155
Views
0
CrossRef citations to date
0
Altmetric
Review

Stem Cells for Osteodegenerative Diseases: Current Studies and Future Outlook

, &
Pages 219-230 | Published online: 22 Apr 2014

References

  • zur Nieden NI . Embryonic stem cell therapy for osteo-degenerative disorders . Biotechnol. Interact. 17 , 8 – 14 ( 2005 ).
  • Office of the Surgeon General (US) . Bone Health and Osteoporosis: a Report of the Surgeon General . Reports of the Surgeon General , MD, USA ( 2004 ).
  • Kanis JA . WHO Technical Report: Assessment of Osteoporosis at the Primary Health-care Level. WHO Collaborating Centre for Metabolic Bone Diseases, University of Sheffield , UK , 66 ( 2007 ).
  • van der Jagt-Willems HC , van Hengel M , Vis M et al. Why do geriatric outpatients have so many moderate and severe vertebral fractures? Exploring prevalence and risk factors . Age Ageing 41 ( 2 ), 200 – 206 ( 2012 ).
  • Konan S , Soler A , Haddad FS . Revision hip replacement in patients 55 years of age and younger . Hip Int. 23 ( 2 ), 162 – 165 ( 2013 ).
  • Isaksson E , Wang H , Sahlin L et al. Expression of estrogen receptors (α, β) and insulin-like growth factor-I in breast tissue from surgically postmenopausal cynomolgus macaques after long-term treatment with HRT and tamoxifen . Breast 11 ( 4 ), 295 – 300 ( 2002 ).
  • McClung MR , Harris ST , Miller PD et al. Bisphosphonate therapy for osteoporosis: benefits, risks, and drug holiday . Am. J. Med. 126 ( 1 ), 13 – 20 ( 2013 ).
  • Janovská Z . Bisphosphonate-related osteonecrosis of the jaws. A severe side effect of bisphosphonate therapy . Acta Medica (Hradec Kralove) 55 , 111 – 115 ( 2012 ).
  • Anasetti C , Logan BR , Lee SJ et al. Peripheral-blood stem cells versus bone marrow from unrelated donors . N. Engl. J. Med. 367 ( 16 ), 1487 – 1496 ( 2012 ).
  • Pittenger MF , Mackay AM , Beck SC et al. Multilineage potential of adult human mesenchymal stem cells . Science 284 , 143 – 147 ( 1999 ).
  • Seale S , Asakura A , Rudnicki MA . The potential of muscle stem cells . Dev. Cell 1 , 333 – 342 ( 2001 ).
  • Gaustad KG , Boquest AC , Anderson BE , Gerdes AM , Collas P . Differentiation of human adispose tissue using extracts of rat cardiomyocytes . Biophys. Biochem. Res. Commun. 314 , 420 – 427 ( 2003 ).
  • Fadel L , Viana BR , Tajra Feitosa ML et al. Protocols for obtainment and isolation of two mesenchymal stem cell sources in sheep . Acta Cir. Bras. 26 ( 4 ), 267 – 273 ( 2011 ).
  • Utsunomiya H , Uchida S , Sekiya I , Sakai A , Moridera K , Nakamura T . Isolation and characterization of human mesenchymal stem cells derived from shoulder tissues . Am. J. Sport Med. 41 , 657 – 668 ( 2013 ).
  • Chang H , Knothe Tate ML . Concise review: the periosteum: tapping into a reservoir of clinically useful progenitor cells . Stem Cells Transl. Med. 1 , 480 – 491 ( 2012 ).
  • Lopez-Garcia C , Klein AM , Simons BD , Winton DJ . Intestinal stem cell replacement follows a pattern of neutral drift . Science 330 , 822 – 825 ( 2010 ).
  • De Rosa L , De Luca M . Dormant and restless skin stem cells . Nature 489 , 215 – 217 ( 2012 ).
  • Volponi AA , Kawasaki M , Sharpe PT . Adult human gingival epithelial cells as a source for whole tooth bioengineering . J. Dent. Res. 92 , 329 – 334 ( 2013 ).
  • Hess DC , Borlongan CV . Stem cells and neurological diseases . Cell Prolif. 41 , 94 – 114 ( 2008 ).
