4,733
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Multipotential Stromal Cell Abundance in Cellular Bone Allograft: Comparison with Fresh Age-Matched Iliac Crest Bone and Bone Marrow Aspirate

, , , , , , & show all
Pages 593-607 | Published online: 05 Nov 2014

References

  • Marino JT , ZiranBH. Use of solid and cancellous autologous bone graft for fractures and nonunions. Orthop. Clin. North Am.41(1) , 15–26 (2010).
  • Giannoudis PV , EinhornTA, MarshD. Fracture heating: the diamond concept. Injury38 , S3–S6 (2007).
  • Dimitriou R , JonesE, McGonagleD, GiannoudisPV. Bone regeneration: current concepts and future directions. BMC Med.9 , 66 (2011).
  • Garrison KR , DonellS, RyderJ et al. Clinical effectiveness and cost–effectiveness of bone morphogenetic proteins in the non-healing of fractures and spinal fusion: a systematic review. Health Technol. Assess. 11(30) , 1–150 (2007).
  • Guerado E , FuerstenbergCH. What bone graft substitutes should we use in post-traumatic spinal fusion? Injury42 , S64–S71 (2011).
  • Rihn JA , KirkpatrickK, AlbertTJ. Graft options in posterolateral and posterior interbody lumbar fusion. Spine35(17) , 1629–1639 (2010).
  • Carragee EJ , HurwitzEL, WeinerBK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J.11(6) , 471–491 (2011).
  • Carragee EJ , BakerRM, BenzelEC et al. A biologic without guidelines: the YODA project and the future of bone morphogenetic protein-2 research. Spine J. 12(10) , 877–880 (2012).
  • Seebach C , SchultheissJ, WilhelmK, FrankJ, HenrichD. Comparison of six bone-graft substitutes regarding to cell seeding efficiency, metabolism and growth behaviour of human mesenchymal stem cells (MSC) in vitro. Injury41(7) , 731–738 (2010).
  • Evans NR , DaviesEM, DareCJ, OreffoROC. Tissue engineering strategies in spinal arthrodesis: the clinical imperative and challenges to clinical translation. Regen. Med.8(1) , 49–64 (2013).
  • Yamada T , YoshiiT, SotomeS et al. Hybrid grafting using bone marrow aspirate combined with porous β-tricalcium phosphate and trephine bone for lumbar posterolateral spinal fusion: a prospective, comparative study versus local bone grafting. Spine 37(3) , E174–E179 (2012).
  • Tanaka K , TakemotoM, FujibayashiS, NeoM, ShikinamiY, NakamuraT. A bioactive and bioresorbable porous cubic composite scaffold loaded with bone marrow aspirate: a potential alternative to autogenous bone grafting. Spine36(6) , 441–447 (2011).
  • Koga A , TokuhashiY, OhkawaA, NishimuraT, TakayamaK, RyuJ. Effects of fibronectin on osteoinductive capability of fresh iliac bone marrow aspirate in posterolateral spinal fusion in rabbits. Spine33(12) , 1318–1323 (2008).
  • Taghavi CE , Lee K-B, Keorochana G, Tzeng S-T, Yoo JH, Wang JC. Bone morphogenetic protein-2 and bone marrow aspirate with allograft as alternatives to autograft in instrumented revision posterolateral lumbar spinal fusion: a minimum two-year follow-up study. Spine35(11) , 1144–1150 (2010).
  • Grabowski G , CornettCA. Bone graft and bone graft substitutes in spine surgery: current concepts and controversies. J. Am. Acad. Orthop. Surg.21(1) , 51–60 (2013).
  • Tohmeh AG , WatsonB, TohmehM, ZielinskiXJ. Allograft cellular bone matrix in extreme lateral interbody fusion: preliminary radiographic and clinical outcomes. ScientificWorldJournal2012 , 263637 (2012).
