) , 135–139 (2012).
  • Backshall A , SharmaR, ClarkeSJ, KeunHC. Pharmacometabonomic profiling as a predictor of toxicity in patients with inoperable colorectal cancer treated with capecitabine. Clin. Cancer Res.17(9) , 3019–3028 (2011).
  • Robertson DG , WatkinsPB, ReilyMD. Metabolomics in toxicology: preclinical and clinical applications. Toxicol Sci.120(Suppl. 1) , S146–S170 (2011).
  • Kouskoumvekaki I , PanagiotouG. Navigating the human metabolome for biomarker identification and design of pharmaceutical molecules. J. Biomed. Biotechnol.2011, (2011).
  • Boros LG , BrackettDJ, HarriganGG. Metabolic biomarker and kinase drug target discovery in cancer using stable isotope-based dynamic metabolic profiling (SIDMAP). Curr. Cancer Drug Targets3(6) , 445–453 (2003).
  • Bisogno T , KatayamaK, MelckD et al. Biosynthesis and degradation of bioactive fatty acid amides in human breast cancer and rat pheochromocytoma cells – implications for cell proliferation and differentiation. Eur. J. Biochem. 254(3) , 634–642 (1998).
  • Kogan NM . Cannabinoids and cancer. Mini Rev. Med. Chem.5(10) , 941–952 (2005).
  • Bifulco M , Di Marzo V. Targeting the endocannabinoid system in cancer therapy: a call for further research. Nat. Med.8(6) , 547–550 (2002).
  • Patsos HA , HicksDJ, GreenhoughA, WilliamsAC, ParaskevaC. Cannabinoids and cancer: potential for colorectal cancer therapy. Biochem. Soc. Trans.33(Pt 4) , 712–714 (2005).
  • Ritchie SA , JayasingheD, DaviesGF et al. Human serum-derived hydroxy long-chain fatty acids exhibit anti-inflammatory and anti-proliferative activity. J. Exp. Clin. Cancer Res. 30 , 59 (2011).
  • Ritchie SA , HeathD, YamazakiY et al. Reduction of novel circulating long-chain fatty acids in colorectal cancer patients is independent of tumor burden and correlates with age. BMC Gastroenterol. 10 , 140 (2010).
  • Lindon JC , NicholsonJK, HolmesE et al. Summary recommendations for standardization and reporting of metabolic analyses. Nat. Biotechnol. 23(7) , 833–838 (2005).
  • Wishart DS . Trends in quantitative metabolomics. J. Biomol. Tech.21(Suppl. 3) , S6–S7 (2010).
  • Kim DY , CamilleriM. Serotonin: a mediator of the brain-gut connection. Am. J. Gastroenterol.95(10) , 2698–2709 (2000).
  • Zheng X , XieG, ZhaoA et al. The footprints of gut microbial-mammalian co-metabolism. J. Proteome Res. 10(12) , 5512–5522 (2011).
  • Aziz Q , ThompsonDG. Brain-gut axis in health and disease. Gastroenterology114(3) , 559–578 (1998).
  • Kim YS , KimJJ, ChoKH et al. Biotransformation of ginsenoside Rb1, crocin, amygdalin, geniposide, puerarin, ginsenoside Re, hesperidin, poncirin, glycyrrhizin, and baicalin by human fecal microflora and its relation to cytotoxicity against tumor cells. J. Microbiol. Biotechnol. 18(6) , 1109–1114 (2008).
  • Martinez-García M , Diaz-ValdésM, Ramos-EspláA et al. Cytotoxicity of the ascidian Cystodytes dellechiajei against tumor cells and study of the involvement of associated microbiota in the production of cytotoxic compounds. Mar. Drugs 5(3) , 52–70 (2007).
  • Li Y , KunduP, SeowSW et al. Gut microbiota accelerate tumor growth via c-jun and STAT3 phosphorylation in APCMin/+ mice. Carcinogenesis 33(6) , 1231–1238 (2012).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.