  • Lodi D , Iannitti T , Palmieri B . Stem cells in clinical practice: applications and warnings . J. Exp. Clin. Cancer Res. 30 , 9 – 29 ( 2011 ).
  • Smart N , Riley PR . The stem cell movement . Circ. Res. 102 , 1155 – 1168 ( 2008 ).
  • Grande DA , Southerland SS , Manji R , Pate DW , Schwartz RE , Lucas PA . Repair of articular cartilage defects using mesenchymal stem cells . Tissue Eng. 1 ( 1 ), 345 – 353 ( 1995 ).
  • Brittberg M , Lindahl A , Nilsson A , Ohlsson C , Isaksson O , Peterson L . Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation . N. Engl. J. Med. 331 , 889 – 895 ( 1994 ).
  • Knutsen G , Drogset JO , Engebretsen L et al. A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years . J. Bone Joint Surg. Am. 89 , 2105 ( 2007 ).
  • Wakitani S , Okabe T , Horibe S et al. Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months . J. Tissue Eng. Regen. Med. 5 ( 2 ), 146 – 150 ( 2011 ).
  • Bhatia M , Wang JC , Kapp U , Bonnet D , Dick JE . Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice . Proc. Natl Acad. Sci. USA 94 , 5320 – 5325 ( 1997 ).
  • Dominici M , Le Blanc K , Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement . Cytotherapy 8 , 315 – 317 ( 2006 ).
  • Murphy JM , Dixon K , Beck S , Fabian D , Feldman A , Barry F . Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis . Arthritis Rheum. 46 ( 3 ), 704 – 713 ( 2002 ).
  • García-Álvarez F , Alegre-Aguarón E , Desportes P et al. Chondrogenic differentiation in femoral bone marrow-derived mesenchymal cells (MSC) from elderly patients suffering osteoarthritis or femoral fracture . Arch. Gerontol. Geriat. 52 , 239 – 242 ( 2011 ).
  • English A , Jones EA , Corscadden D et al. A comparative assessment of cartilage and joint fat pad as a potential source of cells for autologous therapy development in knee osteoarthritis . Rheumatology 46 , 1676 – 1683 ( 2007 ).
  • Dudics V , Kunstár A , Kovács J et al. Chondrogenic potential of mesenchymal stem cells from patients with rheumatoid arthritis and osteoarthritis: measurements in a microculture system . Cells Tissues Organs 189 , 307 – 316 ( 2009 ).
  • Toghraie FS , Chenari N , Gholipour MA et al. Treatment of osteoarthritis with infrapatellar fat pad derived mesenchymal stem cells in rabbit . Knee 18 , 71 – 75 ( 2011 ).
  • Diekman BO , Wu CL , Louer CR et al. Intra-articular delivery of purified mesenchymal stem cells from C57BL/6 or MRL/MpJ superhealer mice prevents post-traumatic arthritis . Cell Transplant. 22 ( 8 ), 1395 – 1408 ( 2012 ).
  • Koh GY , Choi YJ . Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis . Knee 19 , 902 – 907 ( 2012 ).
  • Koh GY , Jo SB , Kwon OR et al. Mesenchymal stem cell injections improve knee osteoarthritis . Arthroscopy 29 ( 4 ), 748 – 755 ( 2013 ).
  • NIH Clinical Trials Database. www.clinicaltrials.gov
  • Osteoarthritis and you . www.cdc.gov/features/osteoarthritisplan
  • Holt HL , Katz JN . Reichmann WM. Forecasting the burden of advanced knee osteoarthritis over a 20 year period in a cohort of older US adults: impact of obesity Presented at: American College of Rheumatology Annual Scientific Meeting , San Francisco, CA, USA , 25–29 October 2008 (Astract 204).
  • Roldan M , Macias-Gonzalez M , Garcia R , Tinahones FJ , Martin M . Obesity short circuits stemness gene network in human adipose multipotent stem cells . FASEB J. 25 , 4111 – 4126 ( 2011 ).
