295
Views
0
CrossRef citations to date
0
Altmetric
Review

Progress Towards Cell-Based Burn Wound Treatments

, &
Pages 201-218 | Published online: 22 Apr 2014

References

  • WHO. Global Burden of Disease 2004 Summary Tables. WHO, Geneva, Switzerland, 2008 . www.who.int/healthinfo/global_burden_disease/estimates_regional/en/index.html
  • Burke JF , Quinby WC , Bondoc CC , Cosimi AB , Russell PS , Szyfelbein SK . Immunosuppression and temporary skin transplantation in the treatment of massive third degree burns . Ann. Surg. 182 ( 3 ), 183 – 197 ( 1975 ).
  • Faraklas I , Lam U , Cochran A , Stoddard G , Saffle J . Colloid normalizes resuscitation ratio in pediatric burns . J. Burn Care Res. 32 ( 1 ), 91 – 97 ( 2011 ).
  • Lin H , Faraklas I , Saffle J , Cochran A . Enoxaparin dose adjustment is associated with low incidence of venous thromboembolic events in acute burn patients . J. Trauma 71 ( 6 ), 1557 – 1561 ( 2011 ).
  • Lin H , Faraklas I , Cochran A , Saffle J . Enoxaparin and antifactor Xa levels in acute burn patients . J. Burn Care Res. 32 ( 1 ), 1 – 5 ( 2011 ).
  • Murphy CV , Coffey R , Cook CH , Gerlach AT , Miller SF . Early glycemic control in critically ill patients with burn injury . J. Burn Care Res. 32 ( 6 ), 583 – 590 ( 2011 ).
  • van der Wal MB , Vloemans JF , Tuinebreijer WE et al. Outcome after burns: an observational study on burn scar maturation and predictors for severe scarring . Wound Repair Regen. 20 ( 5 ), 676 – 687 ( 2012 ).
  • Monstrey SM , Hoeksema H , Baker RD et al. Burn wound healing time assessed by laser Doppler imaging. Part 2: validation of a dedicated colour code for image interpretation . Burns 37 ( 2 ), 249 – 256 ( 2011 ).
  • Pape SA , Baker RD , Wilson D et al. Burn wound healing time assessed by laser Doppler imaging (LDI). Part 1: derivation of a dedicated colour code for image interpretation . Burns 38 ( 2 ), 187 – 194 ( 2012 ).
  • Herndon DN . Total Burn Care (Third Edition) . Saunders, Elsevier Inc. , Amsterdam, The Netherlands ( 2007 ).
  • van Zuijlen PP , van Trier AJ , Vloemans JF , Groenevelt F , Kreis RW , Middelkoop E . Graft survival and effectiveness of dermal substitution in burns and reconstructive surgery in a one-stage grafting model . Plast. Reconstr. Surg. 106 ( 3 ), 615 – 623 ( 2000 ).
  • Raff T , Hartmann B , Wagner H , Germann G . Experience with the modified Meek technique . Acta Chir. Plast. 38 ( 4 ), 142 – 146 ( 1996 ).
  • Skouge JW . Techniques for split-thickness skin grafting . J. Dermatol. Surg. Oncol. 13 ( 8 ), 841 – 849 ( 1987 ).
  • Tanner JC Jr , Shea PC Jr , Bradley WH , Vandeput JJ . Large-mesh skin grafts . Plast. Reconstr. Surg. 44 ( 5 ), 504 – 506 ( 1969 ).
  • Wood FM . Quality assurance in burn patient care: the James Laing Memorial Essay, 1994 . Burns 21 ( 8 ), 563 – 568 ( 1995 ).
  • Van Loey NE , Van Son MJ . Psychopathology and psychological problems in patients with burn scars: epidemiology and management . Am. J. Clin. Dermatol. 4 ( 4 ), 245 – 272 ( 2003 ).
  • Barillo DJ , Nangle ME , Farrell K . Preliminary experience with cultured epidermal autograft in a community hospital burn unit . J. Burn Care Rehabil. 13 ( 1 ), 158 – 165 ( 1992 ).
  • Wood FM , Kolybaba ML , Allen P . The use of cultured epithelial autograft in the treatment of major burn wounds: eleven years of clinical experience . Burns 32 ( 5 ), 538 – 544 ( 2006 ).
  • Teepe RG , Kreis RW , Koebrugge EJ et al. The use of cultured autologous epidermis in the treatment of extensive burn wounds . J. Trauma 30 ( 3 ), 269 – 275 ( 1990 ).
