273
Views
0
CrossRef citations to date
0
Altmetric
Review

Decellularized Human-Sized Pulmonary Scaffolds for Lung Tissue Engineering: A Comprehensive Review

ORCID Icon, ORCID Icon & ORCID Icon
Pages 757-774 | Received 07 Oct 2020, Accepted 14 Jun 2021, Published online: 25 Aug 2021

References

  • Courtwright A , CantuE. Evaluation and management of the potential lung donor. Clin. Chest Med.38(4), 751–759 (2017).
  • Yeung JC , KeshavjeeS. Overview of clinical lung transplantation. Cold Spring Harb. Perspect. Med.4(1), a015628–a015628 (2014).
  • Ali A , KeshavjeeS , CypelM. Rising to the challenge of unmet need: expanding the lung donor pool. Curr. Pulmonol. Reports7(3), 92–100 (2018).
  • Ghanei M , NezhadLH , HarandiAA , AlaeddiniF , ShohratiM , AslaniJ. Combination therapy for airflow limitation in COPD. DARU, J. Pharm. Sci.20(1), 6 (2012).
  • Sikma MA , HunaultCC , vande Graaf EAet al. High tacrolimus blood concentrations early after lung transplantation and the risk of kidney injury. Eur. J. Clin. Pharmacol.73(5), 573–580 (2017).
  • Levy L , HusztiE , TikkanenJet al. The impact of first untreated subclinical minimal acute rejection on risk for chronic lung allograft dysfunction or death after lung transplantation. Am. J. Transplant.20(1), 241–249 (2020).
  • Mahfouzi SH , SafiabadiTali SH , AmoabedinyG. 3D bioprinting for lung and tracheal tissue engineering: criteria, advances, challenges, and future directions. Bioprinting21(4), e00124 (2021).
  • Murphy SV , DeCoppi P , AtalaA. Opportunities and challenges of translational 3D bioprinting. Nat. Biomed. Eng.4(4), 370–380 (2020).
  • Skolasinski SD , Panoskaltsis-MortariA. Lung tissue bioengineering for chronic obstructive pulmonary disease: overcoming the need for lung transplantation from human donors. Expert Rev. Respir. Med.13(7), 665–678 (2019).
  • De Santis MM , BölükbasDA , LindstedtS , WagnerDE. How to build a lung: latest advances and emerging themes in lung bioengineering. Eur. Respir. J.52(1), 1601355 (2018).
  • Calle EA , GhaediM , SundaramS , SivarapatnaA , TsengMK , NiklasonLE. Strategies for whole lung tissue engineering. IEEE Trans. Biomed. Eng.61(5), 1482–1496 (2014).
  • Nikolova MP , ChavaliMS. Recent advances in biomaterials for 3D scaffolds: a review. Bioact. Mater.4, 271–292 (2019).
  • Williams DF . Challenges with the development of biomaterials for sustainable tissue engineering. Front. Bioeng. Biotechnol.7(1), 127 (2019).
  • Kuttan R , SpallRD , DuhamelRC , SipesIG , MeezanE , BrendelK. Preparation and composition of alveolar extracellular matrix and incorporated basement membrane. Lung159(1), 333–345 (1981).
  • Lwebuga-Mukasa JS , IngbarDH , MadriJA. Repopulation of a human alveolar matrix by adult rat type II pneumocytes in vitro. A novel system for type II pneumocyte culture. Exp. Cell Res.162(2), 423–435 (1986).
  • Price AP , EnglandKA , MatsonAM , BlazarBR , Panoskaltsis-MortariA. Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng. – Part A16(8), 2581–2591 (2010).
  • Petersen TH , CalleEA , ZhaoLet al. Tissue-engineered lungs for in vivo implantation. Science329(5991), 538–541 (2010).
  • Ott HC , ClippingerB , ConradCet al. Regeneration and orthotopic transplantation of a bioartificial lung. Nat. Med.16(8), 927–933 (2010).