  • Wu CL , Diekman BO , Jain D , Guilak F . Diet-induced obesity alters the differentiation potential of stem cells isolated from bone marrow, adipose tissue and infrapatellar fad pad: the effects of free fatty acids . Int. J. Obes. (Lond.) 37 ( 8 ), 1079 – 1087 ( 2012 ).
  • Heldens GT , Bilaney Davidson EN , Vitters EL , Schreurs BW , Piek E , van den Berg WB . Catabolic factors and osteoarthritis conditioned medium inhibit chondrogenesis of human mesenchymal stem cells . Tissue Eng. 18 ( 1–2 ), 45 – 54 ( 2012 ).
  • Boeuf S , Graf F , Fischer J , Moradi B , Little CB , Richter B . Regulation of aggrecanases from the ADAMTS family and aggrecan neoepitope formation during in vitro chondrogenesis of human mesenchymal stem cells . Eur. Cells Mater. 23 , 320 – 332 ( 2012 ).
  • Aggarwal R , Lu J , Kanji S et al. Human umbilical cord blood-derived CD34+ cells reverse osteoporosis in NOD/SCID mice by altering osteoblastic and osteoclastic activities . PLoS ONE 7 ( 6 ), e39365 ( 2012 ).
  • Singh L , Brennan TA , Kim JH et al. Long-term functional engraftment of mesenchymal progenitor cells in a mouse model of accelerated aging . Stem Cells 31 ( 3 ), 607 – 611 ( 2013 ).
  • Guan M , Yao W , Liu R et al. Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass . Nat. Med. 18 ( 3 ), 456 – 462 ( 2012 ).
  • Li J , Zhang L , Zhou L . Beneficial effects of non-matched allogeneic cord blood mononuclear cells upon patients with idiopathic osteoporosis . J. Transl. Med. 10 , 102 – 107 ( 2012 ).
  • Minguell JJ , Allers C , Lasala GP . Mesenchymal stem cells and the treatment of conditions and diseases: the less glittering side of a conspicuous stem cell for basic research . Stem Cells Dev. 22 , 193 – 203 ( 2013 ).
  • Wagner W , Horn P , Castoldi M et al. Replicative senescence of mesenchymal stem cells: a continuous and organized process . PLoS ONE 3 , e2213 ( 2008 ).
  • Kretlow JD , Jin YQ , Liu W et al. Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells . BMC Cell Biol. 9 , 60 ( 2008 ).
  • Trounson A . The production and directed differentiation of human embryonic stem cells . Endocr. Rev. 27 , 208 – 219 ( 2006 ).
  • Robertson EJ . Derivation and maintenance of embryonic stem cell cultures . Methods Mol. Biol. 75 , 173 – 184 ( 1997 ).
  • Thomson JA , Itskovitz-Eldor J , Shapiro SS et al. Embryonic stem cell lines derived from human blastocysts . Science 5391 ( 282 ), 1145 – 1147 ( 1998 ).
  • Rodda DJ , Chew J , Lim L . Transcriptional regulation of nanog by OCT4 and SOX2 . J. Biol. Chem. 280 ( 26 ), 24731 – 24737 ( 2005 ).
  • Takahashi K , Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors . Cell 126 ( 4 ), 663 – 676 ( 2006 ).
  • Takahashi K , Tanabe K , Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors . Cell 131 ( 5 ), 861 – 872 ( 2007 ).
  • Huangfu D , Maehr R , Guo W et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds . Nat. Biotechnol. 26 , 795 – 797 ( 2008 ).
  • Hou P , Li Y , Liu C et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds . Science 341 ( 6146 ), 651 – 654 ( 2013 ).
  • Zhou W , Freed C . Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells . Stem Cells 27 ( 11 ), 2667 – 2774 ( 2009 ).
  • Tsukiyama T , Asano R , Kawaguchi T et al. Simple and efficient method for generation of induced pluripotent stem cells using piggyBac transposition of doxycycline-inducible factors and an EOS reporter system . Genes Cells 16 ( 7 ), 815 – 825 ( 2011 ).
  • Davis RP , Nemes C , Varga E et al. Generation of induced pluripotent stem cells from human foetal fibroblasts using the Sleeping Beauty transposon gene delivery system . Differentiation 86 ( 1–2 ), 30 – 37 ( 2013 ).
