189
Views
0
CrossRef citations to date
0
Altmetric
Review

Growth Factors: Avenues for the Treatment of Myocardial Infarction and Potential Delivery Strategies

, , , , , , , , , , , ORCID Icon & show all
Pages 561-579 | Received 09 Jan 2022, Accepted 25 Apr 2022, Published online: 31 May 2022

References

  • Shi N , MeiX , ChenSY. Smooth muscle cells in vascular remodeling. Arterioscler. Thromb. Vasc. Biol.39(12), e247–e252 (2019).
  • Liu L , SongS , ZhangYPet al. Amphiregulin promotes cardiac fibrosis post myocardial infarction by inducing the endothelial-mesenchymal transition via the EGFR pathway in endothelial cells. Exp. Cell Res.390(2), 111950 (2020).
  • Wu QQ , XiaoY , YuanYet al. Mechanisms contributing to cardiac remodelling. Clin. Sci. (Lond.)131(18), 2319–2345 (2017).
  • Nallamothu BK , BradleyEH , KrumholzHM. Current concepts – time to treatment in primary percutaneous coronary intervention. N. Engl. J. Med.357(16), 1631–1638 (2007).
  • Dangas G , IakovouI , NikolskyEet al. Contrast-induced nephropathy after percutaneous coronary interventions in relation to chronic kidney disease and hemodynamic variables. Am. J. Cardiol.95(1), 13–19 (2005).
  • Best PJM , LennonR , TingHHet al. The impact of renal insufficiency on clinical outcomes in patients undergoing percutaneous coronary interventions. J. Am. Coll. Cardiol.39(7), 1113–1119 (2002).
  • Taylor DA , ZenovichAG. Cardiovascular cell therapy and endogenous repair. Diabetes Obes. Metab.10, 5–15 (2008).
  • Jeevanantham V , ButlerM , SaadA , Abdel-LatifA , Zuba-SurmaEK , DawnB. Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation126(5), 551–568 (2012).
  • Ye L , HaiderHK , TanRet al. Transplantation of nanoparticle transfected skeletal myoblasts overexpressing vascular endothelial growth factor-165 for cardiac repair. Circulation116(11 Suppl.), I113–I120 (2007).
  • Tang JN , CuiXL , CaranasosTGet al. Heart repair using nanogel-encapsulated human cardiac stem cells in mice and pigs with myocardial infarction. ACS Nano11(10), 9738–9749 (2017).
  • Li TS , ChengK , MalliarasKet al. Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells. J. Am. Coll. Cardiol.59(10), 942–953 (2012).
  • Fisher SA , ZhangHJ , DoreeC , MathurA , Martin-RendonE. Stem cell treatment for acute myocardial infarction. Cochrane Database Syst. Rev.2015(9), CD006536 (2015).
  • Fisher SA , DoreeC , MathurA , TaggartDP , Martin-RendonE. Stem cell therapy for chronic ischaemic heart disease and congestive heart failure. Cochrane Database Syst. Rev.12(12), CD007888 (2016).
  • Andrews PW , MatinMM , BahramiAR , DamjanovI , GokhaleP , DraperJS. Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin. Biochem. Soc. Trans.33, 1526–1530 (2005).
  • Heslop JA , HammondTG , SanteramoIet al. Concise review: workshop review: understanding and assessing the risks of stem cell-based therapies. Stem Cells Transl. Med.4(4), 389–400 (2015).
  • Malliaras K , LiTS , LuthringerDet al. Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells. Circulation125(1), 100–112 (2012).
  • Shamsul BS , AminuddinBS , NgMHA , RuszymahBHI. Age and gender effect on the growth of bone marrow stromal cells in vitro. Med. J. Malaysia59(Suppl. B), 196–197 (2004).
  • Conley SM , HicksonLJ , KelloggTAet al. Human obesity induces dysfunction and early senescence in adipose tissue-derived mesenchymal stromal/stem cells. Front. Cell Dev. Biol.8, 197 (2020).
  • Lefer DJ , MarbanE. Is cardioprotection dead?Circulation136(1), 98–109 (2017).
  • Tang XL , RokoshG , SanganalmathSKet al. Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation121(2), 293–305 (2010).
  • Cui X , TangJ , HartantoYet al. NIPAM-based microgel microenvironment regulates the therapeutic function of cardiac stromal cells. ACS Appl. Mater. Interfaces10(44), 37783–37796 (2018).
