265
Views
0
CrossRef citations to date
0
Altmetric
Review

From Cell Culture to a Cure: Pancreatic β-Cell Replacement Strategies for Diabetes Mellitus

, &
Pages 685-695 | Published online: 06 Sep 2012

References

  • D‘AlessioDA, VerchereCB, KahnSE et al. Pancreatic expression and secretion of human islet amyloid polypeptide in a transgenic mouse. Diabetes43(12) , 1457–1461 (1994).
  • JohnsonJD, LucianiDS. Mechanisms of pancreatic beta-cell apoptosis in diabetes and its therapies. Adv. Exp. Med. Biol.654 , 447–462 (2010).
  • BrunettiA, ChiefariE, FotiD. [Perspectives on the contribution of genetics to the pathogenesis of Type 2 diabetes mellitus.] Recenti Prog. Med.102(12) , 468–475 (2011).
  • BlondeL. Benefits and risks for intensive glycemic control in patients with diabetes mellitus. Am. J. Med. Sci.343(1) , 17–20 (2012).
  • SquiffletJP, GruessnerRW, SutherlandDE. The history of pancreas transplantation: past, present and future. Acta Chir. Belg.108(3) , 367–378 (2008).
  • RichterA, LernerS, SchröppelB. Current state of combined kidney and pancreas transplantation. Blood Purif.31(1–3) , 96–101 (2011).
  • DrachenbergCB, KlassenDK, WeirMR et al. Islet cell damage associated with tacrolimus and cyclosporine: morphological features in pancreas allograft biopsies and clinical correlation. Transplantation68(3) , 396–402 (1999).
  • SchnickelGT, BusuttilRW, LipshutzGS. Improvement in short-term pancreas transplant outcome by targeted antimicrobial therapy and refined donor selection. Am. Surg.77(10) , 1407–1411 (2011).
  • ReemtsmaK. Experimental islet cell grafting: a transplantation model. Transplant. Proc.2(4) , 513–515 (1970).
  • MatsumotoS. Autologous islet cell transplantation to prevent surgical diabetes. J. Diabetes3(4) , 328–336 (2011).
  • BerneyT, JohnsonPR. Donor pancreata: evolving approaches to organ allocation for whole pancreas versus islet transplantation. Transplantation90(3) , 238–243 (2010).
  • BalamuruganAN, LoganathanG, BellinMD et al. A new enzyme mixture to increase the yield and transplant rate of autologous and allogeneic human islet products. Transplantation93(7) , 693–702 (2012).
  • TakitaM, MatsumotoS, ShimodaM et al. Association between the secretory unit of islet transplant objects index and satisfaction with insulin therapy among insulin-dependent islet recipients. Transplant. Proc.43(9) , 3250–3255 (2011).
  • ShapiroAM, RicordiC, HeringBJ et al. International trial of the Edmonton protocol for islet transplantation. N. Engl. J. Med.355(13) , 1318–1330 (2006).
  • D‘AmourKA, AgulnickAD, EliazerS, KellyOG, KroonE, BaetgeEE. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat. Biotechnol.23(12) , 1534–1541 (2005).
  • D‘AmourKA, BangAG, EliazerS et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat. Biotechnol.24(11) , 1392–1401 (2006).
  • JiangW, ShiY, ZhaoD et al.In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res.17(4) , 333–344 (2007).
  • KroonE, MartinsonLA, KadoyaK et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol.26(4) , 443–452 (2008).
  • PhillipsBW, HentzeH, RustWL et al. Directed differentiation of human embryonic stem cells into the pancreatic endocrine lineage. Stem Cells Dev.16(4) , 561–578 (2007).
  • ShimJH, KimSE, WooDH et al. Directed differentiation of human embryonic stem cells towards a pancreatic cell fate. Diabetologia50(6) , 1228–1238 (2007).
  • TakahashiK, YamanakaS. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126(4) , 663–676 (2006).
  • YuJ, VodyanikMA, Smuga-OttoK et al. Induced pluripotent stem cell lines derived from human somatic cells. Science318(5858) , 1917–1920 (2007).
