310
Views
0
CrossRef citations to date
0
Altmetric
Review

The Strategy and Method in Modulating Finger Regeneration

, , &
Pages 231-242 | Published online: 22 Apr 2014

References

  • Marty J , Porcher B , Autissier R . [Hand injuries and occupational accidents. Statistics and prevention] . Ann. Chir. Main 2 ( 4 ), 368 – 370 ( 1983 ).
  • Hostetler SG , Schwartz L , Shields BJ , Xiang H , Smith GA . Characteristics of pediatric traumatic amputations treated in hospital emergency departments: United States, 1990–2002 . Pediatrics 116 ( 5 ), e667 – e674 ( 2005 ).
  • Sebastin SJ , Chung KC . A systematic review of the outcomes of replantation of distal digital amputation . Plast. Reconstr. Surg. 128 ( 3 ), 723 – 737 ( 2011 ).
  • Morrison WA , McCombe D . Digital replantation . Hand Clin. 23 ( 1 ), 1 – 12 ( 2007 ).
  • Douglas BS . Conservative management of guillotine amputation of the finger in children . Aust. Paediatr. J. 8 ( 2 ), 86 – 89 ( 1972 ).
  • Illingworth CM . Trapped fingers and amputated finger tips in children . J. Pediatr. Surg. 9 ( 6 ), 853 – 858 ( 1974 ).
  • Neufeld DA , Zhao W . Phalangeal regrowth in rodents: postamputational bone regrowth depends upon the level of amputation . Prog. Clin. Biol. Res. 383A , 243 – 252 ( 1993 ).
  • Masaki H , Ide H . Regeneration potency of mouse limbs . Dev. Growth Differ. 49 ( 2 ), 89 – 98 ( 2007 ).
  • Singer M , Weckesser EC , Geraudie J , Maier CE , Singer J . Open finger tip healing and replacement after distal amputation in rhesus monkey with comparison to limb regeneration in lower vertebrates . Anat. Embryol. (Berl.) 177 ( 1 ), 29 – 36 ( 1987 ).
  • Larson BJ , Longaker MT , Lorenz HP . Scarless fetal wound healing: a basic science review . Plast. Reconstr. Surg. 126 ( 4 ), 1172 – 1180 ( 2010 ).
  • Stocum DL , Cameron JA . Looking proximally and distally: 100 years of limb regeneration and beyond . Dev. Dyn. 240 ( 5 ), 943 – 968 ( 2011 ).
  • Pajcini KV , Corbel SY , Sage J , Pomerantz JH , Blau HM . Transient inactivation of Rb and ARF yields regenerative cells from postmitotic mammalian muscle . Cell Stem Cell 7 ( 2 ), 198 – 213 ( 2010 ).
  • Broughton G 2nd , Janis JE , Attinger CE . The basic science of wound healing . Plast. Reconstr. Surg. 117 ( Suppl. 7 ), S12 – S34 ( 2006 ).
  • Schultz GS , Davidson JM , Kirsner RS , Bornstein P , Herman IM . Dynamic reciprocity in the wound microenvironment . Wound Repair Regen. 19 ( 2 ), 134 – 148 ( 2011 ).
  • Bryant SV , Endo T , Gardiner DM . Vertebrate limb regeneration and the origin of limb stem cells . Int. J. Dev. Biol. 46 ( 7 ), 887 – 896 ( 2002 ).
  • Mu X , Peng H , Pan H , Huard J , Li Y . Study of muscle cell dedifferentiation after skeletal muscle injury of mice with a Cre-Lox system . PLoS ONE 6 ( 2 ), e16699 ( 2011 ).
  • Schwartz SD , Hubschman JP , Heilwell G et al. Embryonic stem cell trials for macular degeneration: a preliminary report . Lancet 379 ( 9817 ), 713 – 720 ( 2012 ).
  • Takahashi K , Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors . Cell 126 ( 4 ), 663 – 676 ( 2006 ).
  • Knoepfler PS . Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine . Stem Cells 27 ( 5 ), 1050 – 1056 ( 2009 ).
  • Zhou H , Wu S , Joo JY et al. Generation of induced pluripotent stem cells using recombinant proteins . Cell Stem Cell 4 ( 5 ), 381 – 384 ( 2009 ).
  • Uccelli A , Moretta L , Pistoia V . Mesenchymal stem cells in health and disease . Nat. Rev. Immunol. 8 ( 9 ), 726 – 736 ( 2008 ).
  • Trounson A , Thakar RG , Lomax G , Gibbons D . Clinical trials for stem cell therapies . BMC Med. 9 , 52 ( 2011 ).