  • Li Q , HouH , LiMet al. CD73(+) mesenchymal stem cells ameliorate myocardial infarction by promoting angiogenesis. Front. Cell Dev. Biol.9, 637239 (2021).
  • Nagaya N , KangawaK , ItohTet al. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation112(8), 1128–1135 (2005).
  • Mathieu M , BartunekJ , ElOumeiri Bet al. Cell therapy with autologous bone marrow mononuclear stem cells is associated with superior cardiac recovery compared with use of nonmodified mesenchymal stem cells in a canine model of chronic myocardial infarction. J. Thorac. Cardiovasc. Surg.138(3), 646–653 (2009).
  • Askari AT , UnzekS , PopovicZBet al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet362(9385), 697–703 (2003).
  • Urbich C , AicherA , HeeschenCet al. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J. Mol. Cell. Cardiol.39(5), 733–742 (2005).
  • Shintani Y , FukushimaS , Varela-CarverAet al. Donor cell-type specific paracrine effects of cell transplantation for post-infarction heart failure. J. Mol. Cell. Cardiol.47(2), 288–295 (2009).
  • Fei Q , MaH , ZouJet al. Metformin protects against ischaemic myocardial injury by alleviating autophagy-ROS-NLRP3-mediated inflammatory response in macrophages. J. Mol. Cell. Cardiol.145, 1–13 (2020).
  • Ong SB , Hernandez-ResendizS , Crespo-AvilanGEet al. Inflammation following acute myocardial infarction: multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol. Ther.186, 73–87 (2018).
  • Zou J , FeiQ , XiaoHet al. VEGF-A promotes angiogenesis after acute myocardial infarction through increasing ROS production and enhancing ER stress-mediated autophagy. J. Cell. Physiol.234(10), 17690–17703 (2019).
  • Hernandez-Resendiz S , ChindaK , OngSB , Cabrera-FuentesH , ZazuetaC , HausenloyDJ. The role of redox dysregulation in the inflammatory response to acute myocardial ischaemia-reperfusion injury – adding fuel to the fire. Curr. Med. Chem.25(11), 1275–1293 (2018).
  • Loguinova M , PineginaN , KoganVet al. Monocytes of different subsets in complexes with platelets in patients with myocardial infarction. Thromb. Haemost.118(11), 1969–1981 (2018).
  • Rainger GE , ChimenM , HarrisonMJet al. The role of platelets in the recruitment of leukocytes during vascular disease. Platelets26(6), 507–520 (2015).
  • Kim Y , NurakhayevS , NurkeshA , ZharkinbekovZ , SaparovA. Macrophage polarization in cardiac tissue repair following myocardial infarction. Int. J. Mol. Sci.22(5), 2751 (2021).
  • Peet C , IveticA , BromageDI , ShahAM. Cardiac monocytes and macrophages after myocardial infarction. Cardiovasc. Res.116(6), 1101–1112 (2020).
  • Ibarra-Lara L , Sanchez-AguilarM , Soria-CastroEet al. Clofibrate treatment decreases inflammation and reverses myocardial infarction-induced remodelation in a rodent experimental model. Molecules24(2), 270 (2019).
  • Clerc OF , HaafP , BuechelRR , GaemperliO , ZellwegerMJ. New therapies to modulate post-infarction inflammatory alterations in the myocardium: state of the art and forthcoming applications. Curr. Radiopharm.14(3), 273–299 (2021).
  • Frangogiannis NG . Regulation of the inflammatory response in cardiac repair. Circ. Res.110(1), 159–173 (2012).
  • Ip WKE , HoshiN , ShouvalDS , SnapperS , MedzhitovR. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science356(6337), 513–519 (2017).
  • Dobaczewski M , ChenW , FrangogiannisNG. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J. Mol. Cell. Cardiol.51(4), 600–606 (2011).
  • Chen W , FrangogiannisNG. Fibroblasts in post-infarction inflammation and cardiac repair. Biochim. Biophys. Acta1833(4), 945–953 (2013).
  • Yang Z , WanJ , PanW , ZouJ. Expression of vascular endothelial growth factor in cardiac repair: signaling mechanisms mediating vascular protective effects. Int. J. Biol. Macromol.113, 179–185 (2018).