  • Scott RT , HyerCF. Role of cellular allograft containing mesenchymal stem cells in high-risk foot and ankle reconstructions. J. Foot Ankle Surg.52(1) , 32–35 (2013).
  • Kerr EJ 3rd, Jawahar A, Wooten T, Kay S, Cavanaugh DA, Nunley PD. The use of osteo-conductive stem-cells allograft in lumbar interbody fusion procedures: an alternative to recombinant human bone morphogenetic protein. J. Surg. Orthop. Adv.20(3) , 193–197 (2011).
  • Hollawell SM . Allograft cellular bone matrix as an alternative to autograft in hindfoot and ankle fusion procedures. J. Foot Ankle Surg.51(2) , 222–225 (2012).
  • Gonshor A , McAllisterBS, WallaceSS, PrasadH. Histologic and histomorphometric evaluation of an allograft stem cell-based matrix sinus augmentation procedure. Int. J. Oral Maxillofac. Implants26(1) , 123–131 (2011).
  • Neman J , DuenasV, KowolikCM, HambrechtAC, ChenMY, JandialR. Lineage mapping and characterization of the native progenitor population in cellular allograft. Spine J.13(2) , 162–174 (2013).
  • Kouroupis D , BaboolalTG, JonesE, GiannoudisPV. Native multipotential stromal cell colonization and graft expander potential of a bovine natural bone scaffold. J. Orthop. Res.31(12) , 1950–1958 (2013).
  • Jones EA , KinseySE, EnglishA et al. Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum. 46(12) , 3349–3360 (2002).
  • Quirici N , SoligoD, BossolascoP, ServidaF, LuminiC, DeliliersGL. Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp. Hematol.30(7) , 783–791 (2002).
  • Buhring H -J, Battula VL, Treml S, Schewe B, Kanz L, Vogel W. Novel markers for the prospective isolation of human MSC. In: Hematopoietic Stem Cells VI. Kanz L,Weisel KC, Dick JE, Fibbe WE (Eds). Wiley–Blackwell, NJ, USA, 262–271 (2007).
  • Battula VL , TremlS, BareissPM et al. Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Haematologica 94(2) , 173–184 (2009).
  • Jones E , EnglishA, ChurchmanSM et al. Large-scale extraction and characterization of CD271+ multipotential stromal cells from trabecular bone in health and osteoarthritis: implications for bone regeneration strategies based on uncultured or minimally cultured multipotential stromal cells. Arthritis Rheum. 62(7) , 1944–1954 (2010).
  • Rasini V , DominiciM, KlubaT et al. Mesenchymal stromal/stem cells markers in the human bone marrow. Cytotherapy 15(3) , 292–306 (2013).
  • Dominici M , Le Blanc K, Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy8(4) , 315–317 (2006).
  • Ng F , BoucherS, KohS et al. PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood 112(2) , 295–307 (2008).
  • Cox G , BoxallSA, GiannoudisPV et al. High abundance of CD271+ multipotential stromal cells (MSCs) in intramedullary cavities of long bones. Bone 50(2) , 510–517 (2012).
  • Krampera M , GalipeauJ, ShiY, TarteK, SensebeL, Committee of the International Society for Cellular Therapy. Immunological characterization of multipotent mesenchymal stromal cells – the International Society for Cellular Therapy (ISCT) working proposal. Cytotherapy15(9) , 1054–1061 (2013).
  • Noort WA , OerlemansMI, RozemullerH et al. Human versus porcine mesenchymal stromal cells: phenotype, differentiation potential, immunomodulation and cardiac improvement after transplantation. J. Cell. Mol. Med. 16(8) , 1827–1839 (2011).
  • Roederer M . Interpretation of cellular proliferation data: avoid the panglossian. Cytometry A79A(2) , 95–101 (2011).
  • Cuthbert R , BoxallSA, TanHB, GiannoudisPV, McGonagleD, JonesE. Single-platform quality control assay to quantify multipotential stromal cells in bone marrow aspirates prior to bulk manufacture or direct therapeutic use. Cytotherapy14(4) , 431–440 (2012).