  • Bedi SS , Hetz R , Thomas C et al. Intravenous multipotent adult progenitor cell therapy attenuates activated microglial/macrophage response and improves spatial learning after traumatic brain injury . Stem Cells Transl. Med. 2 ( 12 ), 953 – 960 ( 2013 ).
  • Shin L , Peterson DA . Human mesenchymal stem cell grafts enhance normal and impaired wound healing by recruiting existing endogenous tissue stem/progenitor cells . Stem Cells Transl. Med. 2 ( 1 ), 33 – 42 ( 2013 ).
  • Neufeld DA . Partial blastema formation after amputation in adult mice . J. Exp. Zool. 212 ( 1 ), 31 – 36 ( 1980 ).
  • Muneoka K , Allan CH , Yang X , Lee J , Han M . Mammalian regeneration and regenerative medicine . Birth Defects Res. C Embryo Today 84 ( 4 ), 265 – 280 ( 2008 ).
  • Takeo M , Chou WC , Sun Q et al. Wnt activation in nail epithelium couples nail growth to digit regeneration . Nature 499 ( 7457 ), 228 – 232 ( 2013 ).
  • Mu X , Bellayr I , Walters T , Li Y . Mediators leading to fibrosis – how to measure and control them in tissue engineering . Oper. Tech. Orthop. 20 ( 2 ), 110 – 118 ( 2010 ).
  • Madden JW , Peacock EE Jr . Studies on the biology of collagen during wound healing. 3. Dynamic metabolism of scar collagen and remodeling of dermal wounds . Ann. Surg. 174 ( 3 ), 511 – 520 ( 1971 ).
  • Chablais F , Jazwinska A . The regenerative capacity of the zebrafish heart is dependent on TGFβ signaling . Development 139 ( 11 ), 1921 – 1930 ( 2012 ).
  • Clark LD , Clark RK , Heber-Katz E . A new murine model for mammalian wound repair and regeneration . Clin. Immunol. Immunopathol. 88 ( 1 ), 35 – 45 ( 1998 ).
  • Gourevitch D , Clark L , Chen P , Seitz A , Samulewicz SJ , Heber-Katz E . Matrix metalloproteinase activity correlates with blastema formation in the regenerating MRL mouse ear hole model . Dev. Dyn. 226 ( 2 ), 377 – 387 ( 2003 ).
  • Bedelbaeva K , Snyder A , Gourevitch D et al. Lack of p21 expression links cell cycle control and appendage regeneration in mice . Proc. Natl Acad. Sci. USA 107 ( 13 ), 5845 – 5850 ( 2010 ).
  • Heber-Katz E , Gourevitch D . The relationship between inflammation and regeneration in the MRL mouse: potential relevance for putative human regenerative(scarless wound healing) capacities? Ann. NY Acad. Sci. 1172 , 110 – 114 ( 2009 ).
  • Colwell AS , Krummel TM , Kong W , Longaker MT , Lorenz HP . Skin wounds in the MRL/MPJ mouse heal with scar . Wound Repair Regen. 14 ( 1 ), 81 – 90 ( 2006 ).
  • Beare AH , Metcalfe AD , Ferguson MW . Location of injury influences the mechanisms of both regeneration and repair within the MRL/MpJ mouse . J. Anat. 209 ( 4 ), 547 – 559 ( 2006 ).
  • Rajnoch C , Ferguson S , Metcalfe AD , Herrick SE , Willis HS , Ferguson MW . Regeneration of the ear after wounding in different mouse strains is dependent on the severity of wound trauma . Dev. Dyn. 226 ( 2 ), 388 – 397 ( 2003 ).
  • Chadwick RB , Bu L , Yu H et al. Digit tip regrowth and differential gene expression in MRL/Mpj, DBA/2, and C57BL/6 mice . Wound Repair Regen. 15 ( 2 ), 275 – 284 ( 2007 ).
  • Turner NJ , Johnson SA , Badylak SF . A histomorphologic study of the normal healing response following digit amputation in C57bl/6 and MRL/MpJ mice . Arch. Histol. Cytol. 73 ( 2 ), 103 – 111 ( 2010 ).
  • Gourevitch DL , Clark L , Bedelbaeva K , Leferovich J , Heber-Katz E . Dynamic changes after murine digit amputation: the MRL mouse digit shows waves of tissue remodeling, growth, and apoptosis . Wound Repair Regen. 17 ( 3 ), 447 – 455 ( 2009 ).