  • Clugston PA , Snelling CF , Macdonald IB et al. Cultured epithelial autografts: three years of clinical experience with eighteen patients . J. Burn Care Rehabil. 12 ( 6 ), 533 – 539 ( 1991 ).
  • Ronfard V , Broly H , Mitchell V et al. Use of human keratinocytes cultured on fibrin glue in the treatment of burn wounds . Burns 17 ( 3 ), 181 – 184 ( 1991 ).
  • Hernon CA , Dawson RA , Freedlander E et al. Clinical experience using cultured epithelial autografts leads to an alternative methodology for transferring skin cells from the laboratory to the patient . Regen. Med. 1 ( 6 ), 809 – 821 ( 2006 ).
  • Karasek MA . In vitro culture of human skin epithelial cells . J. Invest. Dermatol. 47 ( 6 ), 533 – 540 ( 1966 ).
  • Briggaman RA , Dalldorf FG , Wheeler CE Jr . Formation and origin of basal lamina and anchoring fibrils in adult human skin . J. Cell Biol. 51 ( 21 ), 384 – 395 ( 1971 ).
  • Rheinwald JG , Green H . Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells . Cell 6 ( 3 ), 331 – 343 ( 1975 ).
  • Green H , Kehinde O , Thomas J . Growth of cultured human epidermal cells into multiple epithelia suitable for grafting . Proc. Natl Acad. Sci. USA 76 ( 11 ), 5665 – 5668 ( 1979 ).
  • De Corte P , Verween G , Verbeken G et al. Feeder layer- and animal product-free culture of neonatal foreskin keratinocytes: improved performance, usability, quality and safety . Cell Tissue Bank. 13 ( 1 ), 175 – 189 ( 2012 ).
  • O’Connor N , Mulliken J , Banks-Schlegel S , Kehinde O , Green H . Grafting of burns with cultured epithelium prepared from autologous epidermal cells . Lancet 317 ( 8211 ), 75 – 78 ( 1981 ).
  • Gallico GG 3rd , O’Connor NE , Compton CC , Kehinde O , Green H . Permanent coverage of large burn wounds with autologous cultured human epithelium . N. Engl. J. Med. 311 ( 7 ), 448 – 451 ( 1984 ).
  • Cuono C , Langdon R , Mcguire J . Use of cultured epidermal autografts and dermal allografts as skin replacement after burn injury . Lancet 1 ( 8490 ), 1123 – 1124 ( 1986 ).
  • Wood FM , Kolybaba ML , Allen P . The use of cultured epithelial autograft in the treatment of major burn injuries: a critical review of the literature . Burns 32 ( 4 ), 395 – 401 ( 2006 ).
  • Reid MJ , Currie LJ , James SE , Sharpe JR . Effect of artificial dermal substitute, cultured keratinocytes and split thickness skin graft on wound contraction . Wound Repair Regen. 15 ( 6 ), 889 – 896 ( 2007 ).
  • Chester DL , Balderson DS , Papini RP . A review of keratinocyte delivery to the wound bed . J. Burn Care Rehabil. 25 ( 3 ), 266 – 275 ( 2004 ).
  • Heimbach DM . A nonuser’s questions about cultured epidermal autograft . J. Burn Care Rehabil. 13 ( 1 ), 127 – 129 ( 1992 ).
  • Atiyeh BS , Costagliola M . Cultured epithelial autograft (CEA) in burn treatment: three decades later . Burns 33 ( 4 ), 405 – 413 ( 2007 ).
  • Woodley DT , Peterson HD , Herzog SR et al. Burn wounds resurfaced by cultured epidermal autografts show abnormal reconstitution of anchoring fibrils . JAMA 259 ( 17 ), 2566 – 2571 ( 1988 ).
  • De Buys Roessingh AS , Hohlfeld J , Scaletta C et al. Development, characterization, and use of a fetal skin cell bank for tissue engineering in wound healing . Cell Transplant. 15 ( 8–9 ), 823 – 834 ( 2006 ).
  • Eisinger M , Sadan S , Silver IA , Flick RB . Growth regulation of skin cells by epidermal cell-derived factors: implications for wound healing . Proc. Natl Acad. Sci. USA 85 ( 6 ), 1937 – 1941 ( 1988 ).
  • Duinslaeger L , Verbeken G , Reper P , Delaey B , Vanhalle S , Vanderkelen A . Lyophilized keratinocyte cell lysates contain multiple mitogenic activities and stimulate closure of meshed skin autograft-covered burn wounds with efficiency similar to that of fresh allogeneic keratinocyte cultures . Plast. Reconstr. Surg. 98 ( 1 ), 110 – 117 ( 1996 ).