  • Rong SL , WangXL , WangYCet al. Anti-inflammatory activities of hepatocyte growth factor in post-ischemic heart failure. Acta Pharmacol. Sin.39(10), 1613–1621 (2018).
  • Madonna R , PetrovL , TeberinoMAet al. Transplantation of adipose tissue mesenchymal cells conjugated with VEGF-releasing microcarriers promotes repair in murine myocardial infarction. Cardiovasc. Res.108(1), 39–49 (2015).
  • Bourron O , LeBouc Y , BerardLet al. Impact of age-adjusted insulin-like growth factor 1 on major cardiovascular events after acute myocardial infarction: results from the FAST-MI registry. J. Clin. Endocrinol. Metab.100(5), 1879–1886 (2015).
  • Heinen A , NederlofR , PanjwaniPet al. IGF1 treatment improves cardiac remodeling after infarction by targeting myeloid cells. Mol. Ther.27(1), 46–58 (2019).
  • Lin M , LiuX , ZhengHet al. IGF-1 enhances BMSC viability, migration, and anti-apoptosis in myocardial infarction via secreted frizzled-related protein 2 pathway. Stem Cell Res. Ther.11(1), 22 (2020).
  • Zhang A , HuJ , XuZ , WangC , BianL. TNF-alpha and IL-18 as diagnostic markers for acute myocardial infarction (AMI) and risk factors for AMI-related death. Int. J. Clin. Exp. Med.13(8), 5941–5949 (2020).
  • O’Brien LC , MezzaromaE , Van TassellBWet al. Interleukin-18 as a therapeutic target in acute myocardial infarction and heart failure. Mol. Med.20, 221–229 (2014).
  • Venkatachalam K , PrabhuSD , ReddyVS , BoylstonWH , ValenteAJ , ChandrasekarB. Neutralization of interleukin-18 ameliorates ischemia/reperfusion-induced myocardial injury. J. Biol. Chem.284(12), 7853–7865 (2009).
  • Gu H , XieM , XuL , ZhengX , YangY , LvX. The protective role of interleukin-18 binding protein in a murine model of cardiac ischemia/reperfusion injury. Transpl. Int.28(12), 1436–1444 (2015).
  • Edlinger C , WernlyB , LeischMet al. Analysis of ambient influences affecting interleukin-6 secretion in the context of clinical trials of stem cell therapy for myocardial infarction. Clin. Lab.62(6), 1061–1068 (2016).
  • Neri M , FineschiV , DiPaolo Met al. Cardiac oxidative stress and inflammatory cytokines response after myocardial infarction. Curr. Vasc. Pharmacol.13(1), 26–36 (2015).
  • Wilkowska A , PikulaM , RynkiewiczA , Wdowczyk-SzulcJ , TrzonkowskiP , LandowskiJ. Increased plasma pro-inflammatory cytokine concentrations after myocardial infarction and the presence of depression during next 6-months. Psychiatr. Pol.49(3), 455–464 (2015).
  • Fanola CL , MorrowDA , CannonCPet al. Interleukin-6 and the risk of adverse outcomes in patients after an acute coronary syndrome: observations from the SOLID-TIMI 52 (Stabilization of Plaque Using Darapladib–Thrombolysis in Myocardial Infarction 52) trial. J. Am. Heart Assoc.6(10), e005637 (2017).
  • Jong WMC , TenCate H , LinnenbankACet al. Reduced acute myocardial ischemia–reperfusion injury in IL-6-deficient mice employing a closed-chest model. Inflamm. Res.65(6), 489–499 (2016).
  • Orrem HL , NilssonPH , PischkeSEet al. IL-6 receptor inhibition by tocilizumab attenuated expression of C5a receptor 1 and 2 in non-ST-elevation myocardial infarction. Front. Immunol.9, 2037 (2018).
  • Shahrivari M , WiseE , ResendeMet al. Peripheral blood cytokine levels after acute myocardial infarction IL-1β- and IL-6-related impairment of bone marrow function. Circ. Res.120(12), 1947–1957 (2017).
  • Cen W , ChenZ , GuN , HoppeR. Prevention of AMI induced ventricular remodeling: inhibitory effects of heart-protecting musk pill on IL-6 and TNF-alpha. Evid. Based Complement. Alternat. Med.2017, 3217395 (2017).
  • Jung M , MaY , IyerRPet al. IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation. Basic Res. Cardiol.112(3), 33 (2017).