  • TakahashiK, OkitaK, NakagawaM, YamanakaS. Induction of pluripotent stem cells from fibroblast cultures. Nat. Protoc.2(12) , 3081–3089 (2007).
  • HiraiH, TaniT, Katoku-KikyoN et al. Radical acceleration of nuclear reprogramming by chromatin remodeling with the transactivation domain of MyoD. Stem Cells29(9) , 1349–1361 (2011).
  • AasenT, RayaA, BarreroMJ et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol.26(11) , 1276–1284 (2008).
  • FusakiN, BanH, NishiyamaA, SaekiK, HasegawaM. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc. Jpn Acad. Ser. B Phys. Biol. Sci.85(8) , 348–362 (2009).
  • KimD, Kim C-H, Moon J-I et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell4(6) , 472–476 (2009).
  • YuJ, HuK, Smuga-OttoK et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science324(5928) , 797–801 (2009).
  • HuK, YuJ, SuknunthaK et al. Efficient generation of transgene-free induced pluripotent stem cells from normal and neoplastic bone marrow and cord blood mononuclear cells. Blood117(14) , e109–e119 (2011).
  • JiaF, WilsonKD, SunN et al. A nonviral minicircle vector for deriving human iPS cells. Nat. Methods7(3) , 197–199 (2010).
  • WarrenL, ManosPD, AhfeldtT et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell7(5) , 618–630 (2010).
  • Kanai-AzumaM, KanaiY, GadJM et al. Depletion of definitive gut endoderm in Sox17-null mutant mice. Development129(10) , 2367–2379 (2002).
  • StaffordD, PrinceVE. Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development. Curr. Biol.12(14) , 1215–1220 (2002).
  • StaffordD, HornbruchA, MuellerPR, PrinceVE. A conserved role for retinoid signaling in vertebrate pancreas development. Dev. Genes Evol.214(9) , 432–441 (2004).
  • KimSK, MeltonDA. Pancreas development is promoted by cyclopamine, a hedgehog signaling inhibitor. Proc. Natl Acad. Sci. USA95(22) , 13036–13041 (1998).
  • BurnsCJ. Stem cell therapy for diabetes: do we need to make beta cells? J. Endocrinol.183(3) , 437–443 (2004).
  • FernandesAM, FernandesTG, DiogoMM, Da Silva CL, Henrique D, Cabral JMS. Mouse embryonic stem cell expansion in a microcarrier-based stirred culture system. J. Biotechnol.132(2) , 227–236 (2007).
  • Fernandes-PlatzgummerA, DiogoMM, BaptistaRP, SilvaCLD, CabralJMS. Scale-up of mouse embryonic stem cell expansion in stirred bioreactors. Biotechnol. Prog.27(5) , 1421–1432 (2011).
  • FernandesAM, MarinhoPA, SartoreRC et al. Successful scale-up of human embryonic stem cell production in a stirred microcarrier culture system. Braz. J. Med. Biol. Res.42(6) , 515–522 (2009).
  • SantosFD, AndradePZ, AbecasisMM et al. Toward a clinical-grade expansion of mesenchymal stem cells from human sources: a microcarrier-based culture system under xeno-free conditions. Tissue Eng. Part C Methods17(12) , 1201–1210 (2011).
  • ShafaM, KrawetzR, ZhangY et al. Impact of stirred suspension bioreactor culture on the differentiation of murine embryonic stem cells into cardiomyocytes. BMC Cell Biol.12(1) , 53 (2011).
  • TaianiJT, KrawetzRJ, Zur Nieden NI et al. Reduced differentiation efficiency of murine embryonic stem cells in stirred suspension bioreactors. Stem Cells Dev.19(7) , 989–998 (2010).
  • LockLT, TzanakakisES. Expansion and differentiation of human embryonic stem cells to endoderm progeny in a microcarrier stirred-suspension culture. Tissue Eng. Part A15(8) , 2051–2063 (2009).