  • Stocum DL . The role of peripheral nerves in urodele limb regeneration . Eur. J. Neurosci. 34 ( 6 ), 908 – 916 ( 2011 ).
  • Mu X , Li Y . Conditional TGF-beta1 treatment increases stem cell-like cell population in myoblasts . J. Cell. Mol. Med. 15 ( 3 ), 679 – 690 ( 2011 ).
  • Hsu M , Peled ZM , Chin GS , Liu W , Longaker MT . Ontogeny of expression of transforming growth factor-beta 1 (TGF-beta 1), TGF-beta 3, and TGF-beta receptors I and II in fetal rat fibroblasts and skin . Plast. Reconstr. Surg. 107 ( 7 ), 1787 – 1794 ; discussion 1795–1786 ( 2001 ).
  • Liu J , Johnson K , Li J et al. Regenerative phenotype in mice with a point mutation in transforming growth factor beta type I receptor (TGFBR1) . Proc. Natl Acad. Sci. USA 108 ( 35 ), 14560 – 14565 ( 2011 ).
  • Ashcroft GS , Yang X , Glick AB et al. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response . Nat. Cell Biol. 1 ( 5 ), 260 – 266 ( 1999 ).
  • Arany PR , Flanders KC , Kobayashi T et al. Smad3 deficiency alters key structural elements of the extracellular matrix and mechanotransduction of wound closure . Proc. Natl Acad. Sci. USA 103 ( 24 ), 9250 – 9255 ( 2006 ).
  • Martin P , D’Souza D , Martin J et al. Wound healing in the PU.1 null mouse – tissue repair is not dependent on inflammatory cells . Curr. Biol. 13 ( 13 ), 1122 – 1128 ( 2003 ).
  • Cooper L , Johnson C , Burslem F , Martin P . Wound healing and inflammation genes revealed by array analysis of ‘macrophageless’ PU.1 null mice . Genome Biol. 6 ( 1 ), R5 ( 2005 ).
  • Lu H , Huang D , Saederup N , Charo IF , Ransohoff RM , Zhou L . Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury . FASEB J. 25 ( 1 ), 358 – 369 ( 2011 ).
  • Gordon A , Kozin ED , Keswani SG et al. Permissive environment in postnatal wounds induced by adenoviral-mediated overexpression of the anti-inflammatory cytokine interleukin-10 prevents scar formation . Wound Repair Regen. 16 ( 1 ), 70 – 79 ( 2008 ).
  • Peranteau WH , Zhang L , Muvarak N et al. IL-10 overexpression decreases inflammatory mediators and promotes regenerative healing in an adult model of scar formation . J. Invest. Dermatol. 128 ( 7 ), 1852 – 1860 ( 2008 ).
  • Liechty KW , Kim HB , Adzick NS , Crombleholme TM . Fetal wound repair results in scar formation in interleukin-10-deficient mice in a syngeneic murine model of scarless fetal wound repair . J. Pediatr. Surg. 35 ( 6 ), 866 – 872 ; discussion 872–863 ( 2000 ).
  • Gawronska-Kozak B . Scarless skin wound healing in FOXN1 deficient (nude) mice is associated with distinctive matrix metalloproteinase expression . Matrix Biol. 30 ( 4 ), 290 – 300 ( 2011 ).
  • Bedair H , Liu TT , Kaar JL et al. Matrix metalloproteinase-1 therapy improves muscle healing . J. Appl. Physiol. 102 ( 6 ), 2338 – 2345 ( 2007 ).
  • Mu X , Bellayr I , Pan H , Choi Y , Li Y . Regeneration of soft tissues is promoted by MMP1 treatment after digit amputation in mice . PLoS ONE 8 ( 3 ), e59105 ( 2013 ).
  • Mu X , Urso ML , Murray K , Fu F , Li Y . Relaxin regulates MMP expression and promotes satellite cell mobilization during muscle healing in both young and aged mice . Am. J. Pathol. 177 ( 5 ), 2399 – 2410 ( 2010 ).
  • Samuel CS , Lekgabe ED , Mookerjee I . The effects of relaxin on extracellular matrix remodeling in health and fibrotic disease . Adv. Exp. Med. Biol. 612 , 88 – 103 ( 2007 ).
  • Paz Z , Shoenfeld Y . Antifibrosis: to reverse the irreversible . Clin. Rev. Allergy Immunol. 38 ( 2–3 ), 276 – 286 ( 2010 ).
  • Badylak SF , Freytes DO , Gilbert TW . Extracellular matrix as a biological scaffold material: structure and function . Acta Biomater. 5 ( 1 ), 1 – 13 ( 2009 ).