  • Cihakova D . Interleukin-10 stiffens the heart. J. Exp. Med.215(2), 379–381 (2018).
  • Cambier L , DeCouto G , IbrahimAet al. RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL-10 expression and secretion. EMBO Mol. Med.9(3), 337–352 (2017).
  • Meng D , HanS , JeongIS , KimSW. Interleukin 10-secreting MSCs via TALEN-mediated gene editing attenuates left ventricular remodeling after myocardial infarction. Cell. Physiol. Biochem.52(4), 728–741 (2019).
  • Pickup MW , OwensP , MosesHL. TGF-β, bone morphogenetic protein, and activin signaling and the tumor microenvironment. Cold Spring Harb. Perspect. Biol.9(5), a022285 (2017).
  • Lu Q , WangWW , ZhangMZet al. ROS induces epithelial-mesenchymal transition via the TGF-1/PI3K/Akt/mTOR pathway in diabetic nephropathy. Exp. Ther. Med.17(1), 835–846 (2019).
  • Zhang S , CheD , YangFet al. Tumor-associated macrophages promote tumor metastasis via the TGF-β/SOX9 axis in non-small cell lung cancer. Oncotarget8(59), 99801–99815 (2017).
  • Frangogiannis NG . The role of transforming growth factor (TGF)-β in the infarcted myocardium. J. Thorac. Dis.9, S52–S63 (2017).
  • Goumans MJ , TenDijke P. TGF-β signaling in control of cardiovascular function. Cold Spring Harb. Perspect. Biol.10(2), a022210 (2018).
  • Zhang XG , WeiY , JiangJ , WangL , LiangHY , LeiCB. Effect of TGF-β1 on myocardial cell apoptosis in rats with acute myocardial infarction via MAPK signaling pathway. Eur. Rev. Med. Pharmacol. Sci.24(3), 1350–1356 (2020).
  • Dergilev KV , TsokolaevaZI , BeloglazovaIB , RatnerEI , ParfenovaEV. Transforming growth factor beta (TGF-β1) induces pro-reparative phenotypic changes in epicardial cells in mice. Bull. Exp. Biol. Med.170(4), 565–570 (2021).
  • Wu L , ChenG , SongJ. Association between TGF-β1-913G/C polymorphism and myocardial infarction risk in a Chinese Han population: a case–control study. Biosci. Rep.39, BSR20190315 (2019).
  • Zhang Z , LongC , GuanY , SongM. Hepatocyte growth factor intervention to reduce myocardial injury and improve cardiac function on diabetic myocardial infarction rats. Eur. J. Histochem.64, 3124 (2020).
  • Wang LS , WangH , ZhangQL , YangZJ , KongFX , WuCT. Hepatocyte growth factor gene therapy for ischemic diseases. Hum. Gene Ther.29(4), 413–423 (2018).
  • Meng H , BoC , TaoZet al. Safety and efficacy of adenovirus carrying hepatocyte growth factor gene by percutaneous endocardial injection for treating post-infarct heart failure: a phase IIa clinical trial. Curr. Gene Ther.18(2), 125–130 (2018).
  • Gallo S , SalaV , GattiS , CrepaldiT. Cellular and molecular mechanisms of HGF/Met in the cardiovascular system. Clin. Sci.129(12), 1173–1193 (2015).
  • Itoh N , OhtaH , NakayamaY , KonishiM. Roles of FGF signals in heart development, health, and disease. Front. Cell Dev. Biol.4, 110 (2016).
  • Rao Z , ShenD , ChenJet al. Basic fibroblast growth factor attenuates injury in myocardial infarction by enhancing hypoxia-inducible factor-1 alpha accumulation. Front. Pharmacol.11, 1193 (2020).
  • Yamasaki S , NabeshimaK , SotomaruYet al. Long-term serial cultivation of mouse induced pluripotent stem cells in serum-free and feeder-free defined medium. Int. J. Dev. Biol.57(9–10), 715–724 (2013).
  • Singla DK , SinglaRD , AbdelliLS , GlassC. Fibroblast growth factor-9 enhances M2 macrophage differentiation and attenuates adverse cardiac remodeling in the infarcted diabetic heart. PLoS One10(3), e0120739 (2015).
  • Ruperez C , LerinC , Ferrer-CurriuGet al. Autophagic control of cardiac steatosis through FGF21 in obesity-associated cardiomyopathy. Int. J. Cardiol.260, 163–170 (2018).
