151
Views
0
CrossRef citations to date
0
Altmetric
Review

Emerging Factors in the Progression of Cancer-Related Pain

Pages 487-496 | Received 12 Nov 2015, Accepted 21 Mar 2016, Published online: 06 May 2016

References

  • Caraceni A , PortenoyRK . An international survey of cancer pain characteristics and syndromes: IASP Task Force on Cancer Pain – International Association for the Study of Pain . Pain82 , 263 – 274 ( 1999 ).
  • Schmidt BL , HamamotoDT , SimoneDA , WilcoxGL . Mechanism of cancer pain . Mol. Interv.10 ( 3 ), 164 – 178 ( 2010 ).
  • Shimoyama M , TanakaK , HasueF , ShimoyamaN . A mouse model of neuropathic cancer pain . Pain99 , 167 – 174 ( 2002 ).
  • Gilchrist LS , CainDM , Harding-RoseCet al. Re-organization of P2X3 receptor localization on epidermal nerve fibers in a murine model of cancer pain . Brain Res.1044 ( 2 ), 197 – 205 ( 2005 ).
  • Ye Y , OnoK , BernabéDGet al. Adenosine triphosphate drives head and neck cancer pain through P2X2/3 heterotrimers . Acta Neuropathol. Commun.2 , 62 ( 2014 ).
  • Nagamine K , OzakiN , ShinodaMet al. Mechanical allodynia and thermal hyperalgesia induced by experimental squamous cell carcinoma of the lower gingiva in rats . J. Pain7 , 659 – 670 ( 2006 ).
  • Wu JX , XuMY , MiaoXRet al. Functional up-regulation of P2X3 receptors in dorsal root ganglion in a rat model of bone cancer pain . Eur. J. Pain16 ( 10 ), 1378 – 1388 ( 2012 ).
  • Kaan TK , YipPK , PatelSet al. Systemic blockade of P2X3 and P2X2/3 receptors attenuates bone cancer pain behaviour in rats . Brain133 ( 9 ), 2549 – 2564 ( 2010 ).
  • Chizhmakov I , MamenkoN , VolkovaTet al. P2X receptors in sensory neurons co-cultured with cancer cells exhibit a decrease in opioid sensitivity . Eur. J. Neurosci.29 ( 1 ), 76 – 86 ( 2009 ).
  • Spanel P , SmithD , HollandTA , AlSW , ElderJB . Analysis of formaldehyde in the headspace of urine from bladder and prostate cancer patients using selected ion flow tube mass spectrometry . Rapid Commun. Mass Spectrom.13 , 1354 – 1359 ( 1999 ).
  • Tong Z , LuoW , WangYet al. Tumor tissue-derived formaldehyde and acidic microenvironment synergistically induce bone cancer pain . PLoS ONE5 , e10234 ( 2010 ).
  • Liu J , LiuFY , TongZQet al. Lysine-specific demethylase 1 in breast cancer cells contributes to the production of endogenous formaldehyde in the metastatic bone cancer pain model of rats . PLoS ONE8 ( 3 ), e58957 ( 2013 ).
  • Nagae M , HiragaT , YonedaT . Acidic microenvironment created by osteoclasts causes bone pain associated with tumor colonization . J. Bone Miner. Metab.25 , 99 – 104 ( 2007 ).
  • Asai H , OzakiN , ShinodaMet al. Heat and mechanical hyperalgesia in mice model of cancer pain . Pain117 , 19 – 29 ( 2005 ).
  • Ghilardi JR , RohrichH , LindsayTHet al. Selective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain . J. Neurosci.25 , 3126 – 3131 ( 2005 ).
  • Honore P , ChandranP , HernandezGet al. Repeated dosing of ABT-102, a potent and selective TRPV1 antagonist, enhances TRPV1-mediated analgesic activity in rodents, but attenuates antagonist-induced hyperthermia . Pain142 , 27 – 35 ( 2009 ).
  • Karai L , BrownDC , MannesAJet al. Deletion of vanilloid receptor 1-expressing primary afferent neurons for pain control . J. Clin. Invest.113 , 1344 – 1352 ( 2004 ).
  • Niiyama Y , KawamataT , YamamotoJ , FuruseS , NamikiA . SB366791, a TRPV1 antagonist, potentiates analgesic effects of systemic morphine in a murine model of bone cancer pain . Br. J. Anaesth.102 , 251 – 258 ( 2009 ).