  • Churchman SM , PonchelF, BoxallSA et al. Transcriptional profile of native CD271+ multipotential stromal cells: evidence for multiple fates, with prominent osteogenic and Wnt pathway signaling activity. Arthritis Rheum. 64(8) , 2632–2643 (2012).
  • Mendez-Ferrer S , MichurinaTV, FerraroF et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308) , 829–834 (2010).
  • Tormin A , LiO, BruneJC et al. CD146 expression on primary non-hematopoietic bone marrow stem cells correlates to in situ localization. Blood 117(19) , 5067–5077 (2011).
  • Watkins M , GrimstonSK, NorrisJY et al. Osteoblast connexin43 modulates skeletal architecture by regulating both arms of bone remodeling. Mol. Biol. Cell 22(8) , 1240–1251 (2011).
  • Calvi LM , AdamsGB, WeibrechtKW et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425(6960) , 841–846 (2003).
  • Kloen P , LauzierD, HamdyRC. Co-expression of BMPs and BMP-inhibitors in human fractures and non-unions. Bone51(1) , 59–68 (2012).
  • Dean DB , WatsonJT, JinW et al. Distinct functionalities of bone morphogenetic protein antagonists during fracture healing in mice. J. Anat. 216(5) , 625–630 (2010).
  • Veyrat-Masson R , Boiret-DupreN, RapatelC et al. Mesenchymal content of fresh bone marrow: a proposed quality control method for cell therapy. Br. J. Haematol. 139(2) , 312–320 (2007).
  • Lichte P , PapeHC, PufeT, KobbeP, FischerH. Scaffolds for bone healing: concepts, materials and evidence. Injury42(6) , 569–573 (2011).
  • Delloye C , CornuO, DruezV, BarbierO. Bone allografts – what they can offer and what they cannot. J. Bone Joint Surg. Br.89B(5) , 574–579 (2007).
  • Caputo AM , MichaelKW, ChapmanTM Jr et al. Clinical outcomes of extreme lateral interbody fusion in the treatment of adult degenerative scoliosis. ScientificWorldJournal2012 , 680643 (2012).
  • Ammerman JM , LibriczJ, AmmermanMD. The role of Osteocel Plus as a fusion substrate in minimally invasive instrumented transforaminal lumbar interbody fusion. Clin. Neurol. Neurosurg.115(7) , 991–994 (2012).
  • Brosky TA 2nd, Menke CRD, Xenos D. Reconstruction of the first metatarsophalangeal joint following post-cheilectomy avascular necrosis of the first metatarsal head: a case report. J. Foot Ankle Surg.48(1) , 61–69 (2009).
  • Rush SM , HamiltonGA, AckersonLM. Mesenchymal stem cell allograft in revision foot and ankle surgery: a clinical and radiographic analysis. J. Foot Ankle Surg.48(2) , 163–169 (2009).
  • McAllister BS . Stem cell-containing allograft matrix enhances periodontal regeneration: case presentations. Int. J. Periodontics Restorative Dent.31(2) , 149–155 (2011).
  • McAllister BS , HaghighatK, GonshorA. Histologic evaluation of a stem cell-based sinus-augmentation procedure. J. Periodontol.80(4) , 679–686 (2009).
  • Yu H -C, Wu T-C, Chen M-R, Liu S-W, Chen J-H, Lin KM-C. Mechanical stretching induces osteoprotegerin in differentiating C2C12 precursor cells through noncanonical Wnt pathways. J. Bone Miner. Res.25(5) , 1128–1137 (2010).
  • Portal-Nunez S , ManassraR, LozanoD et al. Characterization of skeletal alterations in a model of prematurely aging mice. Age 35(2) , 383–393 (2013).
  • Qian H , Le Blanc K, Sigvardsson M. Primary mesenchymal stem and progenitor cells from bone marrow lack expression of CD44. J. Biol. Chem.287(31) , 25795–25807 (2012).