  • Coolen NA , Verkerk M , Reijnen L et al. Culture of keratinocytes for transplantation without the need of feeder layer cells . Cell Transplant. 16 ( 6 ), 649 – 661 ( 2007 ).
  • Bullock AJ , Higham MC , MacNeil S . Use of human fibroblasts in the development of a xenobiotic-free culture and delivery system for human keratinocytes . Tissue Eng. 12 ( 2 ), 245 – 255 ( 2006 ).
  • Sun T , Higham M , Layton C , Haycock J , Short R , MacNeil S . Developments in xenobiotic-free culture of human keratinocytes for clinical use . Wound Repair Regen. 12 ( 6 ), 626 – 634 ( 2004 ).
  • Lamb R , Ambler CA . Keratinocytes propagated in serum-free, feeder-free culture conditions fail to form stratified epidermis in a reconstituted skin model . PLoS ONE 8 ( 1 ), e52494 ( 2013 ).
  • Panacchia L , Dellambra E , Bondanza S et al. Nonirradiated human fibroblasts and irradiated 3T3-J2 murine fibroblasts as a feeder layer for keratinocyte growth and differentiation in vitro on a fibrin substrate . Cells Tissues Organs 191 ( 1 ), 21 – 35 ( 2010 ).
  • van der Veen VC , Boekema BK , Ulrich MM , Middelkoop E . New dermal substitutes . Wound Repair Regen. 19 ( Suppl. 1 ), s59 – s65 ( 2011 ).
  • Brusselaers N , Pirayesh A , Hoeksema H et al. Skin replacement in burn wounds . J. Trauma 68 ( 2 ), 490 – 501 ( 2010 ).
  • Dominici M , Le BK , Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement . Cytotherapy 8 ( 4 ), 315 – 317 ( 2006 ).
  • Jurgens WJ , Oedayrajsingh-Varma MJ , Helder MN et al. Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies . Cell Tissue Res. 332 ( 3 ), 415 – 426 ( 2008 ).
  • Rasulov MF , Vasilenko VT , Zaidenov VA , Onishchenko NA . Cell transplantation inhibits inflammatory reaction and stimulates repair processes in burn wound . Bull. Exp. Biol. Med. 142 ( 1 ), 112 – 115 ( 2006 ).
  • Stoff A , Rivera AA , Sanjib BN et al. Promotion of incisional wound repair by human mesenchymal stem cell transplantation . Exp. Dermatol. 18 ( 4 ), 362 – 369 ( 2009 ).
  • Sasaki M , Abe R , Fujita Y , Ando S , Inokuma D , Shimizu H . Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type . J. Immunol. 180 ( 4 ), 2581 – 2587 ( 2008 ).
  • Liang X , Ding Y , Zhang Y , Tse HF , Lian Q . Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives . Cell Transplant. doi:10.3727/096368913×667709 ( 2013 ) (Epub ahead of print).
  • Jiang XX , Zhang Y , Liu B et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells . Blood 105 ( 10 ), 4120 – 4126 ( 2005 ).
  • Adutler-Lieber S , Ben-Mordechai T , Naftali-Shani N et al. Human macrophage regulation via interaction with cardiac adipose tissue-derived mesenchymal stromal cells . J. Cardiovasc. Pharmacol. Ther. 18 ( 1 ), 78 – 86 ( 2013 ).
  • Kobayashi M , Jeschke MG , Shigematsu K et al. M2b monocytes predominated in peripheral blood of severely burned patients . J. Immunol. 185 ( 12 ), 7174 – 7179 ( 2010 ).
  • Shigematsu K , Kogiso M , Kobayashi M , Herndon DN , Suzuki F . Effect of CCL2 antisense oligodeoxynucleotides on bacterial translocation and subsequent sepsis in severely burned mice orally infected with Enterococcus faecalis . Eur. J. Immunol. 42 ( 1 ), 158 – 164 ( 2012 ).
  • Kim J , Hematti P . Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages . Exp. Hematol. 37 ( 12 ), 1445 – 1453 ( 2009 ).
  • Giannouli CC , Kletsas D . TGF-beta regulates differentially the proliferation of fetal and adult human skin fibroblasts via the activation of PKA and the autocrine action of FGF-2 . Cell Signal. 18 ( 9 ), 1417 – 1429 ( 2006 ).
  • Technau A , Froelich K , Hagen R , Kleinsasser N . Adipose tissue-derived stem cells show both immunogenic and immunosuppressive properties after chondrogenic differentiation . Cytotherapy 13 ( 3 ), 310 – 317 ( 2011 ).