  • Shinoda M , OginoA , OzakiNet al. Involvement of TRPV1 in nociceptive behavior in a rat model of cancer pain . J. Pain9 , 687 – 699 ( 2008 ).
  • Han Y , LiY , XiaoXet al. Formaldehyde up-regulates TRPV1 through MAPK and PI3K signaling pathways in a rat model of bone cancer pain . Neurosci. Bull.28 , 165 – 172 ( 2012 ).
  • Lautner MA , RuparelSB , PatilMJ , HargreavesKM . In vitro sarcoma cells release a lipophilic substance that activates the pain transduction system via TRPV1 . Ann. Surg. Oncol.18 , 866 – 871 ( 2011 ).
  • Nyberg P , YlipalosaariM , SorsaT , SaloT . Trypsins and their role in carcinoma growth . Exp. Cell Res.312 ( 8 ), 1219 – 1228 ( 2006 ).
  • Soreide K , JanssenEA , KornerH , BaakJP . Trypsin in colorectal cancer: molecular biological mechanisms of proliferation, invasion, and metastasis . J. Pathol.209 , 147 – 156 ( 2006 ).
  • DeClerck YA , MercurioAM , StackMSet al. Proteases, extracellular matrix, and cancer: a workshop of the path B study section . Am. J. Pathol.164 , 1131 – 1139 ( 2004 ).
  • Hardt M , LamDK , DolanJC , SchmidtBL . Surveying proteolytic processes in human cancer microenvironments by microdialysis and activity-based mass spectrometry . Proteomics Clin. Appl.5 ( 11–12 ), 636 – 643 ( 2011 ).
  • Lam DK , SchmidtBL . Serine proteases and protease-activated receptor 2-dependent allodynia: a novel cancer pain pathway . Pain149 ( 2 ), 263 – 272 ( 2010 ).
  • Lam DK , DangD , ZhangJ , DolanJC , SchmidtBL . Novel animal models of acute and chronic cancer pain: a pivotal role for PAR2 . J. Neurosci.32 ( 41 ), 14178 – 14183 ( 2012 ).
  • Koshikawa N , HasegawaS , NagashimaYet al. Expression of trypsin by epithelial cells of various tissues, leukocytes, and neurons in human and mouse . Am. J. Pathol.153 ( 3 ), 937 – 944 ( 1998 ).
  • Koshikawa N , NagashimaY , MiyagiYet al. Expression of trypsin in vascular endothelial cells . FEBS Lett.409 , 442 – 448 ( 1997 ).
  • Ossovskaya VS , BunnettNW . Protease-activated receptors: contribution to physiology and disease . Physiol. Rev.84 , 579 – 621 ( 2004 ).
  • Amadesi S , CottrellGS , DivinoLet al. Protease-activated receptor 2 sensitizes TRPV1 by protein kinase C epsilon- and A-dependent mechanisms in rats and mice . J. Physiol.575 ( Pt 2 ), 555 – 571 ( 2006 ).
  • Grant AD , CottrellGS , AmadesiSet al. Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice . J. Physiol.578 ( Pt 3 ), 715 – 733 ( 2007 ).
  • Lam DK , DangD , FlynnAN , HardtM , SchmidtBL . TMPRSS2, a novel membrane-anchored mediator in cancer pain . Pain156 ( 5 ), 923 – 930 ( 2015 ).
  • Pomonis JD , RogersSD , PetersCM , GhilardiJR , MantyhPW . Expression and localization of endothelin receptors: implications for the involvement of peripheral glia in nociception . J. Neurosci.21 , 999 – 1006 ( 2001 ).
  • Peters CM , LindsayTH , PomonisJDet al. Endothelin and the tumorigenic component of bone cancer pain . Neuroscience126 , 1043 – 1052 ( 2004 ).
  • Wintzen M , YaarM , BurbachJP , GilchrestBA . Proopiomelanocortin gene product regulation in keratinocytes . J. Invest. Dermatol.106 , 673 – 678 ( 1996 ).
  • Wintzen M , ZanelloSB , HolickMF , WiegantVM , BurbachJP , VermeerBJ . Condition-dependent presence of beta-lipotropin-like peptide in human keratinocytes . Peptides21 , 691 – 697 ( 2000 ).