  • Cortiella J , NilesJ , CantuAet al. Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng. - Part A16(8), 2565–2580 (2010).
  • Bonvillain RW , ScarrittME , PashosNCet al. Nonhuman primate lung decellularization and recellularization using a specialized large-organ bioreactor. J. Vis. Exp. (82), 1–11 (2013).
  • Gilpin SE , CharestJM , RenXet al. Regenerative potential of human airway stem cells in lung epithelial engineering. Biomaterials108, 111–119 (2016).
  • Scarritt ME , PashosNC , MotherwellJMet al. Re-endothelialization of rat lung scaffolds through passive, gravity-driven seeding of segment-specific pulmonary endothelial cells. J. Tissue Eng. Regen. Med.12(2), e786–e806 (2018).
  • Mahfouzi SH , AmoabedinyG , SafiabadiTali SH. Advances in bioreactors for lung bioengineering: from scalable cell culture to tissue growth monitoring. Biotechnol. Bioeng.118(6), 2142–2167 (2021).
  • Doryab A , HeydarianM , AmoabedinyG , SadroddinyE , MahfouziS. Recellularization on acellular lung tissue scaffold using perfusion-based bioreactor: an online monitoring strategy. J. Med. Biol. Eng.37(1), 53–62 (2017).
  • Price AP , GodinLM , DomekAet al. Automated decellularization of intact, human-sized lungs for tissue engineering. 21(1), 94–103 (2015).
  • Raredon MSB , RoccoKA , GheorgheCPet al. Biomimetic culture reactor for whole-lung engineering. Biores. Open Access5(1), 72–83 (2016).
  • Engler AJ , LeAV , BaevovaP , NiklasonLE. Controlled gas exchange in whole lung bioreactors. J. Tissue Eng. Regen. Med.12(1), e119–e129 (2018).
  • Khalpey Z , QuN , HemphillCet al. Rapid porcine lung decellularization using a novel organ regenerative control acquisition bioreactor. ASAIO J.61(1), 71–77 (2015).
  • Mahfouzi SH , AmoabedinyG , DoryabA , Safiabadi-TaliSH , GhaneiM. Noninvasive real-time assessment of cell viability in a three-dimensional tissue. Tissue Eng. – Part C Methods24(4), 197–204 (2018).
  • Petersen TH , CalleEA , ColehourMB , NiklasonLE. Bioreactor for the long-term culture of lung tissue. Cell Transplant.20(7), 1117–1126 (2011).
  • Raredon MSB , GhaediM , CalleEA , NiklasonLE. A rotating bioreactor for scalable culture and differentiation of respiratory epithelium. Cell Med.7(3), 109–121 (2015).
  • Bonvillain RW , DanchukS , SullivanDEet al. A nonhuman primate model of lung regeneration: detergent-mediated decellularization and initial in vitro recellularization with mesenchymal stem cells. Tissue Eng. - Part A18(23–24), 2437–2452 (2012).
  • Nichols JE , NilesJ , RiddleMet al. Production and assessment of decellularized pig and human lung scaffolds. Tissue Eng. - Part A19(17–18), 2045–2062 (2013).
  • Gilpin SE , RenX , OkamotoTet al. Enhanced lung epithelial specification of human induced pluripotent stem cells on decellularized lung matrix. Ann. Thorac. Surg.98(5), 1721–1729 (2014).
  • Pouliot RA , LinkPA , MikhaielNSet al. Development and characterization of a naturally derived lung extracellular matrix hydrogel. J. Biomed. Mater. Res. - Part A104(8), 1922–1935 (2016).
  • Balestrini JL , GardAL , GerholdKAet al. Comparative biology of decellularized lung matrix: implications of species mismatch in regenerative medicine. Biomaterials102, 220–230 (2016).
