124
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Photoencapsulated-BMP2 in vIsible Light-Cured Thiol-Acrylate Hydrogels for Craniofacial Bone Tissue Engineering

ORCID Icon &
Pages 2099-2113 | Received 03 May 2020, Accepted 20 Oct 2020, Published online: 19 Nov 2020

References

  • LangerR , VacantiJP. Tissue engineering. Science260(5110), 920–926 (1993).
  • LangerR , VacantiJ. Advances in tissue engineering. J. Pediatr. Surg.51(1), 8–12 (2016).
  • DattaP , OzbolatV , AyanB , DhawanA , OzbolatIT. Bone tissue bioprinting for craniofacial reconstruction. Biotechnol. Bioeng.114(11), 2424–2431 (2017).
  • ThrivikramanG , AthirasalaA , TwohigC , BodaSK , BertassoniLE. Biomaterials for craniofacial bone regeneration. Dent. Clin. North Am.61(4), 835–856 (2017).
  • TianT , ZhangT , LinY , CaiX. Vascularization in craniofacial bone tissue engineering. J. Dent. Res.97(9), 969–976 (2018).
  • ZhangW , YelickPC. Craniofacial tissue engineering. Cold Spring Harb. Perspect. Med.8(1), 1–17 (2018).
  • LutolfMP , GilbertPM , BlauHM. Designing materials to direct stem-cell fate. Nature462(7272), 433–441 (2009).
  • SainiM , SinghY , AroraP , AroraV , JainK. Implant biomaterials: a comprehensive review. World J. Clin. Cases3(1), 52–57 (2015).
  • RahDK. Art of replacing craniofacial bone defects. Yonsei Med. J.41(6), 756–765 (2000).
  • NavarroM , MichiardiA , CastañoO , PlanellJA. Biomaterials in orthopaedics. J. R. Soc. Interface5(27), 1137–1158 (2008).
  • LutolfMP , HubbellJA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol.23(1), 47–55 (2005).
  • ChenFM , LiuX. Advancing biomaterials of human origin for tissue engineering. Prog. Polym. Sci.53, 86–168 (2016).
  • BhatS , KumarA. Biomaterials and bioengineering tomorrow’s healthcare. Biomatter3(3), 1–12 (2013).
  • JacksonL , JonesDR , ScottingP , SottileV. Adult mesenchymal stem cells: differentiation potential and therapeutic applications. J. Postgrad. Med.53(2), 121–127 (2007).
  • HerrmannRP , SturmMJ. Adult human mesenchymal stromal cells and the treatment of graft versus host disease. Stem Cells Cloning7, 45–52 (2014).
  • AnQ , FanC , XuS. Pediatric mesenchymal stromal cells therapy: an update. Minerva Pediatr.70(4), 396–402 (2018).
  • GalipeauJ , SensébéL. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell22(6), 824–833 (2018).
  • GriffinMF , ButlerPE , SeifalianAM , KalaskarDM. Control of stem cell fate by engineering their micro and nanoenvironment. World J. Stem Cells7(1), 37–50 (2015).
  • GuilakF , CohenDM , EstesBT , GimbleJM , LiedtkeW , ChenCS. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell5(1), 17–26 (2009).
  • GoetzkeR , KeijdenerH , FranzenJet al.Differentiation of induced pluripotent stem cells towards mesenchymal stromal cells is hampered by culture in 3D hydrogels. Sci. Rep.9(1), 15578 (2019).
  • BonomiA , SteimbergN , BenettiAet al.Paclitaxel-releasing mesenchymal stromal cells inhibit the growth of multiple myeloma cells in a dynamic 3D culture system. Hematol. Oncol.35(4), 693–702 (2017).
  • SobacchiC , ErreniM , StrinaD , PalaganoE , VillaA , MenaleC. 3D bone biomimetic scaffolds for basic and translational studies with mesenchymal stem cells. Int. J. Mol. Sci.19(10), 1–19 (2018).
  • KimH , BaeC , KookYM , KohWG , LeeK , ParkMH. Mesenchymal stem cell 3D encapsulation technologies for biomimetic microenvironment in tissue regeneration. Stem Cell. Res. Ther.10(1), 51 (2019).