  • Zanello SB , JacksonDM , HolickMF . An immunocytochemical approach to the study of beta-endorphin production in human keratinocytes using confocal microscopy . Ann. NY Acad. Sci.885 , 85 – 99 ( 1999 ).
  • Wacnik PW , EikmeierLJ , RugglesTRet al. Functional interactions between tumor and peripheral nerve: morphology, algogen identification, and behavioral characterization of a new murine model of cancer pain . J. Neurosci.21 ( 23 ), 9355 – 9366 ( 2001 ).
  • Cain DM , WacnikPW , TurnerMet al. Functional interactions between tumor and peripheral nerve: changes in excitability and morphology of primary afferent fibers in a murine model of cancer pain . J. Neurosci.21 ( 23 ), 9367 – 9376 ( 2001 ).
  • Yuyama H , KoakutsuA , FujiyasuNet al. Inhibitory effects of a selective endothelin-A receptor antagonist YM598 on endothelin-1-induced potentiation of nociception in formalin-induced and prostate cancer-induced pain models in mice . J. Cardiovasc. Pharmacol.44 ( Suppl. 1 ), S479 – S482 ( 2004 ).
  • Schmidt BL , PickeringV , LiuSet al. Peripheral endothelin A receptor antagonism attenuates carcinoma-induced pain . Eur. J. Pain11 ( 4 ), 406 – 414 ( 2007 ).
  • Pickering V , Jay GuptaR , QuangP , JordanRC , SchmidtBL . Effect of peripheral endothelin-1 concentration on carcinoma-induced pain in mice . Eur. J. Pain12 ( 3 ), 293 – 300 ( 2008 ).
  • Joseph EK , GreenPG , BogenO , AlvarezP , LevineJD . Vascular endothelial cells mediate mechanical stimulation-induced enhancement of endothelin hyperalgesia via activation of P2X2/3 receptors on nociceptors . J. Neurosci.33 ( 7 ), 2849 – 2859 ( 2013 ).
  • Quang PN , SchmidtBL . Peripheral endothelin B receptor agonist-induced antinociception involves endogenous opioids in mice . Pain149 ( 2 ), 254 – 262 ( 2010 ).
  • Quang PN , SchmidtBL . Endothelin-A receptor antagonism attenuates carcinoma-induced pain through opioids in mice . J. Pain11 ( 7 ), 663 – 671 ( 2010 ).
  • Bhalla S , CiaccioN , WangZJ , GulatiA . Involvement of endothelin in morphine tolerance in neuroblastoma (SH-SY5Y) cells . Exp. Biol. Med.231 , 1152 – 1156 ( 2006 ).
  • Bhalla S , MatwyshynG , GulatiA . Morphine tolerance does not develop in mice treated with endothelin-A receptor antagonists . Brain Res.1064 , 126 – 135 ( 2005 ).
  • Bhalla S , MatwyshynG , GulatiA . Endothelin receptor antagonists restore morphine analgesia in morphine tolerant rats . Peptides24 , 553 – 561 ( 2003 ).
  • Puppala BL , MatwyshynG , BhallaS , GulatiA . Role of endothelin in neonatal morphine tolerance . J. Cardiovasc. Pharmacol.44 , S383 – S385 ( 2004 ).
  • Fujita M , AndohT , OhashiK , AkiraA , SaikiI , KuraishiY . Roles of kinin B(1) and B(2) receptors in skin cancer pain produced by orthotopic melanoma inoculation in mice . Eur. J. Pain14 ( 6 ), 588 – 594 ( 2010 ).
  • Sevcik MA , GhilardiJR , HalvorsonKG , LindsayTH , KubotaK , MantyhPW . Analgesic efficacy of bradykinin B1 antagonists in a murine bone cancer pain model . J. Pain6 , 771 – 775 ( 2005 ).
  • Andoh T , AkiraA , SaikiI , KuraishiY . Bradykinin increases the secretion and expression of endothelin-1 through kinin B2 receptors in melanoma cells . Peptides31 , 238 – 241 ( 2010 ).
  • Wacnik PW , EikmeierLJ , SimoneDA , WilcoxGL , BeitzAJ . Nociceptive characteristics of tumor necrosis factor-alpha in naive and tumor-bearing mice . Neuroscience132 , 479 – 491 ( 2005 ).