  • WangN, AdamsG, ButteryL, FalconeFH, StolnikS. Alginate encapsulation technology supports embryonic stem cells differentiation into insulin-producing cells. J. Biotechnol.144(4) , 304–312 (2009).
  • XuC. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ. Res.91(6) , 501–508 (2002).
  • HandgretingerR, LangP, IhmK et al. Isolation and transplantation of highly purified autologous peripheral CD34+ progenitor cells: purging efficacy, hematopoietic reconstitution and long-term outcome in children with high-risk neuroblastoma. Bone Marrow Transplant.29(9) , 731–736 (2002).
  • KollerMR, HananiaEG, StevensJ et al. High-throughput laser-mediated in situ cell purification with high purity and yield. Cytometry61(2) , 153–161 (2004).
  • PetersenOW, GudjonssonT, VilladsenR, BissellMJ, R⊘nnov-JessenL. Epithelial progenitor cell lines as models of normal breast morphogenesis and neoplasia. Cell Prolif.36(Suppl. 1) , 33–44 (2003).
  • SafaríkI, SafaríkováM. Use of magnetic techniques for the isolation of cells. J. Chromatogr. B Biomed. Sci. Appl.722(1–2) , 33–53 (1999).
  • ChooAB, TanHL, AngSN et al. Selection against undifferentiated human embryonic stem cells by a cytotoxic antibody recognizing podocalyxin-like protein-1. Stem Cells26(6) , 1454–1463 (2008).
  • LenzenS. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia51(2) , 216–226 (2008).
  • InadaA, KanamoriH, AraiH et al. A model for diabetic nephropathy: advantages of the inducible cAMP early repressor transgenic mouse over the streptozotocin-induced diabetic mouse. J. Cell. Physiol.215(2) , 383–391 (2008).
  • AlipioZ, LiaoW, RoemerEJ et al. Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic beta-like cells. Proc. Natl Acad. Sci. USA107(30) , 13426–13431 (2010).
  • SaitoH, TakeuchiM, ChidaK, MiyajimaA. Generation of glucose-responsive functional islets with a three-dimensional structure from mouse fetal pancreatic cells and iPS cells in vitro. PLoS One6(12) , e28209 (2011).
  • RoepBO. Are insights gained from NOD mice sufficient to guide clinical translation? Another inconvenient truth. Ann. NY Acad. Sci.1103(1) , 1–10 (2007).
  • Von HerrathM, NepomGT. Animal models of human Type 1 diabetes. Nat. Immunol.10(2) , 129–132 (2009).
  • ShodaLKM, YoungDL, RamanujanS et al. A comprehensive review of interventions in the NOD mouse and implications for translation. Immunity23(2) , 115–126 (2005).
  • BrehmMA, BortellR, DiiorioP et al. Human immune system development and rejection of human islet allografts in spontaneously diabetic NOD-Rag1null IL2rgammanull Ins2Akita mice. Diabetes59(9) , 2265–2270 (2010).
  • VerchereCB, D‘alessioDA, PalmiterRD et al. Islet amyloid formation associated with hyperglycemia in transgenic mice with pancreatic beta cell expression of human islet amyloid polypeptide. Proc. Natl Acad. Sci. USA93(8) , 3492–3496 (1996).
  • ButlerAE, JangJ, GurloT, CartyMD, SoellerWC, ButlerPC. Diabetes due to a progressive defect in beta-cell mass in rats transgenic for human islet amyloid polypeptide (HIP Rat): a new model for Type 2 diabetes. Diabetes53(6) , 1509–1516 (2004).
  • FiorinaP, ShapiroAMJ, RicordiC, SecchiA. The clinical impact of islet transplantation. Am. J. Transplant.8(10) , 1990–1997 (2008).
  • MayhewCN, WellsJM. Converting human pluripotent stem cells into beta-cells: recent advances and future challenges. Curr. Opin. Organ Transplant.15(1) , 54–60 (2010).
  • Van Der WindtDJ, EcheverriGJ, IjzermansJN, CooperDK. The choice of anatomical site for islet transplantation. Cell. Transplant17(9) , 1005–1014 (2008).