  • BunpetchV , ZhangZY , ZhangXet al.Strategies for MSC expansion and MSC-based microtissue for bone regeneration. Biomaterials196, 67–79 (2019).
  • DiefenderferDL , OsyczkaAM , GarinoJP , LeboyPS. Regulation of BMP-induced transcription in cultured human bone marrow stromal cells. J. Bone Joint Surg. Am.85-A(Suppl. 3), 19–28 (2003).
  • MarupanthornK , TantrawatpanC , KheolamaiP , TantikanlayapornD , ManochantrS. Bone morphogenetic protein-2 enhances the osteogenic differentiation capacity of mesenchymal stromal cells derived from human bone marrow and umbilical cord. Int. J. Mol. Med.39(3), 654–662 (2017).
  • BeedermanM , LamplotJD , NanGet al.BMP signaling in mesenchymal stem cell differentiation and bone formation. J. Biomed. Sci. Eng.6(8a), 32–52 (2013).
  • JiangZ , JiangK , McbrideR , OakeyJS. Comparative cytocompatibility of multiple candidate cell types to photoencapsulation in PEGNB/PEGDA macroscale or microscale hydrogels. Biomed. Mater.13(6), 065012 (2018).
  • FreitasJ , SantosSG , GonçalvesRM , TeixeiraJH , BarbosaMA , AlmeidaMI. Genetically engineered-MSC therapies for non-unions, delayed unions and critical-size bone defects. Int. J. Mol. Sci.20(14), 1–20 (2019).
  • SuenagaH , FurukawaKS , SuzukiY , TakatoT , UshidaT. Bone regeneration in calvarial defects in a rat model by implantation of human bone marrow-derived mesenchymal stromal cell spheroids. J. Mater. Sci. Mater. Med.26(11), 254 (2015).
  • AnnabiN , NicholJW , ZhongXet al.Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. Part B Rev.16(4), 371–383 (2010).
  • ChaiQ , JiaoY , YuX. Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels3(1), 1–15 (2017).
  • ZhuJ , MarchantRE. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev. Med. Devices8(5), 607–626 (2011).
  • AhmedEM. Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res.6(2), 105–121 (2015).
  • AghaliA. Poly(ethylene glycol) and co-polymer based-hydrogels for craniofacial bone tissue engineering. In: Orthopedic BiomaterialsAghaliA ( Ed.). Springer, Cham, 225–246 doi:10.1007/978-3-319-73664-8_9(2017).
  • ManthaS , PillaiS , KhayambashiPet al.Smart hydrogels in tissue engineering and regenerative medicine. Materials (Basel)12(20), 1–33 (2019).
  • KabirSMF , SikdarPP , HaqueB , BhuiyanMaR , AliA , IslamMN. Cellulose-based hydrogel materials: chemistry, properties and their prospective applications. Prog. Biomater.7(3), 153–174 (2018).
  • HatakeyamaH , AkitaH , HarashimaH. The polyethyleneglycol dilemma: advantage and disadvantage of PEGylation of liposomes for systemic genes and nucleic acids delivery to tumors. Biol. Pharm. Bull.36(6), 892–899 (2013).
  • ZhuJ. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials31(17), 4639–4656 (2010).
  • PeppasNA , KeysKB , Torres-LugoM , LowmanAM. Poly(ethylene glycol)-containing hydrogels in drug delivery. J. Control. Release62(1-2), 81–87 (1999).
  • DuJZ , SunTM , WengSQ , ChenXS , WangJ. Synthesis and characterization of photo-cross-linked hydrogels based on biodegradable polyphosphoesters and poly(ethylene glycol) copolymers. Biomacromolecules8(11), 3375–3381 (2007).
  • SonKH , LeeJW. Synthesis and characterization of Poly(Ethylene Glycol) based thermo-responsive hydrogels for cell sheet engineering. Materials (Basel)9(10), 1–13 (2016).
  • HaoY , LinCC. Degradable thiol-acrylate hydrogels as tunable matrices for three-dimensional hepatic culture. J. Biomed. Mater. Res. A102(11), 3813–3827 (2014).