  • Lo Surdo J , Bauer SR . Quantitative approaches to detect donor and passage differences in adipogenic potential and clonogenicity in human bone marrow-derived mesenchymal stem cells . Tissue Eng. Part C Methods 18 ( 11 ), 877 – 889 ( 2012 ).
  • Liechty KW , Mackenzie TC , Shaaban AF et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep . Nat. Med. 6 ( 11 ), 1282 – 1286 ( 2000 ).
  • Kadner A , Hoerstrup SP , Zund G et al. A new source for cardiovascular tissue engineering: human bone marrow stromal cells . Eur. J. Cardiothorac. Surg. 21 ( 6 ), 1055 – 1060 ( 2002 ).
  • van den Bogaerdt AJ , van der Veen VC , van Zuijlen PP et al. Collagen cross-linking by adipose-derived mesenchymal stromal cells and scar-derived mesenchymal cells: are mesenchymal stromal cells involved in scar formation? Wound Repair Regen. 17 ( 4 ), 548 – 558 ( 2009 ).
  • van der Veen VC , Vlig M , van Milligen FJ , de Vries SI , Middelkoop E , Ulrich MM . Stem cells in burn eschar . Cell Transplant. 21 ( 5 ), 933 – 942 ( 2012 ).
  • Liu P , Deng Z , Han S et al. Tissue-engineered skin containing mesenchymal stem cells improves burn wounds . Artif. Organs 32 ( 12 ), 925 – 931 ( 2008 ).
  • Xue L , Xu YB , Xie JL et al. Effects of human bone marrow mesenchymal stem cells on burn injury healing in a mouse model . Int. J. Clin. Exp. Pathol. 6 ( 7 ), 1327 – 1336 ( 2013 ).
  • Shumakov VI , Onishchenko NA , Rasulov MF , Krasheninnikov ME , Zaidenov VA . Mesenchymal bone marrow stem cells more effectively stimulate regeneration of deep burn wounds than embryonic fibroblasts . Bull. Exp. Biol. Med. 136 ( 2 ), 192 – 195 ( 2003 ).
  • Fu X , Qu Z , Sheng Z . Potentiality of mesenchymal stem cells in regeneration of sweat glands . J. Surg. Res. 136 ( 2 ), 204 – 208 ( 2006 ).
  • Jones I , Currie L , Martin R . A guide to biological skin substitutes . Br. J. Plast. Surg. 55 ( 3 ), 185 – 193 ( 2002 ).
  • Supp DM , Boyce ST . Engineered skin substitutes: practices and potentials . Clin. Dermatol. 23 ( 4 ), 403 – 412 ( 2005 ).
  • Bottcher-Haberzeth S , Biedermann T , Reichmann E . Tissue engineering of skin . Burns 36 ( 4 ), 450 – 460 ( 2010 ).
  • Lazic T , Falanga V . Bioengineered skin constructs and their use in wound healing . Plast. Reconstr. Surg. 127 ( Suppl. 1 ), 75S – 90S ( 2011 ).
  • Limova M . Active wound coverings: bioengineered skin and dermal substitutes . Surg. Clin. North Am. 90 ( 6 ), 1237 – 1255 ( 2010 ).
  • MacNeil S . Progress and opportunities for tissue-engineered skin . Nature 445 ( 7130 ), 874 – 880 ( 2007 ).
  • Cirodde A , Leclerc T , Jault P , Duhamel P , Lataillade JJ , Bargues L . Cultured epithelial autografts in massive burns: a single-center retrospective study with 63 patients . Burns 37 ( 6 ), 964 – 972 ( 2011 ).
  • Hayes DW Jr , Webb GE , Mandracchia VJ , John KJ . Full-thickness burn of the foot: successful treatment with Apligraf. A case report . Clin. Podiatr. Med. Surg. 18 ( 1 ), 179 – 188 ( 2001 ).
  • Sood R , Roggy D , Zieger M et al. Cultured epithelial autografts for coverage of large burn wounds in eighty-eight patients: the Indiana University experience . J. Burn Care Res. 31 ( 4 ), 559 – 568 ( 2010 ).
  • Boyce ST , Goretsky MJ , Greenhalgh DG , Kagan RJ , Rieman MT , Warden GD . Comparative assessment of cultured skin substitutes and native skin autograft for treatment of full-thickness burns . Ann. Surg. 222 ( 6 ), 743 – 752 ( 1995 ).