  • Lin T , Ambasudhan R , Yuan X et al. A chemical platform for improved induction of human iPSCs . Nat. Methods 6 ( 11 ), 805 – 808 ( 2009 ).
  • Judson RL , Greve TS , Parchem RJ et al. MicroRNA-based discovery of barriers to dedifferentiation of fibroblasts to pluripotent stem cells . Nat. Struct. Mol. Biol. 20 ( 10 ), 1227 – 1235 ( 2013 ).
  • Egashira T , Yuasa S , Fukuda K . Novel insights into disease modeling using induced pluripotent stem cells . Biol. Pharm. Bull. 36 ( 2 ), 182 – 188 ( 2013 ).
  • Polo JM , Liu S , Figueroa ME et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells . Nat. Biotechnol. 28 , 848 – 855 ( 2010 ).
  • Kim K , Doi A , Wen B et al. Epigenetic memory in induced pluripotent stem cells . Nature 467 , 285 – 290 ( 2010 ).
  • Kim K , Zhao R , Doi A et al. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells . Nat. Biotechnol. 29 , 1117 – 1119 ( 2011 ).
  • Hu BY , Weick JP , Yu J et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency . Proc. Natl Acad. Sci. USA 107 , 4335 – 4340 ( 2010 ).
  • Kattman SJ , Witty AD , Gagliardi M et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines . Cell Stem Cell 8 ( 2 ), 228 – 240 ( 2011 ).
  • Ohnishi H , Oda Y , Aoki T et al. A comparative study of induced pluripotent stem cells generated from frozen, stocked bone marrow- and adipose tissue-derived mesenchymal stem cells . J. Tissue Eng. Regen. Med. 6 , 261 – 271 ( 2012 ).
  • Feng L , Bronson S , Niyibizi C . Derivation of murine induced pluripotent stem cells (iPS) and assessment of their differentiation toward osteogenic lineage . J. Cell. Biochem. 109 , 643 – 652 ( 2010 ).
  • Nasu A , Ikeya M , Yamamoto T et al. Genetically matched human iPS cells reveal that propensity for cartilage and bone differentiation differs with clones, not cell type of origin . PLoS ONE 8 ( 1 ), e53771 ( 2013 ).
  • Liu J , Chen W , Zhao Z , Xu H . Reprogramming of mesenchymal stem cells derived from iPSCs seeded on biofunctionalized calcium phosphate scaffold for bone engineering . Biomaterials 4 ( 32 ), 7862 – 7872 ( 2013 ).
  • Xu Y , Liu L , Zhang L et al. Efficient commitment to functional CD34+ progenitor cells from human bone marrow mesenchymal stem-cell-derived induced pluripotent stem cells . PLoS ONE 7 ( 4 ), e34321 ( 2012 ).
  • Jung Y , Bauer G , Nolta JA . Concise review: induced pluripotent stem cell-derived mesenchymal stem cells: progress toward safe clinical products . Stem Cells 30 ( 1 ), 42 – 47 ( 2013 ).
  • de Peppo GM , Marolt D . Make no bones about it: cells could soon be reprogrammed to grow replacement bones? Expert Opin. Biol. Ther. 14 ( 1 ), 1 – 5 ( 2013 ).
  • Kelley JM , Daley GQ . Hematopoietic defects and iPSC disease modeling: lessons learned . Immunol. Lett. 155 ( 1–2 ), 18 – 20 ( 2013 ).
  • Evans MJ , Kaufman MH . Establishment in culture of pluripotential cells from mouse embryos . Nature 292 , 154 – 156 ( 1981 ).
  • Martin GR . Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells . Proc. Natl Acad. Sci. USA 78 ( 12 ), 7634 – 7638 ( 1981 ).
  • Alper J . Geron gets green light for human trial of ES cell-derived product . Nat. Biotechnol. 27 , 213 – 214 ( 2009 ).
  • Stein R . Stem cells were God’s will, says first recipient of treatment . Washington Post, 15th April ( 2011 ).