  • Rosenwald M . A doctor, a pig, and a magical pixie dust that could regrow fingers . Esquire , 18th September (2007 ).
  • Cohen E . Woman’s persistence pays off in regenerated fingertip . Cable News Network , 9th September (2010 ).
  • Muneoka K , Han M , Gardiner DM . Regrowing human limbs . Sci. Am. 298 ( 4 ), 56 – 63 ( 2008 ).
  • Agrawal V , Johnson SA , Reing J et al. Epimorphic regeneration approach to tissue replacement in adult mammals . Proc. Natl Acad. Sci. USA 107 ( 8 ), 3351 – 3355 ( 2010 ).
  • Agrawal V , Tottey S , Johnson SA , Freund JM , Siu BF , Badylak SF . Recruitment of progenitor cells by an extracellular matrix cryptic peptide in a mouse model of digit amputation . Tissue Eng. Part A 17 ( 19–20 ), 2435 – 2443 ( 2011 ).
  • Ott HC , Matthiesen TS , Goh SK et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart . Nat. Med. 14 ( 2 ), 213 – 221 ( 2008 ).
  • Lutolf MP , Hubbell JA . Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering . Nat. Biotechnol. 23 ( 1 ), 47 – 55 ( 2005 ).
  • Landis WJ , Jacquet R , Hillyer J et al. Design and assessment of a tissue-engineered model of human phalanges and a small joint . Orthod. Craniofac. Res. 8 ( 4 ), 303 – 312 ( 2005 ).
  • Sedrakyan S , Zhou ZY , Perin L , Leach K , Mooney D , Kim TH . Tissue engineering of a small hand phalanx with a porously casted polylactic acid–polyglycolic acid copolymer . Tissue Eng. 12 ( 9 ), 2675 – 2683 ( 2006 ).
  • Weinand C , Gupta R , Weinberg E Toward regenerating a human thumb in situ . Tissue Eng. Part A 15 ( 9 ), 2605 – 2615 ( 2009 ).
  • Messerli MA , Graham DM . Extracellular electrical fields direct wound healing and regeneration . Biol. Bull. 221 ( 1 ), 79 – 92 ( 2011 ).
  • Gardner SE , Frantz RA , Schmidt FL . Effect of electrical stimulation on chronic wound healing: a meta-analysis . Wound Repair Regen. 7 ( 6 ), 495 – 503 ( 1999 ).
  • Fehlings MG , Tator CH , Linden RD . The effect of direct-current field on recovery from experimental spinal cord injury . J. Neurosurg. 68 ( 5 ), 781 – 792 ( 1988 ).
  • Borgens RB , Toombs JP , Breur G et al. An imposed oscillating electrical field improves the recovery of function in neurologically complete paraplegic dogs . J. Neurotrauma 16 ( 7 ), 639 – 657 ( 1999 ).
  • Borgens RB , Blight AR , Mcginnis ME . Behavioral recovery induced by applied electric fields after spinal cord hemisection in guinea pig . Science 238 ( 4825 ), 366 – 369 ( 1987 ).
  • Shapiro S , Borgens R , Pascuzzi R et al. Oscillating field stimulation for complete spinal cord injury in humans: a Phase 1 trial . J. Neurosurg. Spine 2 ( 1 ), 3 – 10 ( 2005 ).
  • Ciombor DM , Aaron RK . The role of electrical stimulation in bone repair . Foot Ankle Clin. 10 ( 4 ), 579 – 593 , vii ( 2005 ).
  • Becker RO . Stimulation of partial limb regeneration in rats . Nature 235 ( 5333 ), 109 – 111 ( 1972 ).
  • Sisken BF , Fowler I , Romm S . Response of amputated rat limbs to fetal nerve tissue implants and direct current . J. Orthop. Res. 2 ( 2 ), 177 – 189 ( 1984 ).
  • Levin M . Bioelectric mechanisms in regeneration: unique aspects and future perspectives . Semin. Cell Dev. Biol. 20 ( 5 ), 543 – 556 ( 2009 ).
  • Binggeli R , Weinstein RC . Membrane potentials and sodium channels: hypotheses for growth regulation and cancer formation based on changes in sodium channels and gap junctions . J. Theor. Biol. 123 ( 4 ), 377 – 401 ( 1986 ).
  • Hotary KB , Robinson KR . Endogenous electrical currents and voltage gradients in Xenopus embryos and the consequences of their disruption . Dev. Biol. 166 ( 2 ), 789 – 800 ( 1994 ).