  • EmmakahAM , ArmanH , BraggJet al.A fast-degrading thiol-acrylate based hydrogel for cranial regeneration. Biomed. Mater. doi:10.1088/1748-605X/aa5f3e(2017).
  • StevensKR , MillerJS , BlakelyBL , ChenCS , BhatiaSN. Degradable hydrogels derived from PEG-diacrylamide for hepatic tissue engineering. J. Biomed. Mater. Res. A103(10), 3331–3338 (2015).
  • IngavleGC , GehrkeSH , DetamoreMS. The bioactivity of agarose-PEGDA interpenetrating network hydrogels with covalently immobilized RGD peptides and physically entrapped aggrecan. Biomaterials35(11), 3558–3570 (2014).
  • PeterM , TayaliaP. An alternative technique for patterning cells on poly(ethylene glycol) diacrylate hydrogels. RSC Adv.6, 40878–40885 (2016).
  • HaoY , ShihH , MunozZ , KempA , LinCC. Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture. Acta Biomater.10(1), 104–114 (2014).
  • D’esteM , EglinD. Hydrogels in calcium phosphate moldable and injectable bone substitutes: sticky excipients or advanced 3-D carriers?Acta Biomater.9(3), 5421–5430 (2013).
  • ZustiakSP , LeachJB. Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties. Biomacromolecules11(5), 1348–1357 (2010).
  • WatsonBM , VoTN , TataraAMet al.Biodegradable, phosphate-containing, dual-gelling macromers for cellular delivery in bone tissue engineering. Biomaterials67, 286–296 (2015).
  • ScarfiS. Use of bone morphogenetic proteins in mesenchymal stem cell stimulation of cartilage and bone repair. World J. Stem Cells8(1), 1–12 (2016).
  • AriffinSH , ManogaranT , AbidinIZ , WahabRM , SenafiS. A perspective on stem cells as biological systems that produce differentiated osteoblasts and odontoblasts. Curr. Stem Cell Res. Ther.12(3), 247–259 (2017).
  • HongZQ , TaoLM , BinZX. Differentiation of osteoblast-like cells and ectopic bone formation induced by bone marrow stem cells transfected with chitosan nanoparticles containing plasmid-BMP2 sequences. Mol. Med. Rep.15(3), 1353–1361 (2017).
  • ZhangW , ZhuC , WuYet al.VEGF and BMP-2 promote bone regeneration by facilitating bone marrow stem cell homing and differentiation. European Cells Mater.27, 1–11 (2014).
  • ThomopoulosS , KimHM , SilvaMJet al.Effect of bone morphogenetic protein 2 on tendon-to-bone healing in a canine flexor tendon model. J. Orthop. Res.30(11), 1702–1709 (2012).
  • DeGuzman RC , SaulJM , EllenburgMDet al.Bone regeneration with BMP-2 delivered from keratose scaffolds. Biomaterials34(6), 1644–1656 (2013).
  • CastrénE , SillatT , OjaSet al.Osteogenic differentiation of mesenchymal stromal cells in two-dimensional and three-dimensional cultures without animal serum. Stem Cell Res. Ther.6(1), 1–13 (2015).
  • MariePJ , FromigueO. Osteogenic differentiation of human marrow-derived mesenchymal stem cells. Regen. Med.1(4), 539–548 (2006).
  • Žigon-BrancS , MarkovicM , Van HoorickJet al.Impact of hydrogel stiffness on differentiation of human adipose-derived stem cell microspheroids. Tissue Eng. Part A25(19-20), 1369–1380 (2019).
  • WhiteheadAK , BarnettHH , Caldorera-MooreME , NewmanJJ. Poly (ethylene glycol) hydrogel elasticity influences human mesenchymal stem cell behavior. Regen. Biomater.5(3), 167–175 (2018).
  • TsouYH , KhoneisserJ , HuangPC , XuX. Hydrogel as a bioactive material to regulate stem cell fate. Bioact Mater.1(1), 39–55 (2016).
  • PaiSR , BirdRC. c-fos expression is required during all phases of the cell cycle during exponential cell proliferation. Anticancer Res.14(3a), 985–994 (1994).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.