  • Constantin CE , MairN , SailerCAet al. Endogenous tumor necrosis factor alpha (TNFalpha) requires TNF receptor type 2 to generate heat hyperalgesia in a mouse cancer model . J. Neurosci.28 , 5072 – 5081 ( 2008 ).
  • Friedman WJ , GreeneLA . Neurotrophin signaling via Trks and p75 . Exp. Cell. Res.253 , 131 – 142 ( 1999 ).
  • Ji RR , SamadTA , JinSX , SchmollR , WoolfCJ . p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia . Neuron36 , 57 – 68 ( 2002 ).
  • Fjell J , CumminsTR , DavisBMet al. Sodium channel expression in NGF-overexpressing transgenic mice . J. Neurosci. Res.57 , 39 – 47 ( 1999 ).
  • Gould HJ 3rd , GouldTN , EnglandJD , PaulD , LiuZP , LevinsonSR . A possible role for nerve growth factor in the augmentation of sodium channels in models of chronic pain . Brain Res.854 , 19 – 29 ( 2000 ).
  • Petersen M , Segond von BanchetG , HeppelmannB , KoltzenburgM . Nerve growth factor regulates the expression of bradykinin binding sites on adult sensory neurons via the neurotrophin receptor p75 . Neuroscience83 , 161 – 168 ( 1998 ).
  • Ramer MS , BradburyEJ , McMahonSB . Nerve growth factor induces P2X(3) expression in sensory neurons . J. Neurochem.77 , 864 – 875 ( 2001 ).
  • Mamet J , BaronA , LazdunskiM , VoilleyN . Proinflammatory mediators, stimulators of sensory neuron excitability via the expression of acid-sensing ion channels . J. Neurosci.22 , 10662 – 10670 ( 2002 ).
  • Ye Y , DangD , ZhangJet al. Nerve growth factor links oral cancer progression, pain, and cachexia . Mol. Cancer Ther.10 ( 9 ), 1667 – 1676 ( 2011 ).
  • Halvorson KG , KubotaK , SevcikMAet al. A blocking antibody to nerve growth factor attenuates skeletal pain induced by prostate tumor cells growing in bone . Cancer Res.65 , 9426 – 9435 ( 2005 ).
  • Mantyh WG , Jimenez-AndradeJM , StakeJIet al. Blockade of nerve sprouting and neuroma formation markedly attenuates the development of late stage cancer pain . Neuroscience171 ( 2 ), 588 – 598 ( 2010 ).
  • Jimenez-Andrade JM , GhilardiJR , Castañeda-CorralG , KuskowskiMA , MantyhPW . Preventive or late administration of anti-NGF therapy attenuates tumor-induced nerve sprouting, neuroma formation, and cancer pain . Pain152 ( 11 ), 2564 – 2574 ( 2011 ).
  • Bloom AP , Jimenez-AndradeJM , TaylorRNet al. Breast cancer-induced bone remodeling, skeletal pain, and sprouting of sensory nerve fibers . J. Pain12 ( 6 ), 698 – 711 ( 2011 ).
  • Currie GL , DelaneyA , BennettMIet al. Animal models of bone cancer pain: systematic review and meta-analyses . Pain154 ( 6 ), 917 – 926 ( 2013 ).
  • Urch CE , Donovan-RodriguezT , DickensonAH . Alterations in dorsal horn neurones in a rat model of cancer-induced bone pain . Pain106 , 347 – 356 ( 2003 ).
  • Donovan-Rodriguez T , DickensonAH , UrchCE . Gabapentin normalizes spinal neuronal responses that correlate with behavior in a rat model of cancer-induced bone pain . Anesthesiology102 , 132 – 140 ( 2005 ).
  • Kuraishi Y , IidaY , ZhangHWet al. Suppression by gabapentin of pain-related mechano-responses in mice given orthotopic tumor inoculation . Biol. Pharm. Bull.26 , 550 – 552 ( 2003 ).
  • Vit JP , OharaPT , TienDAet al. The analgesic effect of low dose focal irradiation in a mouse model of bone cancer is associated with spinal changes in neuro-mediators of nociception . Pain120 , 188 – 201 ( 2006 ).
  • Khasabov SG , HamamotoDT , Harding-RoseC , SimoneDA . Tumor-evoked hyperalgesia and sensitization of nociceptive dorsal horn neurons in a murine model of cancer pain . Brain Res.1180 , 7 – 19 ( 2007 ).