  • Jenkins LS , Duerstock BS , Borgens RB . Reduction of the current of injury leaving the amputation inhibits limb regeneration in the red spotted newt . Dev. Biol. 178 ( 2 ), 251 – 262 ( 1996 ).
  • Atkinson DL , Stevenson TJ , Park EJ , Riedy MD , Milash B , Odelberg SJ . Cellular electroporation induces dedifferentiation in intact newt limbs . Dev. Biol. 299 ( 1 ), 257 – 271 ( 2006 ).
  • Han M , Yang X , Lee J , Allan CH , Muneoka K . Development and regeneration of the neonatal digit tip in mice . Dev. Biol. 315 ( 1 ), 125 – 135 ( 2008 ).
  • Ide H . Bone pattern formation in mouse limbs after amputation at the forearm level . Dev. Dyn. 241 ( 3 ), 435 – 441 ( 2012 ).
  • Yu L , Han M , Yan M , Lee EC , Lee J , Muneoka K . BMP signaling induces digit regeneration in neonatal mice . Development 137 ( 4 ), 551 – 559 ( 2010 ).
  • Paino F , Ricci G , De Rosa A et al. Ecto-mesenchymal stem cells from dental pulp are committed to differentiate into active melanocytes . Eur. Cell. Mater. 20 , 295 – 305 ( 2010 ).
  • D’Aquino R , De Rosa A , Lanza V et al. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes . Eur. Cell. Mater. 18 , 75 – 83 ( 2009 ).
  • Giuliani A , Manescu A , Langer M et al. Three years after transplants in human mandibles, histological and in-line holotomography revealed that stem cells regenerated a compact rather than a spongy bone: biological and clinical implications . Stem Cells Transl. Med. 2 ( 4 ), 316 – 324 ( 2013 ).
  • Ishihara A , Bertone AL . Cell-mediated and direct gene therapy for bone regeneration . Expert Opin. Biol. Ther. 12 ( 4 ), 411 – 423 ( 2012 ).
  • Kang Q , Sun MH , Cheng H et al. Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery . Gene Ther. 11 ( 17 ), 1312 – 1320 ( 2004 ).
  • Li JZ , Li H , Sasaki T et al. Osteogenic potential of five different recombinant human bone morphogenetic protein adenoviral vectors in the rat . Gene Ther. 10 ( 20 ), 1735 – 1743 ( 2003 ).
  • You Z , Bi X , Fan X , Wang Y . A functional polymer designed for bone tissue engineering . Acta Biomater. 8 ( 2 ), 502 – 510 ( 2012 ).
  • Holzwarth JM , Ma PX . Biomimetic nanofibrous scaffolds for bone tissue engineering . Biomaterials 32 ( 36 ), 9622 – 9629 ( 2011 ).
  • Bergman K , Engstrand T , Hilborn J , Ossipov D , Piskounova S , Bowden T . Injectable cell-free template for bone-tissue formation . J. Biomed. Mater. Res. A 91 ( 4 ), 1111 – 1118 ( 2009 ).
  • Gurtner GC , Werner S , Barrandon Y , Longaker MT . Wound repair and regeneration . Nature 453 ( 7193 ), 314 – 321 ( 2008 ).
  • Li Y , Negishi S , Sakamoto M , Usas A , Huard J . The use of relaxin improves healing in injured muscle . Ann. NY Acad. Sci. 1041 , 395 – 397 ( 2005 ).
  • Negishi S , Li Y , Usas A , Fu FH , Huard J . The effect of relaxin treatment on skeletal muscle injuries . Am. J. Sports Med. 33 ( 12 ), 1816 – 1824 ( 2005 ).
  • Mcgann CJ , Odelberg SJ , Keating MT . Mammalian myotube dedifferentiation induced by newt regeneration extract . Proc. Natl Acad. Sci. USA 98 ( 24 ), 13699 – 13704 ( 2001 ).
  • Repesh LA , Oberpriller JC . Scanning electron microscopy of epidermal cell migration in wound healing during limb regeneration in the adult newt, Notophthalmus viridescens . Am. J. Anat. 151 ( 4 ), 539 – 555 ( 1978 ).
  • Carlson MR , Bryant SV , Gardiner DM . Expression of Msx-2 during development, regeneration, and wound healing in axolotl limbs . J. Exp. Zool. 282 ( 6 ), 715 – 723 ( 1998 ).
  • Gardiner DM , Holmes LB . Hypothesis: terminal transverse limb defects with “nubbins” represent a regenerative process during limb development in human fetuses . Birth Defects Res. A Clin. Mol. Teratol. 94 ( 3 ), 129 – 133 ( 2012 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.