  • Gomez-Samano MA , Grajales-GomezM , Zuarth-VazquezJMet al. Fibroblast growth factor 21 and its novel association with oxidative stress. Redox Biol.11, 335–341 (2017).
  • Yan X , ChenJ , ZhangCet al. FGF21 deletion exacerbates diabetic cardiomyopathy by aggravating cardiac lipid accumulation. J. Cell. Mol. Med.19(7), 1557–1568 (2015).
  • Pan X , ShaoY , WuFet al. FGF21 prevents angiotensin II-induced hypertension and vascular dysfunction by activation of ACE2/angiotensin-(1–7) axis in mice. Cell Metab.27(6), 1323–1337.e5 (2018).
  • Bergmark BA , UdellJA , MorrowDAet al. Association of fibroblast growth factor 23 with recurrent cardiovascular events in patients after an acute coronary syndrome: a secondary analysis of a randomized clinical trial. JAMA Cardiol.3(6), 473–480 (2018).
  • Fuernau G , PoessJ , DenksDet al. Fibroblast growth factor 23 in acute myocardial infarction complicated by cardiogenic shock: a biomarker substudy of the Intraaortic Balloon Pump in Cardiogenic Shock II (IABP-SHOCK II) trial. Crit. Care18(6), 713 (2014).
  • Ziff OJ , BromageDI , YellonDM , DavidsonSM. Therapeutic strategies utilizing SDF-1 alpha in ischaemic cardiomyopathy. Cardiovasc. Res.114(3), 358–367 (2018).
  • Gong XH , LiuH , WangSJ , LiangSW , WangGG. Exosomes derived from SDF1-overexpressing mesenchymal stem cells inhibit ischemic myocardial cell apoptosis and promote cardiac endothelial microvascular regeneration in mice with myocardial infarction. J. Cell. Physiol.234(8), 13878–13893 (2019).
  • Goldstone AB , BurnettCE , CohenJEet al. SDF 1-alpha attenuates myocardial injury without altering the direct contribution of circulating cells. J. Cardiovasc. Transl. Res.11(4), 274–284 (2018).
  • Huang FY , XiaTL , LiJLet al. The bifunctional SDF-1-AnxA5 fusion protein protects cardiac function after myocardial infarction. J. Cell. Mol. Med.23(11), 7673–7684 (2019).
  • Su G , LiuL , YangL , MuY , GuanL. Homing of endogenous bone marrow mesenchymal stem cells to rat infarcted myocardium via ultrasound-mediated recombinant SDF-1 alpha adenovirus in microbubbles. Oncotarget9(1), 477–487 (2018).
  • Chung ES , MillerL , PatelANet al. Changes in ventricular remodelling and clinical status during the year following a single administration of stromal cell-derived factor-1 non-viral gene therapy in chronic ischaemic heart failure patients: the STOP-HF randomized phase II trial. Eur. Heart J.36(33), 2228–2238 (2015).
  • Cacciapuoti M , JohnsonB , KapdiaA , PowellS , GallicanoGI. The role of neuregulin and stem cells as therapy post-myocardial infarction. Stem Cells Dev.29(19), 1266–1274 (2020).
  • Lin Y , LiuH , WangX. Neuregulin-1, a microvascular endothelial-derived protein, protects against myocardial ischemia–reperfusion injury (review). Int. J. Mol. Med.46(3), 925–935 (2020).
  • Dugaucquier L , FeyenE , MateiuL , BruynsTAM , DeKeulenaer GW , SegersVFM. The role of endothelial autocrine NRG1/ERBB4 signaling in cardiac remodeling. Am. J. Physiol. Heart Circ. Physiol.319(2), H443–H455 (2020).
  • Miao J , HuangS , SuYRet al. Effects of endogenous serum neuregulin-1 on morbidity and mortality in patients with heart failure and left ventricular systolic dysfunction. Biomarkers23(7), 704–708 (2018).
  • Ganapathy B , NandhagopalN , PolizzottiBDet al. Neuregulin-1 administration protocols sufficient for stimulating cardiac regeneration in young mice do not induce somatic, organ, or neoplastic growth. PLoS One11(5), e0155456 (2016).
  • Yang G , WuC , LiLet al. Neuregulin-1 protects cardiac electrical conduction through downregulating matrix metalloproteinase-9 and upregulating connexin 43 in a rat myocardial infarction model. Pharmazie74(4), 231–234 (2019).