  • Nichols JE , LaFrancesca S , VegaSPet al. Giving new life to old lungs: methods to produce and assess whole human paediatric bioengineered lungs. J. Tissue Eng. Regen. Med.11(7), 2136–2152 (2017).
  • Zhou H , KitanoK , RenXet al. Bioengineering human lung grafts on porcine matrix. Ann. Surg.267(3), 590–598 (2018).
  • Nichols JE , LaFrancesca S , NilesJAet al. Production and transplantation of bioengineered lung into a large-animal model. Sci. Transl. Med.10(452), eaao3926 (2018).
  • Gorman DE , WuT , GilpinSE , OttHC. A fully automated high-throughput bioreactor system for lung regeneration. Tissue Eng. – Part C Methods24(11), 671–678 (2018).
  • Zvarova B , UhlFE , UriarteJJet al. Residual detergent detection method for nondestructive cytocompatibility evaluation of decellularized whole lung scaffolds. Tissue Eng. – Part C Methods22(5), 418–428 (2016).
  • O’Neill JD , AnfangR , AnandappaAet al. Decellularization of human and porcine lung tissues for pulmonary tissue engineering. Ann. Thorac. Surg.96(3), 1046–1056 (2013).
  • Gilpin SE , LiQ , Evangelista-LeiteDet al. Fibrillin-2 and Tenascin-C bridge the age gap in lung epithelial regeneration. Biomaterials140, 212–219 (2017).
  • Butler CR , HyndsRE , CrowleyCet al. Vacuum-assisted decellularization: an accelerated protocol to generate tissue-engineered human tracheal scaffolds. Biomaterials124, 95–105 (2017).
  • Wagner DE , BonenfantNR , SokocevicDet al. Three-dimensional scaffolds of acellular human and porcine lungs for high throughput studies of lung disease and regeneration. Biomaterials35(9), 2664–2679 (2014).
  • Kim BS , KimH , GaoG , JangJ , ChoDW. Decellularized extracellular matrix: a step towards the next generation source for bioink manufacturing. Biofabrication9(3), 034104 (2017).
  • Crapo PM , GilbertTW , BadylakSF. An overview of tissue and whole organ decellularization processes. Biomaterials32(12), 3233–3243 (2011).
  • Ota T , TaketaniS , IwaiSet al. Novel method of decellularization of porcine valves using polyethylene glycol and gamma irradiation. Ann. Thorac. Surg.83(4), 1501–1507 (2007).
  • Shafiq MA , GemeinhartRA , YueBYJT , DjalilianAR. Decellularized human cornea for reconstructing the corneal epithelium and anterior stroma. Tissue Eng. – Part C Methods18(5), 340–348 (2012).
  • Guyette JP , GilpinSE , CharestJM , TapiasLF , RenX , OttHC. Perfusion decellularization of whole organs. Nat. Protoc.9(6), 1451–1468 (2014).
  • Khan AA , VishwakarmaSK , BardiaA , VenkateshwaruluJ. Repopulation of decellularized whole organ scaffold using stem cells: an emerging technology for the development of neo-organ. J. Artif. Organs17(4), 291–300 (2014).
  • Gilbert TW , SellaroTL , BadylakSF. Decellularization of tissues and organs. Biomaterials27(19), 3675–3683 (2006).
  • Nelson K , BobbaC , ErenEet al. Method of isolated ex vivo lung perfusion in a rat model: lessons learned from developing a rat EVLP program. J. Vis. Exp.96(1), e52309 (2015).
  • Epstein SE , LugerD , LipinskiMJ. Large animal model efficacy testing is needed prior to launch of a stem cell clinical trial: an evidence-lacking conclusion based on conjecture. Circ. Res.121(5), 496–498 (2017).
  • Denayer T , StöhrnT , Van RoyM. Animal models in translational medicine: validation and prediction. New Horizons Transl. Med.2(1), 5–11 (2014).