  • Chapman AR , Scala CC . Evaluating the first-in-human clinical trial of a human embryonic stem cell-based therapy . Kennedy Inst. Ethics J. 22 ( 3 ), 243 – 261 ( 2012 ).
  • Schwartz S , Hubschman JP , Heilwell G et al. Embryonic stem cell trials for macular degeneration: preliminary report . Lancet 379 ( 9817 ), 713 – 720 ( 2012 ).
  • Advanced Cell Technology . www.advancedcell.com
  • zur Nieden NI , Kempka G , Ahr HJ . In vitro differentiation of embryonic stem cells into mineralized osteoblasts . Differentiation 17 , 18 – 27 ( 2003 ).
  • zur Nieden NI . Embryonic stem cell therapy for osteo-degenerative disorders . Biotechnol. Interactions 17 , 8 – 14 ( 2005 ).
  • Yamane T , Kunisada T , Yamazaki H , Era T , Nakano T , Hayashi SI . Development of osteoclasts from embryonic stem cells through a pathway that is c-fms but not c-kit dependent . Blood 90 ( 9 ), 3516 – 3523 ( 1997 ).
  • Raisz LG . Pathogenesis of osteoporosis: concepts, conflicts, and prospects . J. Clin. Invest. 115 ( 12 ), 3318 – 3325 ( 2005 ).
  • Sovani S , Grogan SP . Osteoarthritis: detection, pathophysiology, and current/future treatment strategies . Orthop. Nurs. 32 ( 1 ), 25 – 36 ( 2013 ).
  • zur Nieden NI . Embryonic stem cells for osteo-degenerative diseases . Methods Mol. Biol. 690 , 1 – 30 ( 2011 ).
  • Dienelt A , zur Nieden NI . Hyperglycemia impairs skeletogenesis from embryonic stem cells by affecting osteoblast and osteoclast differentiation . Stem Cells Dev. 20 , 465 – 474 ( 2011 ).
  • Valdimarsdotter G , Mummery C . Functions of the TGF-β superfamily in human embryonic stem cells . APMIS 113 , 773 – 789 ( 2005 ).
  • Morali OG , Jouneau A , McLaughlin KJ , Thiery JP , Larue L . IGF-II promotes mesoderm formation . Dev. Biol. 227 , 133 – 145 ( 2000 ).
  • Hwang YS , Chung BG , Ortmann D , Hattori N , Moeller HC , Khademhosseini A . Microwell mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11 . Proc. Natl Acad. Sci. USA 106 , 16978 – 16983 ( 2009 ).
  • Lu CC , Brennan J , Robertson EJ . From fertilization to gastrulation: axis formation in the mouse embryo . Curr. Opin. Genet. Dev. 11 , 384 – 392 ( 2001 ).
  • Keller KC , zur Nieden NI . Osteogenesis from pluripotent stem cells: neural crest or mesodermal origin? In: Embryonic Stem Cells – Differentiation and Pluripotent Alternatives , Kallos MS (Ed). InTech , Rijeka, Croatia , 323 – 348 ( 2011 ).
  • Kurosawa H . Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells . J. Biosci. Bioeng. 103 ( 5 ), 389 – 398 ( 2007 ).
  • Itskovitz-Eldor J , Schuldiner M , Karsenti D et al. Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers . Mol. Med. 6 , 88 – 95 ( 2000 ).
  • Buttery LD , Bourne S , Xynos JD et al. Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells . Tissue Eng. 7 , 89 – 99 ( 2001 ).
  • Kawaguchi J , Mee PJ , Smith AG . Osteogenic and chondrogenic differentiation of embryonic stem cells in response to specific growth factors . Bone 36 , 758 – 769 ( 2005 ).
  • Woll NL , Heaney JD , Bronson SK . Osteogenic nodule formation from single embryonic stem cell-derived progenitors . Stem Cell Dev. 15 , 865 – 879 ( 2006 ).
  • Bielby RC , Pryce RS , Hench LL , Polak JM . Enhanced derivation of osteogenic cells from murine embryonic stem cells after treatment with ionic dissolution products of 58 S bioactive sol-gel glass . Tissue Eng. 11 , 479 – 488 ( 2005 ).
  • zur Nieden NI , Kempka G , Ahr HJ . In vitro differentiation of embryonic stem cells into mineralized osteoblasts . Differentiation 17 , 18 – 27 ( 2003 ).
  • Warotayanont R , Frenkel B , Snead ML , Zhou Y . Leucine-rich amelogenic peptide induces osteogenesis by activation of the Wnt pathway . Biochem. Biophys. Res. Commun. 387 , 558 – 563 ( 2009 ).
  • Arpornmaekilong P , Brown SE , Wang Z , Krebsbach PH . Phenotypic characterization, osteogenic differentiation, and bone regeneration capacity of human embryonic stem cell-derived mesenchymal stem cells . Stem Cell Dev. 18 , 1 – 14 ( 2009 ).
  • Rathjen J , Lake JA , Bettess MD , Washington JM , Chapman G , Rathjen PD . Formation of a primitive ectoderm like cell population, EPL cells, from ES cells in response to biologically derived factors . J. Cell Sci. 112 , 601 – 612 ( 1999 ).
  • Mummery C , Ward D , van den Brink CE et al. Cardiomyocyte differentiation of mouse and human embryonic stem cells . J. Anat. 200 , 233 – 242 ( 2002 ).
  • Hwang YS , Randle WL , Bielby R , Polak JM , Mantalaris A . Enhanced derivation of osteogenic cells from murine embryonic stem cells after treatment with HepG2-conditioned medium and modulation of the embryoid body formation period: application to skeletal tissue engineering . Tissue Eng. 12 , 1381 – 1392 ( 2006 ).
  • Lee G , Kim H , Elkabetz Y et al. Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells . Nat. Biotechnol. 25 ( 12 ), 1468 – 1475 ( 2007 ).
  • Tian XF , Heng BC , Ge Z et al. Comparison of osteogenesis of human embryonic stem cells within 2D and 3D culture systems . Scand. J. Clin. Lab. Invest. 68 , 58 – 67 ( 2008 ).
  • Garreta E , Genove E , Borros S , Semino CE . Osteogenic differentiation of mouse embryonic stem cells and mouse embryonic fibroblasts in a three-dimensional self-assembling peptide scaffold . Tissue Eng. 12 , 2215 – 2227 ( 2006 ).
  • Kim S , Kim SS , Lee SH et al. In vivo bone formation from human embryonic stem cell-derived osteogenic cells in poly (D,L-lactic-co-glycolic acid)/hydroxyapatite composite scaffold . Biomaterials 29 , 1043 – 1053 ( 2008 ).
  • Druml C . Stem cell research: toward greater unity in Europe? Cell 139 , 649 – 651 ( 2009 ).
  • Dhar D , Hsi-En Ho J . Stem cell research policies around the world . Yale J. Biol. Med. 82 ( 3 ), 113 – 115 ( 2009 ).
  • Prescott C . The business of exploiting induced pluripotent stem cells . Philos. Trans. R. Soc. Lond. B Biol. Sci. 366 , 2323 – 2328 ( 2011 ).
  • HeinOnline: World’s Largest Image-Based Legal Research Database. http://heinonline.org
  • Amariglio N , Hirshberg A , Scheithauer BW et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient . Trends Mol. Med. 6 ( 2 ), e1000029 ( 2009 ).
  • Sverdlov ED , Mineev K . Mutation rate in stem cells: an underestimated barrier on the way to therapy . Trends Mol. Med. 19 ( 5 ), 273 – 280 ( 2013 ).
  • Gore A , Li Z , Fung HL et al. Somatic coding mutations in human induced pluripotent stem cells . Nature 471 , 63 – 67 ( 2011 ).
  • Thomas ED , Lochte HL , Cannon JM , Sahler OD , Ferrebee JW . Supralethal whole body irradiation and isologous bone marrow transplantation in man . J. Clin. Invest. 38 , 1709 – 1716 ( 1959 ).
  • Escobedo-Lucea C , Ayuso-Sacedo A , Xiong C et al. Development of a human extracellular matrix for applications related with stem cells and tissue engineering . Stem Cell Rev. 8 ( 1 ), 170 – 183 ( 2012 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.