  • Rao P , LiuZ , DuanHet al. Pretreatment with neuregulin-1 improves cardiac electrophysiological properties in a rat model of myocardial infarction. Exp. Ther. Med.17(4), 3141–3149 (2019).
  • Cohen JE , GoldstoneAB , WangHet al. A bioengineered neuregulin–hydrogel therapy reduces scar size and enhances post-infarct ventricular contractility in an ovine large animal model. J. Cardiovasc. Dev. Dis.7(4), 53 (2020).
  • Epstein SE , KornowskiR , FuchsS , DvorakHF. Angiogenesis therapy – amidst the hype, the neglected potential for serious side effects. Circulation104(1), 115–119 (2001).
  • Inoue M , ItohH , UedaMet al. Vascular endothelial growth factor (VEGF) expression in human coronary atherosclerotic lesions – possible pathophysiological significance of VEGF in progression of atherosclerosis. Circulation98(20), 2108–2116 (1998).
  • Lee RJ , SpringerML , Blanco-BoseWE , ShawR , UrsellPC , BlauHM. VEGF gene delivery to myocardium – deleterious effects of unregulated expression. Circulation102(8), 898–901 (2000).
  • Liu G , LiL , HuoDet al. A VEGF delivery system targeting MI improves angiogenesis and cardiac function based on the tropism of MSCs and layer-by-layer self-assembly. Biomaterials127, 117–131 (2017).
  • Scott RC , RosanoJM , IvanovZet al. Targeting VEGF-encapsulated immunoliposomes to MI heart improves vascularity and cardiac function. FASEB J.23(10), 3361–3367 (2009).
  • Awada HK , HwangMTP , WangYD. Towards comprehensive cardiac repair and regeneration after myocardial infarction: aspects to consider and proteins to deliver. Biomaterials82, 94–112 (2016).
  • Fan C , ShiJ , ZhuangYet al. Myocardial-infarction-responsive smart hydrogels targeting matrix metalloproteinase for on-demand growth factor delivery. Adv. Mater.31(40), e1902900 (2019).
  • Atienza-Roca P , KieserDC , CuiXet al. Visible light mediated PVA–tyramine hydrogels for covalent incorporation and tailorable release of functional growth factors. Biomater. Sci.8(18), 5005–5019 (2020).
  • Yuan Z , TsouYH , ZhangXQet al. Injectable citrate-based hydrogel as an angiogenic biomaterial improves cardiac repair after myocardial infarction. ACS Appl. Mater. Interfaces11(42), 38429–38439 (2019).
  • Feng J , WuY , ChenWet al. Sustained release of bioactive IGF-1 from a silk fibroin microsphere-based injectable alginate hydrogel for the treatment of myocardial infarction. J. Mater. Chem. B8(2), 308–315 (2020).
  • Saludas L , Pascual-GilS , RoliF , GarbayoE , Blanco-PrietoMJ. Heart tissue repair and cardioprotection using drug delivery systems. Maturitas110, 1–9 (2018).
  • Qi Q , LuL , LiHQet al. Spatiotemporal delivery of nanoformulated liraglutide for cardiac regeneration after myocardial infarction. Int. J. Nanomedicine12, 4835–4848 (2017).
  • Formiga FR , PelachoB , GarbayoEet al. Sustained release of VEGF through PLGA microparticles improves vasculogenesis and tissue remodeling in an acute myocardial ischemia–reperfusion model. J. Control. Release147(1), 30–37 (2010).
  • Chang MY , YangYJ , ChangCHet al. Functionalized nanoparticles provide early cardioprotection after acute myocardial infarction. J. Control. Rel.170(2), 287–294 (2013).
  • Davis ME , HsiehPCH , TakahashiTet al. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc. Natl Acad. Sci. U. S. A.103(21), 8155–8160 (2006).
  • Hsieh PCH , DavisME , GannonJ , MacGillivrayC , LeeRT. Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J. Clin. Invest.116(1), 237–248 (2006).
  • Kim JH , JungY , KimSHet al. The enhancement of mature vessel formation and cardiac function in infarcted hearts using dual growth factor delivery with self-assembling peptides. Biomaterials32(26), 6080–6088 (2011).