  • Bonewald LF . The amazing osteocyte. J. Bone Miner. Res.26(2) , 229–238 (2011).
  • Burra S , NicolellaDP, FrancisWL et al. Dendritic processes of osteocytes are mechanotransducers that induce the opening of hemichannels. Proc. Natl Acad. Sci. USA 107(31) , 13648–13653 (2010).
  • Dawson JI , SmithJO, AarvoldA et al. Enhancing the osteogenic efficacy of human bone marrow aspirate: concentrating osteoprogenitors using wave-assisted filtration. Cytotherapy 15(2) , 242–252 (2013).
  • Homma Y , KanekoK, HernigouP. Supercharging allografts with mesenchymal stem cells in the operating room during hip revision. Int. Orthop.38(10) , 2033–2044 (2014).
  • Hernigou P , PoignardA, BeaujeanF, RouardH. Percutaneous autologous bone-marrow grafting for nonunions – influence of the number and concentration of progenitor cells. J. Bone Joint Surg. Am.87A(7) , 1430–1437 (2005).
  • Hernigou P , PoignardA, ManicomO, MathieuG, RouardH. The use of percutaneous autologous bone marrow transplantation in nonunion and avascular necrosis of bone. J. Bone Joint Surg. Br.87B(7) , 896–902 (2005).
  • Kasten P , BeyenI, EgermannM et al. Instant stem cell therapy: characterization and concentration of human mesenchymal stem cells in vitro. Eur. Cell. Mater. 16 , 47–55 (2008).
  • Hernigou P , HommaY, LachanietteCHF et al. Benefits of small volume and small syringe for bone marrow aspirations of mesenchymal stem cells. Int. Orthop. 37(11) , 2279–2287 (2013).
  • Sakaguchi Y , SekiyaI, YagishitaK, IchinoseS, ShinomiyaK, MunetaT. Suspended cells from trabecular bone by collagenase digestion become virtually identical to mesenchymal stem cells obtained from marrow aspirates. Blood104(9) , 2728–2735 (2004).
  • Alvarez-Viejo M , Menendez-MenendezY, Blanco-GelazMA et al. Quantifying mesenchymal stem cells in the mononuclear cell fraction of bone marrow samples obtained for cell therapy. Transplant. Proc. 45(1) , 434–439 (2013).
  • Paic F , IgweJC, NoriR et al. Identification of differentially expressed genes between osteoblasts and osteocytes. Bone 45(4) , 682–692 (2009).
  • Flynn JM , SpustaSC, RosenCJ, MelovS. Single cell gene expression profiling of cortical osteoblast lineage cells. Bone53(1) , 174–181 (2013).
  • Balduino A , Mello-CoelhoV, WangZ et al. Molecular signature and in vivo behavior of bone marrow endosteal and subendosteal stromal cell populations and their relevance to hematopoiesis. Exp. Cell Res. 318(19) , 2427–2437 (2012).
  • Becker CB . Sclerostin inhibition for osteoporosis – a new approach. N. Engl. J. Med.370(5) , 476–477 (2014).
  • Liu H , KemenyDM, HengBC, OuyangHW, MelendezAJ, CaoT. The immunogenicity and immunomodulatory function of osteogenic cells differentiated from mesenchymal stem cells. J. Immunol.176(5) , 2864–2871 (2006).
  • Arinzeh TL , PeterSJ, ArchambaultMP et al. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J. Bone Joint Surg. Am. 85A(10) , 1927–1935 (2003).
  • Ito H . Chemokines in mesenchymal stem cell therapy for bone repair: a novel concept of recruiting mesenchymal stem cells and the possible cell sources. Mod. Rheumatol.21(2) , 113–121 (2011).
  • Cuthbert RJ , ChurchmanSM, TanHB, McGonagleD, JonesE, GiannoudisPV. Induced periosteum a complex cellular scaffold for the treatment of large bone defects. Bone57(2) , 484–492 (2013).