  • Gomez C , Galan JM , Torrero V et al. Use of an autologous bioengineered composite skin in extensive burns: clinical and functional outcomes. A multicentric study . Burns 37 ( 4 ), 580 – 589 ( 2011 ).
  • Sheridan RL , Morgan JR , Cusick JL , Petras LM , Lydon MM , Tompkins RG . Initial experience with a composite autologous skin substitute . Burns 27 ( 5 ), 421 – 424 ( 2001 ).
  • Bloemen MC , van der Wal MB , Verhaegen PD et al. Clinical effectiveness of dermal substitution in burns by topical negative pressure: a multicenter randomized controlled trial . Wound Repair Regen. 20 ( 6 ), 797 – 805 ( 2012 ).
  • Hu S , Kirsner RS , Falanga V , Phillips T , Eaglstein WH . Evaluation of Apligraf persistence and basement membrane restoration in donor site wounds: a pilot study . Wound Repair Regen. 14 ( 4 ), 427 – 433 ( 2006 ).
  • Griffiths M , Ojeh N , Livingstone R , Price R , Navsaria H . Survival of Apligraf in acute human wounds . Tissue Eng. 10 ( 7–8 ), 1180 – 1195 ( 2004 ).
  • Gohari S , Gambla C , Healey M et al. Evaluation of tissue-engineered skin (human skin substitute) and secondary intention healing in the treatment of full thickness wounds after Mohs micrographic or excisional surgery . Dermatol. Surg. 28 ( 12 ), 1107 – 1114 ( 2002 ).
  • Waymack P , Duff RG , Sabolinski M . The effect of a tissue engineered bilayered living skin analog, over meshed split-thickness autografts on the healing of excised burn wounds. The Apligraf Burn Study Group . Burns 26 ( 7 ), 609 – 619 ( 2000 ).
  • Still J , Glat P , Silverstein P , Griswold J , Mozingo D . The use of a collagen sponge/living cell composite material to treat donor sites in burn patients . Burns 29 ( 8 ), 837 – 841 ( 2003 ).
  • Carsin H , Ainaud P , Le BH et al. Cultured epithelial autografts in extensive burn coverage of severely traumatized patients: a five year single-center experience with 30 patients . Burns 26 ( 4 ), 379 – 387 ( 2000 ).
  • Price RD , Das-Gupta V , Leigh IM , Navsaria HA . A comparison of tissue-engineered hyaluronic acid dermal matrices in a human wound model . Tissue Eng. 12 ( 10 ), 2985 – 2995 ( 2006 ).
  • Chan ES , Lam PK , Liew CT , Lau HC , Yen RS , King WW . A new technique to resurface wounds with composite biocompatible epidermal graft and artificial skin . J. Trauma 50 ( 2 ), 358 – 362 ( 2001 ).
  • Kircik LH , Dickerson JE Jr , Kitten C , Weedon KA , Slade HB . Allogeneic growth arrested keratinocytes and fibroblasts delivered in a fibrin spray accelerate healing in Mohs micrographic surgery wounds . J. Drugs Dermatol. 12 ( 5 ), 558 – 561 ( 2013 ).
  • Lee H . Outcomes of sprayed cultured epithelial autografts for full-thickness wounds: a single-centre experience . Burns 38 ( 6 ), 931 – 936 ( 2012 ).
  • Yim H , Yang HT , Cho YS et al. Clinical study of cultured epithelial autografts in liquid suspension in severe burn patients . Burns 37 ( 6 ), 1067 – 1071 ( 2011 ).
  • Wood F , Martin L , Lewis D et al. A prospective randomised clinical pilot study to compare the effectiveness of Biobrane® synthetic wound dressing, with or without autologous cell suspension, to the local standard treatment regimen in paediatric scald injuries . Burns 38 ( 6 ), 830 – 839 ( 2012 ).
  • Cervelli V , De Angelis B , Balzani A , Colicchia G , Spallone D , Grimaldi M . Treatment of stable vitiligo by ReCell system . Acta Dermatovenerol. Croat. 17 ( 4 ), 273 – 278 ( 2009 ).
  • Mulekar SV , Ghwish B , Al Issa A , Al Eisa A . Treatment of vitiligo lesions by ReCell vs. conventional melanocyte-keratinocyte transplantation: a pilot study . Br. J. Dermatol. 158 ( 1 ), 45 – 49 ( 2008 ).
  • Gravante G , Di Fede MC , Araco A et al. A randomized trial comparing ReCell system of epidermal cells delivery versus classic skin grafts for the treatment of deep partial thickness burns . Burns 33 ( 8 ), 966 – 972 ( 2007 ).