  • Yin R , YangD , WuH , HuangK , WuX , ChenY. Intramyocardial injection of vascular endothelial growth factor gene improves cardiac performance and inhibits cardiomyocyte apoptosis. Eur. J. Heart Fail.9(4), 343–351 (2007).
  • Wu X , WangD , QinKet al. Cardiac repair with echocardiography-guided multiple percutaneous left ventricular intramyocardial injection of hiPSC-CMs after myocardial infarction. Front. Cardiovasc. Med.8, 768873 (2021).
  • Maslov M , FoianiniS , LovichM. Delivery of drugs, growth factors, genes and stem cells via intrapericardial, epicardial and intramyocardial routes for sustained local targeted therapy of myocardial disease. Expert Opin. Drug Deliv.14(10), 1227–1239 (2017).
  • Mei X , ChengK. Recent development in therapeutic cardiac patches. Front. Cardiovasc. Med.7, 610364 (2020).
  • Yang SY , O’CearbhaillED , SiskGCet al. A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue. Nat. Commun.4, 1702 (2013).
  • Lakshmanan R , KumaraswamyP , KrishnanUM , SethuramanS. Engineering a growth factor embedded nanofiber matrix niche to promote vascularization for functional cardiac regeneration. Biomaterials97, 176–195 (2016).
  • Park BW , JungSH , DasSet al. In vivo priming of human mesenchymal stem cells with hepatocyte growth factor-engineered mesenchymal stem cells promotes therapeutic potential for cardiac repair. Sci. Adv.6(13), eaay6994 (2020).
  • Shi H , XueT , YangYet al. Microneedle-mediated gene delivery for the treatment of ischemic myocardial disease. Sci. Adv.6(25), eaaz3621 (2020).
  • Tang J , WangJ , HuangKet al. Cardiac cell-integrated microneedle patch for treating myocardial infarction. Sci. Adv.4(11), eaat9365 (2018).
  • Bar A , CohenS. Inducing endogenous cardiac regeneration: can biomaterials connect the dots?Front. Bioeng. Biotechnol.8, 126 (2020).
  • Edelman ER , NugentMA , KarnovskyMJ. Perivascular and intravenous administration of basic fibroblast growth factor: vascular and solid organ deposition. Proc. Natl Acad. Sci. USA90(4), 1513–1517 (1993).
  • Qiao B , NieJJ , ShaoYet al. Functional nanocomplexes with vascular endothelial growth factor A/C isoforms improve collateral circulation and cardiac function. Small16(4), e1905925 (2020).
  • Kim H , YunN , MunDet al. Cardiac-specific delivery by cardiac tissue-targeting peptide-expressing exosomes. Biochem. Biophys. Res. Commun.499(4), 803–808 (2018).
  • Su T , HuangK , MaHet al. Platelet-inspired nanocells for targeted heart repair after ischemia/reperfusion injury. Adv. Funct. Mater.29(4), 1803567 (2019).
  • Tang J , CuiX , ZhangZet al. Injection-free delivery of MSC-derived extracellular vesicles for myocardial infarction therapeutics. Adv. Healthc. Mater.11(5), e2100312 (2022).
  • Mori D , MiyagawaS , YajimaSet al. Cell spray transplantation of adipose-derived mesenchymal stem cell recovers ischemic cardiomyopathy in a porcine model. Transplantation102(12), 2012–2024 (2018).
  • Miragoli M , CeriottiP , IafiscoMet al. Inhalation of peptide-loaded nanoparticles improves heart failure. Sci. Transl. Med.10(424), eaan6205 (2018).
  • Richards DJ , LiY , KerrCMet al. Human cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicity. Nat. Biomed. Eng.4(4), 446–462 (2020).
  • Yang X , ZhangY , HosakaKet al. VEGF-B promotes cancer metastasis through a VEGF-A-independent mechanism and serves as a marker of poor prognosis for cancer patients. Proc. Natl Acad. Sci. U. S. A.112(22), e2900–e2909 (2015).
  • Hao H , MaS , ZhengCet al. Excessive fibroblast growth factor 23 promotes renal fibrosis in mice with type 2 cardiorenal syndrome. Aging (Albany NY)13(2), 2982–3009 (2021).
  • Kim YS , LeeHJ , HanMH , YoonNK , KimYC , AhnJ. Effective production of human growth factors in Escherichia coli by fusing with small protein 6HFh8. Microb. Cell Fact.20(1), 9 (2021).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.