  • Schwei MJ , HonoreP , RogersSDet al. Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain . J. Neurosci.19 ( 24 ), 10886 – 10897 ( 1999 ).
  • Geis C , GraulichM , WissmannAet al. Evoked pain behavior and spinal glia activation is dependent on tumor necrosis factor receptor 1 and 2 in a mouse model of bone cancer pain . Neuroscience169 , 463 – 474 ( 2010 ).
  • Hald A , NedergaardS , HansenRR , DingM , HeegaardAM . Differential activation of spinal cord glial cells in murine models of neuropathic and cancer pain . Eur. J. Pain.13 , 138 – 145 ( 2009 ).
  • Honore P , RogersSD , SchweiMJet al. Murine models of inflammatory, neuropathic and cancer pain each generates a unique set of neurochemical changes in the spinal cord and sensory neurons . Neuroscience98 , 585 – 598 ( 2000 ).
  • Zhang RX , LiuB , WangLet al. Spinal glial activation in a new rat model of bone cancer pain produced by prostate cancer cell inoculation of the tibia . Pain118 , 125 – 136 ( 2005 ).
  • Halvorson KG , SevcikMA , GhilardiJRet al. Intravenous ibandronate rapidly reduces pain, neurochemical indices of central sensitization, tumor burden, and skeletal destruction in a mouse model of bone cancer . J. Pain Symptom Manage.36 , 289 – 303 ( 2008 ).
  • Honore P , LugerNM , SabinoMAet al. Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord . Nat. Med.6 , 521 – 528 ( 2000 ).
  • Sabino MA , GhilardiJR , JongenJLet al. Simultaneous reduction in cancer pain, bone destruction, and tumor growth by selective inhibition of cyclooxygenase-2 . Cancer Res.62 , 7343 – 7349 ( 2002 ).
  • Hald A , HansenRR , ThomsenMWet al. Cancer-induced bone loss and associated pain-related behavior is reduced by risedronate but not its phosphonocarboxylate analog NE-10790 . Int. J. Cancer125 , 1177 – 1185 ( 2009 ).
  • Hidaka K , OnoK , HaranoNet al. Central glial activation mediates cancer-induced pain in a rat facial cancer model . Neuroscience180 , 334 – 343 ( 2011 ).
  • Sago T , OnoK , HaranoNet al. Distinct time courses of microglial and astrocytic hyperactivation and the glial contribution to pain hypersensitivity in a facial cancer model . Brain Res.1457 , 70 – 80 ( 2012 ).
  • Shen W , HuXM , LiuYNet al. CXCL12 in astrocytes contributes to bone cancer pain through CXCR4-mediated neuronal sensitization and glial activation in rat spinal cord . J. Neuroinflammation11 , 75 ( 2014 ).
  • Hu XM , LiuYN , ZhangHLet al. CXCL12/CXCR4 chemokine signaling in spinal glia induces pain hypersensitivity through MAPKs-mediated neuroinflammation in bone cancer rats . J. Neurochem.132 ( 4 ), 452 – 463 ( 2015 ).
  • Han Y , HeT , HuangDR , PardoCA , RansohoffRM . TNF-alpha mediates SDF-1 alpha-induced NF-kappa B activation and cytotoxic effects in primary astrocytes . J. Clin. Invest.108 , 425 – 435 ( 2001 ).
  • Liu S , LiuWT , LiuYPet al. Blocking EphB1 receptor forward signaling in spinal cord relieves bone cancer pain and rescues analgesic effect of morphine treatment in rodents . Cancer Res.71 , 4392 – 4402 ( 2011 ).
  • Ren BX , GuXP , ZhengYGet al. Intrathecal injection of metabotropic glutamate receptor subtype 3 and 5 agonist/antagonist attenuates bone cancer pain by inhibition of spinal astrocyte activation in a mouse model . Anesthesiology116 , 122 – 132 ( 2012 ).
  • Smeester BA , LunzerMM , AkgünE , BeitzAJ , PortoghesePS . Targeting putative mu opioid/metabotropic glutamate receptor-5 heteromers produces potent antinociception in a chronic murine bone cancer model . Eur. J. Pharmacol.743 , 48 – 52 ( 2014 ).
  • Huang JL , ChenXL , GuoC , WangYX . Contributions of spinal D-amino acid oxidase to bone cancer pain . Amino Acids43 , 1905 – 1918 ( 2012 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.