  • Vanscheidt W , Ukat A , Horak V et al. Treatment of recalcitrant venous leg ulcers with autologous keratinocytes in fibrin sealant: a multinational randomized controlled clinical trial . Wound Repair Regen. 15 ( 3 ), 308 – 315 ( 2007 ).
  • Gibbs S , van den Hoogenband HM , Kirtschig G et al. Autologous full-thickness skin substitute for healing chronic wounds . Br. J. Dermatol. 155 ( 2 ), 267 – 274 ( 2006 ).
  • Ortega-Zilic N , Hunziker T , Lauchli S et al. EpiDex® Swiss field trial 2004–2008 . Dermatology 221 ( 4 ), 365 – 372 ( 2010 ).
  • Renner R , Harth W , Simon JC . Transplantation of chronic wounds with epidermal sheets derived from autologous hair follicles–the Leipzig experience . Int. Wound J. 6 ( 3 ), 226 – 232 ( 2009 ).
  • Tausche AK , Skaria M , Bohlen L et al. An autologous epidermal equivalent tissue-engineered from follicular outer root sheath keratinocytes is as effective as split-thickness skin autograft in recalcitrant vascular leg ulcers . Wound Repair Regen. 11 ( 4 ), 248 – 252 ( 2003 ).
  • Moustafa M , Bullock AJ , Creagh FM et al. Randomized, controlled, single-blind study on use of autologous keratinocytes on a transfer dressing to treat nonhealing diabetic ulcers . Regen. Med. 2 ( 6 ), 887 – 902 ( 2007 ).
  • Evaluation of safety and activity of celaderm in healing venous leg ulcers. Last update: completed 18 March 2013. http://clinicaltrials.gov/show/NCT00399308
  • Sibbald RG , Zuker R , Coutts P , Coelho S , Williamson D , Queen D . Using a dermal skin substitute in the treatment of chronic wounds secondary to recessive dystrophic epidermolysis bullosa: a case series . Ostomy Wound Manage. 51 ( 11 ), 22 – 46 ( 2005 ).
  • Hasegawa T , Suga Y , Mizoguchi M et al. Clinical trial of allogeneic cultured dermal substitute for the treatment of intractable skin ulcers in 3 patients with recessive dystrophic epidermolysis bullosa . J. Am. Acad. Dermatol. 50 ( 5 ), 803 – 804 ( 2004 ).
  • Wood FM , Stoner ML , Fowler BV , Fear MW . The use of a non-cultured autologous cell suspension and Integra dermal regeneration template to repair full-thickness skin wounds in a porcine model: a one-step process . Burns 33 ( 6 ), 693 – 700 ( 2007 ).
  • Navarro FA , Stoner ML , Park CS et al. Sprayed keratinocyte suspensions accelerate epidermal coverage in a porcine microwound model . J. Burn Care Rehabil. 21 ( 6 ), 513 – 518 ( 2000 ).
  • Navarro FA , Stoner ML , Lee HB , Park CS , Wood FM , Orgill DP . Melanocyte repopulation in full-thickness wounds using a cell spray apparatus . J. Burn Care Rehabil. 22 ( 1 ), 41 – 46 ( 2001 ).
  • Iman A , Akbar MA , Mohsen KM et al. Comparison of intradermal injection of autologous epidermal cell suspension vs. spraying of these cells on dermabraded surface of skin of patients with post-burn hypopigmentation . Indian J. Dermatol. 58 ( 3 ), 240 ( 2013 ).
  • Gerlach JC , Johnen C , McCoy E , Brautigam K , Plettig J , Corcos A . Autologous skin cell spray-transplantation for a deep dermal burn patient in an ambulant treatment room setting . Burns 37 ( 4 ), e19 – e23 ( 2011 ).
  • Rasulov MF , Vasilchenkov AV , Onishchenko NA et al. First experience of the use bone marrow mesenchymal stem cells for the treatment of a patient with deep skin burns . Bull. Exp. Biol. Med. 139 ( 1 ), 141 – 144 ( 2005 ).
  • Lataillade JJ , Doucet C , Bey E et al. New approach to radiation burn treatment by dosimetry-guided surgery combined with autologous mesenchymal stem cell therapy . Regen. Med. 2 ( 5 ), 785 – 794 ( 2007 ).
  • Bey E , Prat M , Duhamel P et al. Emerging therapy for improving wound repair of severe radiation burns using local bone marrow-derived stem cell administrations . Wound Repair Regen. 18 ( 1 ), 50 – 58 ( 2010 ).