  • Weymann A , PatilNP , SabashnikovAet al. Perfusion-decellularization of porcine lung and trachea for respiratory bioengineering. Artif. Organs39(12), 1024–1032 (2015).
  • Booth AJ , HadleyR , CornettAMet al. Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation. Am. J. Respir. Crit. Care Med.186(9), 866–876 (2012).
  • Gilpin SE , GuyetteJP , GonzalezGet al. Perfusion decellularization of human and porcine lungs: bringing the matrix to clinical scale. J. Hear. Lung Transplant.33(3), 298–308 (2014).
  • Gilpin SE , CharestJM , RenX , OttHC. Bioengineering lungs for transplantation. Thorac. Surg. Clin.26(2), 163–171 (2016).
  • Servier Laboratories . Servier Medical Arts (2020). https://smart.servier.com/
  • Wagner DE , FennSL , BonenfantNRet al. Design and synthesis of an artificial pulmonary pleura for high throughput studies in acellular human lungs. Cell. Mol. Bioeng.7(2), 184–195 (2014).
  • Balestrini JL , GardAL , LiuAet al. Production of decellularized porcine lung scaffolds for use in tissue engineering. Integr. Biol. (Camb)7(12), 1598–1610 (2015).
  • Platz J , BonenfantNR , UhlFEet al. Comparative decellularization and recellularization of wild-type and alpha 1,3 galactosyltransferase knockout pig lungs: a model for ex vivo xenogeneic lung bioengineering and transplantation. Tissue Eng. – Part C Methods22(8), 725–739 (2016).
  • Blackwell DL , LucasJW , ClarkeTC. Summary health statistics for U.S. adults: national health interview survey, 2012. Vital Health Stat.10(260), 1–161 (2014).
  • Hoeper MM , HumbertM , SouzaRet al. A global view of pulmonary hypertension. Lancet Respir. Med.4(4), 306–322 (2016).
  • Huang X , MuX , DengLet al. The etiologic origins for chronic obstructive pulmonary disease. Int. J. COPD14, 1139–1158 (2019).
  • Wagner DE , BonenfantNR , ParsonsCSet al. Comparative decellularization and recellularization of normal versus emphysematous human lungs. Biomaterials35(10), 3281–3297 (2014).
  • Zhou Y , PengH , SunHet al. Chitinase 3-like 1 suppresses injury and promotes fibroproliferative responses in mammalian lung fibrosis. Sci. Transl. Med.6(240), 240ra76–240ra76 (2014).
  • Parker MW , RossiD , PetersonMet al. Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J. Clin. Invest.124(4), 1622–1635 (2014).
  • Sava P , RamanathanA , DobronyiAet al. Human pericytes adopt myofibroblast properties in the microenvironment of the IPF lung. JCI Insight2(24), 1–13 (2017).
  • Tjin G , WhiteES , FaizAet al. Lysyl oxidases regulate fibrillar collagen remodelling in idiopathic pulmonary fibrosis. DMM Dis. Model. Mech.10(11), 1301–1312 (2017).
  • van der Velden JL , WagnerDE , LahueKGet al. TGF-β1-induced deposition of provisional extracellular matrix by tracheal basal cells promotes epithelial-to-mesenchymal transition in a c-Jun NH2-terminal kinase-1-dependent manner. Am. J. Physiol. – Lung Cell. Mol. Physiol.314(6), L984–L997 (2018).
  • Hedström U , HallgrenO , ÖbergLet al. Bronchial extracellular matrix from COPD patients induces altered gene expression in repopulated primary human bronchial epithelial cells. Sci. Rep.8(1), 1–13 (2018).
  • Sun H , ZhuY , PanH et al. Netrin-1 regulates fibrocyte accumulation in the decellularized fibrotic scleroderma lung microenvironment and in bleomycin induced pulmonary fibrosis. Arthritis Rheumatol.68(5), 1251–1261 (2016).
  • Ghaedi M , CalleEA , MendezJJet al. Human iPS cell-derived alveolar epithelium repopulates lung extracellular matrix. J. Clin. Invest.123(11), 4950–4962 (2013).
  • Huang SXL , IslamMN , O’NeillJet al. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat. Biotechnol.32(1), 84–91 (2014).
  • Ghaedi M , MendezJJ , BovePF , SivarapatnaA , RaredonMSB , NiklasonLE. Alveolar epithelial differentiation of human induced pluripotent stem cells in a rotating bioreactor. Biomaterials35(2), 699–710 (2014).
  • Mendez JJ , GhaediM , SteinbacherD , NiklasonLE. Epithelial cell differentiation of human mesenchymal stromal cells in decellularized lung scaffolds. Tissue Eng. – Part A20(11–12), 1735–1746 (2014).
  • Ghaedi M , LeAV , HatachiGet al. Bioengineered lungs generated from human iPSCs-derived epithelial cells on native extracellular matrix. J. Tissue Eng. Regen. Med.12(3), e1623–e1635 (2018).
  • Nakayama KH , LeeCCI , BatchelderCA , TarantalAF. Tissue Specificity of decellularized rhesus monkey kidney and lung scaffolds. PLoS ONE8(5), e64134 (2013).
  • Minutti CM , KnipperJA , AllenJE , ZaissDMW. Tissue-specific contribution of macrophages to wound healing. Semin. Cell Dev. Biol.61, 3–11 (2017).
  • Broekman W , KhedoePPSJ , SchepersK , RoelofsH , StolkJ , HiemstraPS. Mesenchymal stromal cells: a novel therapy for the treatment of chronic obstructive pulmonary disease?Thorax73(6), 565–574 (2018).
  • Cho DI , KimMR , JeongHYet al. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Exp. Mol. Med.46(1), e70–e70 (2014).
  • Badenes SM , FernandesTG , MirandaCCet al. Long-term expansion of human induced pluripotent stem cells in a microcarrier-based dynamic system. J. Chem. Technol. Biotechnol.92(3), 492–503 (2017).
  • Derakhti S , Safiabadi-TaliSH , AmoabedinyG , SheikhpourM. Attachment and detachment strategies in microcarrier-based cell culture technology: a comprehensive review. Mater. Sci. Eng. C103, 109782 (2019).
  • Song JJ , KimSS , LiuZet al. Enhanced in vivo function of bioartificial lungs in rats. Ann. Thorac. Surg.92(3), 998–1006 (2011).
  • Ren X , MoserPT , GilpinSEet al. Engineering pulmonary vasculature in decellularized rat and human lungs. Nat. Biotechnol.33(10), 1097–1102 (2015).
  • Doi R , TsuchiyaT , MitsutakeNet al. Transplantation of bioengineered rat lungs recellularized with endothelial and adipose-derived stromal cells. Sci. Rep.7(1), 1–15 (2017).
  • Obata T , TsuchiyaT , AkitaSet al. Utilization of natural detergent potassium laurate for decellularization in lung bioengineering. Tissue Eng. – Part C Methods25(8), 459–471 (2019).
  • Jensen T , RoszellB , ZangFet al. A rapid lung de-cellularization protocol supports embryonic stem cell differentiation in vitro and following implantation. Tissue Eng. – Part C Methods18(8), 632–646 (2012).
  • Yuan Y , EnglerAJ , RaredonMSet al. Epac agonist improves barrier function in iPSC-derived endothelial colony forming cells for whole organ tissue engineering. Biomaterials200, 25–34 (2019).
  • Tsuchiya T , DoiR , ObataT , HatachiG , NagayasuT. Lung microvascular niche, repair, and engineering. Front. Bioeng. Biotechnol.8, 1–19 (2020).
  • Stabler CT , CairesLC , MondrinosMJet al. Enhanced re-endothelialization of decellularized rat lungs. Tissue Eng. – Part C Methods22(5), 439–450 (2016).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.