  • O‘SullivanES, VegasA, AndersonDG, WeirGC. Islets transplanted in immunoisolation devices: a review of the progress and the challenges that remain. Endocr. Rev.32(6) , 827–844 (2011).
  • ZhiZ-L, Liu B, Jones PM, Pickup JC. Polysaccharide multilayer nanoencapsulation of insulin-producing beta-cells grown as pseudoislets for potential cellular delivery of insulin. Biomacromolecules11(3) , 610–616 (2010).
  • ShaoS, GaoY, XieB, XieF, LimSK, LiG. Correction of hyperglycemia in Type 1 diabetic models by transplantation of encapsulated insulin-producing cells derived from mouse embryo progenitor. J. Endocrinol.208(3) , 245–255 (2011).
  • JourdanG, DusseaultJ, BenhamouPY, RosenbergL, HalléJP. Co-encapsulation of bioengineered IGF-II-producing cells and pancreatic islets: effect on beta-cell survival. Gene Ther.18(6) , 539–545 (2011).
  • IlievaA, YuanS, WangRN, AgapitosD, HillDJ, RosenbergL. Pancreatic islet cell survival following islet isolation: the role of cellular interactions in the pancreas. J. Endocrinol.161(3) , 357–364 (1999).
  • RobitailleR. Insulin-like growth factor II allows prolonged blood glucose normalization with a reduced islet cell mass transplantation. Endocrinology144(7) , 3037–3045 (2003).
  • KimH, ToyofukuY, LynnFC et al. Serotonin regulates pancreatic beta cell mass during pregnancy. Nat. Med.16(7) , 804–808 (2010).
  • SorensonRL, BreljeTC. Adaptation of islets of Langerhans to pregnancy: beta-cell growth, enhanced insulin secretion and the role of lactogenic hormones. Horm. Metab. Res.29(6) , 301–307 (1997).
  • NielsenJH, GalsgaardED, M⊘ldrupA et al. Regulation of beta-cell mass by hormones and growth factors. Diabetes50(Suppl. 1) , S25–S29 (2001).
  • ParsonsJA, BreljeTC, SorensonRL. Adaptation of islets of Langerhans to pregnancy: increased islet cell proliferation and insulin secretion correlates with the onset of placental lactogen secretion. Endocrinology130(3) , 1459–1466 (1992).
  • YechoorV, ChanL. Minireview: beta-cell replacement therapy for diabetes in the 21st century: manipulation of cell fate by directed differentiation. Mol. Endocrinol.24(8) , 1501–1511 (2010).
  • BaeyensL, BreuckS, LardonJ, MfopouJK, RoomanI, BouwensL. In vitro generation of insulin-producing beta cells from adult exocrine pancreatic cells. Diabetologia48(1) , 49–57 (2004).
  • LardonJ, HuyensN, RoomanI, BouwensL. Exocrine cell transdifferentiation in dexamethasone-treated rat pancreas. Virchows Arch.444(1) , 61–65 (2004).
  • ZhaoM, AmielSA, ChristieMR, RelaM, HeatonN, HuangGC. Insulin-producing cells derived from human pancreatic non-endocrine cell cultures reverse streptozotocin-induced hyperglycaemia in mice. Diabetologia48(10) , 2051–2061 (2005).
  • LeeJ, WenJ, ParkJY, Kim S-A, Lee EJ, Song SY. Reversal of diabetes in rats using GLP-1-expressing adult pancreatic duct-like precursor cells transformed from acinar to ductal cells. Stem Cells Dev.18(7) , 991–1002 (2009).
  • ZhouQ, BrownJ, KanarekA, RajagopalJ, MeltonDA. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature455(7213) , 627–632 (2008).
  • YechoorV, LiuV, EspirituC et al. Neurogenin3 is sufficient for transdetermination of hepatic progenitor cells into neo-islets in vivo but not transdifferentiation of hepatocytes. Dev. Cell16(3) , 358–373 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.