  • Sheng Z , Fu X , Cai S et al. Regeneration of functional sweat gland-like structures by transplanted differentiated bone marrow mesenchymal stem cells . Wound Repair Regen. 17 ( 3 ), 427 – 435 ( 2009 ).
  • Rigotti G , Marchi A , Galie M et al. Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells . Plast. Reconstr. Surg. 119 ( 5 ), 1409 – 1422 ( 2007 ).
  • Klinger M , Marazzi M , Vigo D , Torre M . Fat injection for cases of severe burn outcomes: a new perspective of scar remodeling and reduction . Aesthetic Plast. Surg. 32 ( 3 ), 465 – 469 ( 2008 ).
  • Mansilla E , Aquino VD , Roque G , Tau JM , Maceira A . Time and regeneration in burns treatment: heading into the first worldwide clinical trial with cadaveric mesenchymal stem cells . Burns 38 ( 3 ), 450 – 452 ( 2012 ).
  • Boekema BK , Pool L , Ulrich MM . The effect of a honey based gel and silver sulphadiazine on bacterial infections of in vitro burn wounds . Burns 39 ( 4 ), 754 – 759 ( 2012 ).
  • Hiro ME , Pierpont YN , Ko F , Wright TE , Robson MC , Payne WG . Comparative evaluation of silver-containing antimicrobial dressings on in vitro and in vivo processes of wound healing . Eplasty 12 , e48 ( 2012 ).
  • Poon VK , Burd A . In vitro cytotoxity of silver: implication for clinical wound care . Burns 30 ( 2 ), 140 – 147 ( 2004 ).
  • Atiyeh BS , Costagliola M , Hayek SN , Dibo SA . Effect of silver on burn wound infection control and healing: review of the literature . Burns 33 ( 2 ), 139 – 148 ( 2007 ).
  • Kempf M , Kimble RM , Cuttle L . Cytotoxicity testing of burn wound dressings, ointments and creams: a method using polycarbonate cell culture inserts on a cell culture system . Burns 37 ( 6 ), 994 – 1000 ( 2011 ).
  • Paddle-Ledinek JE , Nasa Z , Cleland HJ . Effect of different wound dressings on cell viability and proliferation . Plast. Reconstr. Surg. 117 ( 7 Suppl. ), 110S – 118S ( 2006 ).
  • Van Den Plas D , De SK , Lens D , Sollie P . Differential cell death programmes induced by silver dressings in vitro . Eur. J. Dermatol. 18 ( 4 ), 416 – 421 ( 2008 ).
  • Le Duc Q , Breetveld M , Middelkoop E , Scheper RJ , Ulrich MM , Gibbs S . A cytotoxic analysis of antiseptic medication on skin substitutes and autograft . Br. J. Dermatol. 157 ( 1 ), 33 – 40 ( 2007 ).
  • Campanella SD , Rapley P , Ramelet AS . A randomised controlled pilot study comparing Mepitel(®) and SurfaSoft(®) on paediatric donor sites treated with Recell(®) . Burns 37 ( 8 ), 1334 – 1342 ( 2011 ).
  • Kim JY , Park CD , Lee JH , Lee CH , Do BR , Lee AY . Co-culture of melanocytes with adipose-derived stem cells as a potential substitute for co-culture with keratinocytes . Acta Derm. Venereol. 92 ( 1 ), 16 – 23 ( 2012 ).
  • Bottcher-Haberzeth S , Klar AS , Biedermann T et al. “Trooping the color”: restoring the original donor skin color by addition of melanocytes to bioengineered skin analogs . Pediatr. Surg. Int. 29 ( 3 ), 239 – 247 ( 2013 ).
  • Waaijman T , Breetveld M , Ulrich M , Middelkoop E , Scheper RJ , Gibbs S . Use of a collagen–elastin matrix as transport carrier system to transfer proliferating epidermal cells to human dermis in vitro . Cell Transplant. 19 ( 10 ), 1339 – 1348 ( 2010 ).
  • Swope VB , Supp AP , Schwemberger S , Babcock G , Boyce S . Increased expression of integrins and decreased apoptosis correlate with increased melanocyte retention in cultured skin substitutes . Pigment Cell Res. 19 ( 5 ), 424 – 433 ( 2006 ).
  • Ghosh D , Kuchroo P , Viswanathan C et al. Efficacy and safety of autologous cultured melanocytes delivered on poly (DL-lactic acid) film: a prospective, open-label, randomized, multicenter study . Dermatol. Surg. 38 ( 12 ), 1981 – 1990 ( 2012 ).
