235
Views
0
CrossRef citations to date
0
Altmetric
Review

Protein-Based Materials in Load-Bearing Tissue-Engineering Applications

, &
Pages 687-701 | Published online: 05 Nov 2014

References

  • Atala A . Regenerative medicine strategies . J. Pediatr. Surg.47 ( 1 ), 17 – 28 ( 2012 ).
  • Hutmacher DW . Scaffolds in tissue engineering bone and cartilage . Biomaterials21 ( 24 ), 2529 – 2543 ( 2000 ).
  • Rothamel D , SchwarzF , SagerM , HertenM , SculeanA , BeckerJ . Biodegradation of differently cross-linked collagen membranes: an experimental study in the rat . Clin. Oral Implants Res.16 ( 3 ), 369 – 378 ( 2005 ).
  • Wang Y , RudymDD , WalshAet al. In vivo degradation of three-dimensional silk fibroin scaffolds . Biomaterials29 ( 24–25 ), 3415 – 3428 ( 2008 ).
  • Nair LS , LaurencinCT . Biodegradable polymers as biomaterials . Prog. Polym. Sci.32 ( 8–9 ), 762 – 798 ( 2007 ).
  • Merrett K , LiuW , MitraDet al. Synthetic neoglycopolymer-recombinant human collagen hybrids as biomimetic crosslinking agents in corneal tissue engineering . Biomaterials30 ( 29 ), 5403 – 5408 ( 2009 ).
  • Rouse JG , Van DykeME . A review of keratin-based biomaterials for biomedical applications . Materials3 ( 2 ), 999 – 1014 ( 2010 ).
  • Balaji S , KumarR , SripriyaRet al. Characterization of keratin-collagen 3D scaffold for biomedical applications . Polym. Adv. Technol.23 ( 3 ), 500 – 507 ( 2012 ).
  • Mieszawska AJ , NadkarniLD , PerryCC , KaplanDL . Nanoscale control of silica particle formation via silk–silica fusion proteins for bone regeneration . Chem. Mater.22 ( 20 ), 5780 – 5785 ( 2010 ).
  • Kilic C , GirottiA , Rodriguez-CabelloJC , HasirciV . A collagen-based corneal stroma substitute with micro-designed architecture . Biomater. Sci.2 , 318 – 329 ( 2014 ).
  • Teulé F , CooperAR , FurinWAet al. A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning . Nat. Protoc.4 ( 3 ), 341 – 355 ( 2009 ).
  • Yoshizumi A , YuZ , SilvaTet al. Self-association of Streptococcus pyogenes collagen-like constructs into higher order structures . Protein Sci.18 ( 6 ), 1241 – 1251 ( 2009 ).
  • Werten MWT , TelesH , MoersAPHAet al. Precision gels from collagen-inspired triblock copolymers . Biomacromolecules10 ( 5 ), 1106 – 1113 ( 2009 ).
  • Li L , TellerS , CliftonRJ , JiaX , KiickKL . Tunable mechanical stability and deformation response of a resilin-based elastomer . Biomacromolecules12 ( 6 ), 2302 – 2310 ( 2011 ).
  • Gomes S , LeonorIB , ManoJF , ReisRL , KaplanDL . Natural and genetically engineered proteins for tissue engineering . Prog. Polym. Sci.37 ( 1 ), 1 – 17 ( 2012 ).
  • Bracalello A , SantopietroV , VassalliMet al. Design and production of a chimeric resilin-, elastin-, and collagen-like engineered polypeptide . Biomacromolecules12 ( 8 ), 2957 – 2965 ( 2011 ).
  • Van Lonkhuyzen DR , HollierBG , ShooterGK , LeavesleyDI , UptonZ . Chimeric vitronectin:insulin-like growth factor proteins enhance cell growth and migration through co-activation of receptors . Growth Factors25 ( 5 ), 295 – 308 ( 2007 ).
  • Choi BH , ChoiYS , KangDG , KimBJ , SongYH , ChaHJ . Cell behavior on extracellular matrix mimic materials based on mussel adhesive protein fused with functional peptides . Biomaterials31 ( 34 ), 8980 – 8988 ( 2010 ).
  • Bini E , FooCWP , HuangJ , KarageorgiouV , KitchelB , KaplanDL . RGD-functionalized bioengineered spider dragline silk biomaterial . Biomacromolecules7 ( 11 ), 3139 – 3145 ( 2006 ).
  • Albertson AE , TeuléF , WeberW , YargerJL , LewisRV . Effects of different post-spin stretching conditions on the mechanical properties of synthetic spider silk fibers . J. Mech. Behav. