402
Views
0
CrossRef citations to date
0
Altmetric
Review

Mesenchymal Stem Cell-Derived Exosomes: Therapeutic Implications for Rotator Cuff Injury

, , , , & ORCID Icon
Pages 803-815 | Received 21 Nov 2020, Accepted 17 Jun 2021, Published online: 15 Jul 2021

References

  • Tapscott DC , VaracalloM. Supraspinatus tendonitis. In: StatPearls.StatPearls Publishing LLC, FL, USA (2021).
  • Jain NB , HigginsLD , LosinaE , CollinsJ , BlazarPE , KatzJN. Epidemiology of musculoskeletal upper extremity ambulatory surgery in the United States. BMC Musculoskelet. Disord.15, 4 (2014).
  • Nourissat G , BerenbaumF , DuprezD. Tendon injury: from biology to tendon repair. Nat. Rev. Rheumatol.11(4), 223–233 (2015).
  • Rashid MS , CooperC , CookJet al. Increasing age and tear size reduce rotator cuff repair healing rate at 1 year. Acta Orthop.88(6), 606–611 (2017).
  • D’ambrosi R , RagoneV , ComaschiG , UsuelliFG , UrsinoN. Retears and complication rates after arthroscopic rotator cuff repair with scaffolds: a systematic review. Cell Tissue Bank20(1), 1–10 (2019).
  • Sgroi TA , CilentiM. Rotator cuff repair: post-operative rehabilitation concepts. Curr. Rev. Musculoskelet. Med.11(1), 86–91 (2018).
  • Oliva F , PiccirilliE , BossaMet al. I.S.Mu.L.T – Rotator cuff tears Guidelines. Muscles Ligaments Tendons J.5(4), 227–263 (2015).
  • Thankam FG , DilisioMF , GrossRM , AgrawalDK. Collagen I: a kingpin for rotator cuff tendon pathology. Am. J. Transl. Res.10(11), 3291–3309 (2018).
  • Laron D , SamaghSP , LiuX , KimHT , FeeleyBT. Muscle degeneration in rotator cuff tears. J. Shoulder Elbow Surg.21(2), 164–174 (2012).
  • Codman EA . Rupture of the supraspinatus tendon. Clin. Orthop.1911(254), 3–26 (1990).
  • Neer CS 2nd . Anterior acromioplasty for the chronic impingement syndrome in the shoulder: a preliminary report. J. Bone Joint Surg. Am.54(1), 41–50 (1972).
  • Rynecki ND , PereiraDS. The role of mesenchymal stem cells in augmenting rotator cuff repairs. Bull. Hosp. Jt Dis.76(4), 232–237 (2018).
  • Havlas V , KotaškaJ , KoníčekPet al. Use of cultured human autologous bone marrow stem cells in repair of a rotator cuff tear: preliminary results of a safety study. Acta Chir. Orthop. Traumatol. Cech.82(3), 229–234 (2015).
  • Charles MD , ChristianDR , ColeBJ. The role of biologic therapy in rotator cuff tears and repairs. Curr. Rev. Musculoskelet. Med.11(1), 150–161 (2018).
  • Bianco ST , MoserHL , GalatzLM , HuangAH. Biologics and stem cell-based therapies for rotator cuff repair. Ann. NY Acad. Sci.1442(1), 35–47 (2019).
  • Patel S , GualtieriAP , LuHH , LevineWN. Advances in biologic augmentation for rotator cuff repair. Ann. NY Acad. Sci.1383(1), 97–114 (2016).
  • Han L , FangWL , JinB , XuSC , ZhengX , HuYG. Enhancement of tendon-bone healing after rotator cuff injuries using combined therapy with mesenchymal stem cells and platelet rich plasma. Eur. Rev. Med. Pharmacol. Sci.23(20), 9075–9084 (2019).
  • Isaac C , GharaibehB , WittM , WrightVJ , HuardJ. Biologic approaches to enhance rotator cuff healing after injury. J. Shoulder Elbow Surg.21(2), 181–190 (2012).
  • Ding DC , ShyuWC , LinSZ. Mesenchymal stem cells. Cell Transplant.20(1), 5–14 (2011).
  • Wang J , ChenZ , SunMet al. Characterization and therapeutic applications of mesenchymal stem cells for regenerative medicine. Tissue Cell64, 101330 (2020).
  • Pittenger MF , MackayAM , BeckSCet al. Multilineage potential of adult human mesenchymal stem cells. Science284(5411), 143–147 (1999).
  • Toh WS , LaiRC , HuiJHP , LimSK. MSC exosome as a cell-free MSC therapy for cartilage regeneration: implications for osteoarthritis treatment. Semin. Cell. Dev. Biol.67, 56–64 (2017).
  • Sevivas N , TeixeiraFG , PortugalRet al. Mesenchymal stem cell secretome improves tendon cell viability in vitro and tendon-bone healing in vivo when a tissue engineering strategy is used in a rat model of chronic massive rotator cuff tear. Am. J. Sports Med.46(2), 449–459 (2018).
  • Hernigou P , FlouzatLachaniette CH , DelambreJet al. Biologic augmentation of rotator cuff repair with mesenchymal stem cells during arthroscopy improves healing and prevents further tears: a case-controlled study. Int. Orthop.38(9), 1811–1818 (2014).
  • Lui PPY . Mesenchymal stem cell-derived extracellular vesicles for the promotion of tendon repair – an update of literature. Stem Cell Rev. Rep.17(2). 379-389 (2020).
  • Lai RC , ArslanF , LeeMMet al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res.4(3), 214–222 (2010).
  • Forsberg MH , KinkJA , HemattiP , CapitiniCM. Mesenchymal stromal cells and exosomes: progress and challenges. Front. Cell Dev. Biol.8, 665 (2020).
  • De Araújo Farias V , Carrillo-GálvezAB , MartínF , AndersonP. TGF-β and mesenchymal stromal cells in regenerative medicine, autoimmunity and cancer. Cytokine Growth Factor Rev.43, 25–37 (2018).
  • Bang OY , LeeJS , LeePH , LeeG. Autologous mesenchymal stem cell transplantation in stroke patients. Ann. Neurol.57(6), 874–882 (2005).
  • Golpanian S , WolfA , HatzistergosKE , HareJM. Rebuilding the damaged heart: mesenchymal stem cells, cell-based therapy, and engineered heart tissue. Physiol. Rev.96(3), 1127–1168 (2016).
  • Medhat D , RodríguezCI , InfanteA. Immunomodulatory effects of MSCs in bone healing. Int. J. Mol. Sci.20(21), 5467 (2019).
  • Freitas J , SantosSG , GonçalvesRM , TeixeiraJH , BarbosaMA , AlmeidaMI. Genetically engineered-MSC therapies for non-unions, delayed unions and critical-size bone defects. Int. J. Mol. Sci.20(14), 3430 (2019).
  • Fu Y , PaggiCA , DudakovicA , Van WijnenAJ , PostJN , KarperienM. Engineering cartilage tissue by co-culturing of chondrocytes and mesenchymal stromal cells. Methods Mol. Biol.2221, 53–70 (2021).
  • Schaefer B , BeierJP , RuhlT. Mesenchymal stem cells and the generation of neomuscle tissue. Surg. Technol. Int.36, 41–47 (2020).
  • Ahangar P , MillsSJ , CowinAJ. Mesenchymal stem cell secretome as an emerging cell-free alternative for improving wound repair. Int. J. Mol. Sci.21(19), 7038 (2020).
  • Radmanesh F , MahmoudiM , YazdanpanahEet al. The immunomodulatory effects of mesenchymal stromal cell-based therapy in human and animal models of systemic lupus erythematosus. IUBMB Life. (72(11), 2366–2381(2020).
  • Golchin A . Cell-based therapy for severe COVID-19 patients: clinical trials and cost-utility. Stem Cell Rev. Rep.17(1), 56–62(2021).
  • Alzahrani FA , SaadeldinIM , AhmadAet al. The potential use of mesenchymal stem cells and their derived exosomes as immunomodulatory agents for COVID-19 patients. Stem Cells Int.2020, 8835986 (2020).
  • Canham MA , CampbellJDM , MountfordJC. The use of mesenchymal stromal cells in the treatment of coronavirus disease 2019. J. Transl. Med.18(1), 359 (2020).
  • Nourissat G , DiopA , MaurelNet al. Mesenchymal stem cell therapy regenerates the native bone-tendon junction after surgical repair in a degenerative rat model. PLoS ONE5(8), e12248 (2010).
  • Okamoto N , KushidaT , OeK , UmedaM , IkeharaS , IidaH. Treating Achilles tendon rupture in rats with bone-marrow-cell transplantation therapy. J. Bone Joint Surg. Am.92(17), 2776–2784 (2010).
  • Gao J , CaplanAI. Mesenchymal stem cells and tissue engineering for orthopaedic surgery. Chir. Organi. Mov.88(3), 305–316 (2003).
  • Caplan AI . Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J. Cell. Physiol.213(2), 341–347 (2007).
  • Meirelles Lda S , NardiNB. Methodology, biology and clinical applications of mesenchymal stem cells. Front. Biosci. (Landmark Ed.)14, 4281–4298 (2009).
  • Tolar J , LeBlanc K , KeatingA , BlazarBR. Concise review: hitting the right spot with mesenchymal stromal cells. Stem Cells28(8), 1446–1455 (2010).
  • Ryu B , BaekJ , KimHet al. Anti-Inflammatory effects of M-MSCs in DNCB-induced atopic dermatitis mice. Biomedicines8(10), 439 (2020).
  • Shi Y , WangY , LiQet al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat. Rev. Nephrol.14(8), 493–507 (2018).
  • Sun H , PrattRE , HodgkinsonCP , DzauVJ. Sequential paracrine mechanisms are necessary for the therapeutic benefits of stem cell therapy. Am. J. Physiol. Cell Physiol.319(6), C1141–C1150 (2020).
  • Seifali E , HassanzadehG , MahdavipourMet al. Extracellular vesicles derived from human umbilical cord perivascular cells improve functional recovery in brain ischemic rat via the inhibition of apoptosis. Iran Biomed. J.24(6), 347–360 (2020).
  • Ibrahim SA , KhanYS. Histology, extracellular vesicles. In: StatPearls.StatPearls Publishing LLC, FL, USA (2020).
  • Tricarico C , ClancyJ , D’souza-SchoreyC. Biology and biogenesis of shed microvesicles. Small GTPases8(4), 220–232 (2017).
  • Latifkar A , HurYH , SanchezJC , CerioneRA , AntonyakMA. New insights into extracellular vesicle biogenesis and function. J. Cell Sci.132(13), jcs222406 (2019).
  • ELA S , MägerI , BreakefieldXO , WoodMJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov.12(5), 347–357 (2013).
  • Cobelli NJ , LeongDJ , SunHB. Exosomes: biology, therapeutic potential, and emerging role in musculoskeletal repair and regeneration. Ann. NY Acad. Sci.1410(1), 57–67 (2017).
  • Kalluri R , LebleuVS. The biology, function, and biomedical applications of exosomes. Science367(6478), eaau6977 (2020).
  • Wu P , ZhangB , ShiH , QianH , XuW. MSC-exosome: a novel cell-free therapy for cutaneous regeneration. Cytotherapy20(3), 291–301 (2018).
  • Yamashita T , TakahashiY , TakakuraY. Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application. Biol. Pharm. Bull.41(6), 835–842 (2018).
  • Hu S , QiaoL , ChengK. Generation and manipulation of exosomes. Methods Mol. Biol.2158, 295–305 (2021).
  • Börger V , StaubachS , DittrichR , StambouliO , GiebelB. Scaled isolation of mesenchymal stem/stromal cell-derived extracellular vesicles. Curr. Protoc. Stem Cell Biol.55(1), e128 (2020).
  • Liu L , LiuY , FengCet al. Lithium-containing biomaterials stimulate bone marrow stromal cell-derived exosomal miR-130a secretion to promote angiogenesis. Biomaterials192, 523–536 (2019).
  • Wang X , ChenY , ZhaoZet al. Engineered exosomes with ischemic myocardium-targeting peptide for targeted therapy in myocardial infarction. J. Am. Heart Assoc.7(15), e008737 (2018).
  • Shao H , ImH , CastroCM , BreakefieldX , WeisslederR , LeeH. New technologies for analysis of extracellular vesicles. Chem. Rev.118(4), 1917–1950 (2018).
  • Bu H , HeD , HeX , WangK. Exosomes: isolation, analysis, and applications in cancer detection and therapy. ChemBioChem20(4), 451–461 (2019).
  • Soares Martins T , CatitaJ , MartinsRosa I , ABDCESO , HenriquesAG. Exosome isolation from distinct biofluids using precipitation and column-based approaches. PLoS ONE13(6), e0198820 (2018).
  • Batrakova EV , KimMS. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J. Control. Release10(219), 396–405 (2015).
  • Hu L , WangJ , ZhouXet al. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci. Rep.6, 32993 (2016).
  • Zhang J , GuanJ , NiuXet al. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J. Transl. Med.13(49), 1–172015).
  • Bai J , ZhangY , ZhengXet al. LncRNA MM2P-induced, exosome-mediated transfer of Sox9 from monocyte-derived cells modulates primary chondrocytes. Cell Death Dis.11(9), 763 (2020).
  • He L , HeT , XingJet al. Bone marrow mesenchymal stem cell-derived exosomes protect cartilage damage and relieve knee osteoarthritis pain in a rat model of osteoarthritis. Stem Cell Res. Ther.11(1), 276 (2020).
  • Wang Y , YuD , LiuZet al. Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Res. Ther.8(1), 189 (2017).
  • Bier A , BerensteinP , KronfeldNet al. Placenta-derived mesenchymal stromal cells and their exosomes exert therapeutic effects in Duchenne muscular dystrophy. Biomaterials174, 67–78 (2018).
  • Cheng X , ZhangG , ZhangLet al. Mesenchymal stem cells deliver exogenous miR-21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration. J. Cell Mol. Med.22(1), 261–276 (2018).
  • Liao Z , LuoR , LiGet al. Exosomes from mesenchymal stem cells modulate endoplasmic reticulum stress to protect against nucleus pulposus cell death and ameliorate intervertebral disc degeneration in vivo. Theranostics9(14), 4084–4100 (2019).
  • Qi X , ZhangJ , YuanHet al. Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats. Int. J. Biol. Sci.12(7), 836–849 (2016).
  • Zhang M , LiuH , CuiQet al. Tendon stem cell-derived exosomes regulate inflammation and promote the high-quality healing of injured tendon. Stem Cell Res. Ther.11(1), 402 (2020).
  • Wang Y , HeG , GuoYet al. Exosomes from tendon stem cells promote injury tendon healing through balancing synthesis and degradation of the tendon extracellular matrix. J. Cell Mol. Med.23(8), 5475–5485 (2019).
  • Wang C , HuQ , SongW , YuW , HeY. Adipose stem cell-derived exosomes decrease fatty infiltration and enhance rotator cuff healing in a rabbit model of chronic tears. Am. J. Sports Med.48(6), 1456–1464 (2020).
  • Yu H , ChengJ , ShiWet al. Bone marrow mesenchymal stem cell-derived exosomes promote tendon regeneration by facilitating the proliferation and migration of endogenous tendon stem/progenitor cells. Acta Biomater.1(106), 328–341 (2020).
  • Shi Z , WangQ , JiangD. Extracellular vesicles from bone marrow-derived multipotent mesenchymal stromal cells regulate inflammation and enhance tendon healing. J. Transl. Med.17(1), 211 (2019).
  • Yao Z , LiJ , WangXet al. MicroRNA-21-3p engineered umbilical cord stem cell-derived exosomes inhibit tendon adhesion. J. Inflamm. Res.7(13), 303–316 (2020).
  • Qi J , LiuQ , ReisdorfRLet al. Characterization of a purified exosome product and its effects on canine flexor tenocyte biology. J. Orthop. Res.38(8), 1845–1855 (2020).
  • Thankam FG , ChandraI , DiazCet al. Matrix regeneration proteins in the hypoxia-triggered exosomes of shoulder tenocytes and adipose-derived mesenchymal stem cells. Mol. Cell. Biochem.465(1–2), 75–87 (2020).
  • Baglio SR , RooijersK , Koppers-LalicDet al. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res. Ther.6(1), 127 (2015).
  • Wang ZG , HeZY , LiangS , YangQ , ChengP , ChenAM. Comprehensive proteomic analysis of exosomes derived from human bone marrow, adipose tissue, and umbilical cord mesenchymal stem cells. Stem Cell Res. Ther.11(1), 511 (2020).
  • Chen TS , LaiRC , LeeMM , ChooAB , LeeCN , LimSK. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res.38(1), 215–224 (2010).
  • Meng W , HeC , HaoY , WangL , LiL , ZhuG. Prospects and challenges of extracellular vesicle-based drug delivery system: considering cell source. Drug Deliv.27(1), 585–598 (2020).
  • Zou L , MaX , WuB , ChenY , XieD , PengC. Protective effect of bone marrow mesenchymal stem cell-derived exosomes on cardiomyoblast hypoxia-reperfusion injury through the miR-149/let-7c/Faslg sxis. Free Radic. Res.54(10), 1–19 (2020).
  • Duan M , ZhangY , ZhangH , MengY , QianM , ZhangG. Epidermal stem cell-derived exosomes promote skin regeneration by downregulating transforming growth factor-β1 in wound healing. Stem Cell Res. Ther.11(1), 452 (2020).
  • Kang J , LiZ , ZhiZ , WangS , XuG. MiR-21 derived from the exosomes of MSCs regulates the death and differentiation of neurons in patients with spinal cord injury. Gene Ther.26(12), 491–503 (2019).
  • Xu G , AoR , ZhiZ , JiaJ , YuB. miR-21 and miR-19b delivered by hMSC-derived EVs regulate the apoptosis and differentiation of neurons in patients with spinal cord injury. J. Cell. Physiol.234(7), 10205–10217 (2019).
  • Yang BC , KuangMJ , KangJY , ZhaoJ , MaJX , MaXL. Human umbilical cord mesenchymal stem cell-derived exosomes act via the miR-1263/Mob1/Hippo signaling pathway to prevent apoptosis in disuse osteoporosis. Biochem. Biophys. Res. Commun.524(4), 883–889 (2020).
  • Mao G , ZhangZ , HuSet al. Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A. Stem Cell Res. Ther.9(1), 247 (2018).
  • Mao G , WuP , ZhangZet al. MicroRNA-92a-3p regulates aggrecanase-1 and aggrecanase-2 expression in chondrogenesis and IL-1β-induced catabolism in human articular chondrocytes. Cell Physiol. Biochem.44(1), 38–52 (2017).
  • Wang C , SongW , ChenB , LiuX , HeY. Exosomes isolated from adipose-derived stem cells: a new cell-free approach to prevent the muscle degeneration associated with torn rotator cuffs. Am. J. Sports Med.47(13), 3247–3255 (2019).
  • Toh WS , LaiRC , ZhangB , LimSK. MSC exosome works through a protein-based mechanism of action. Biochem. Soc. Trans.46(4), 843–853 (2018).
  • Lin Y , AndersonJD , RahnamaLMA , GuSV , KnowltonAA. Exosomes in disease and regeneration: biological functions, diagnostics, and beneficial effects. Am. J. Physiol. Heart Circ. Physiol.319(6), H1162–H1180 (2020).
  • Wu Z , HeD , LiH. Bioglass enhances the production of exosomes and improves their capability of promoting vascularization. Bioact. Mater.6(3), 823–835 (2021).
  • Swanson WB , ZhangZ , XiuKet al. Scaffolds with controlled release of pro-mineralization exosomes to promote craniofacial bone healing without cell transplantation. Acta Biomater.118, 215–232 (2020).
  • Ramasubramanian L , KumarP , WangA. Engineering extracellular vesicles as nanotherapeutics for regenerative medicine. Biomolecules10(1), 48 (2019).
  • Trubiani O , MarconiGD , PierdomenicoSD , PiattelliA , DiomedeF , PizzicannellaJ. Human oral stem cells, biomaterials and extracellular vesicles: a promising tool in bone tissue repair. Int. J. Mol. Sci.20(20), 4987 (2019).
  • Monguió-Tortajada M , RouraS , Gálvez-MontónCet al. Nanosized UCMSC-derived extracellular vesicles but not conditioned medium exclusively inhibit the inflammatory response of stimulated T cells: implications for nanomedicine. Theranostics7(2), 270–284 (2017).
  • Bartoszewski N , ParnesN. Rotator cuff injuries. Jaapa31(4), 49–50 (2018).
  • Onks C , SilvisM , LoeffertJ , TuckerJ , GalloRA. Conservative care or surgery for rotator cuff tears?J. Fam. Pract.69(2), 66–72 (2020).
  • Euler SA , SpieglUJ , MillettPJ , PetriM. Current concepts for treatment of massive rotator cuff tears. Z. Orthop. Unfall.154(1), 28–34 (2016).
  • Piper CC , HughesAJ , MaY , WangH , NeviaserAS. Operative versus nonoperative treatment for the management of full-thickness rotator cuff tears: a systematic review and meta-analysis. J. Shoulder Elbow Surg.27(3), 572–576 (2018).
  • Peach MS , RamosDM , JamesRet al. Engineered stem cell niche matrices for rotator cuff tendon regenerative engineering. PLoS ONE12(4), e0174789 (2017).
  • Cocozza F , GrisardE , Martin-JaularL , MathieuM , ThéryC. SnapShot: extracellular vesicles. Cell182(1), 262–262.e261 (2020).
  • Zomer A , VendrigT , HopmansES , Van EijndhovenM , MiddeldorpJM , PegtelDM. Exosomes: fit to deliver small RNA. Commun. Integr. Biol.3(5), 447–450 (2010).
  • Behera J , TyagiN. Exosomes: mediators of bone diseases, protection, and therapeutics potential. Oncoscience5(5–6), 181–195 (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.