  • Auger FA , Gibot L , Lacroix D . The pivotal role of vascularization in tissue engineering . Annu. Rev. Biomed. Eng. 15 , 177 – 200 ( 2013 ).
  • Athanassopoulos A , Tsaknakis G , Newey SE et al. Microvessel networks [corrected] pre-formed in artificial clinical grade dermal substitutes in vitro using cells from haematopoietic tissues . Burns 38 ( 5 ), 691 – 701 ( 2012 ).
  • Huang SP , Hsu CC , Chang SC et al. Adipose-derived stem cells seeded on acellular dermal matrix grafts enhance wound healing in a murine model of a full-thickness defect . Ann. Plast. Surg. 69 ( 6 ), 656 – 662 ( 2012 ).
  • Mineo A , Suzuki R , Kuroyanagi Y . Development of an artificial dermis composed of hyaluronic acid and collagen . J. Biomater. Sci. Polym. Ed. 24 ( 6 ), 726 – 740 ( 2013 ).
  • Kim HL , Lee JH , Lee MH , Kwon BJ , Park JC . Evaluation of electrospun (1,3)-(1,6)-beta-D-glucans/biodegradable polymer as artificial skin for full-thickness wound healing . Tissue Eng. Part A 18 ( 21–22 ), 2315 – 2322 ( 2012 ).
  • Nillesen ST , Lammers G , Wismans RG et al. Design and in vivo evaluation of a molecularly defined acellular skin construct: reduction of early contraction and increase in early blood vessel formation . Acta Biomater. 7 ( 3 ), 1063 – 1071 ( 2011 ).
  • Lee W , Debasitis JC , Lee VK et al. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication . Biomaterials 30 ( 8 ), 1587 – 1595 ( 2009 ).
  • Michael S , Sorg H , Peck CT et al. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice . PLoS ONE 8 ( 3 ), e57741 ( 2013 ).
  • Blais M , Parenteau-Bareil R , Cadau S , Berthod F . Concise review: tissue-engineered skin and nerve regeneration in burn treatment . Stem Cells Transl. Med. 2 ( 7 ), 545 – 551 ( 2013 ).
  • Biedermann T , Bottcher-Haberzeth S , Klar AS et al. Rebuild, restore, reinnervate: do human tissue engineered dermo-epidermal skin analogs attract host nerve fibers for innervation? Pediatr. Surg. Int. 29 ( 1 ), 71 – 78 ( 2013 ).
  • Anderson JR , Fear MW , Phillips JK et al. A preliminary investigation of the reinnervation and return of sensory function in burn patients treated with Integra® . Burns 37 ( 7 ), 1101 – 1108 ( 2011 ).
  • Oh SJ , Koh SH , Lee JW , Jang YC . Expanded flap and hair follicle transplantation for reconstruction of postburn scalp alopecia . J. Craniofac. Surg. 21 ( 6 ), 1737 – 1740 ( 2010 ).
  • Gho CG , Martino Neumann HA . Donor hair follicle preservation by partial follicular unit extraction. A method to optimize hair transplantation . J. Dermatolog. Treat. 21 ( 6 ), 337 – 349 ( 2010 ).
  • Mahjour SB , Ghaffarpasand F , Wang H . Hair follicle regeneration in skin grafts: current concepts and future perspectives . Tissue Eng. Part B Rev. 18 ( 1 ), 15 – 23 ( 2012 ).
  • Sriwiriyanont P , Lynch KA , Mcfarland KL , Supp DM , Boyce ST . Characterization of hair follicle development in engineered skin substitutes . PLoS ONE 8 ( 6 ), e65664 ( 2013 ).
  • Gay D , Kwon O , Zhang Z et al. Fgf9 from dermal gammadelta T cells induces hair follicle neogenesis after wounding . Nat. Med. 19 ( 7 ), 916 – 923 ( 2013 ).
  • Suzuki T , Lee CH , Chen M et al. Induced migration of dental pulp stem cells for in vivo pulp regeneration . J. Dent. Res. 90 ( 8 ), 1013 – 1018 ( 2011 ).
  • Lee CH , Cook JL , Mendelson A , Moioli EK , Yao H , Mao JJ . Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study . Lancet 376 ( 9739 ), 440 – 448 ( 2010 ).
  • Vanden Berg-Foels WS . In situ tissue regeneration: chemoattractants for endogenous stem cell recruitment . Tissue Eng. Part B Rev. doi:10.1089/ten.teb.2013.0100 ( 2013 ) (Epub ahead of print).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.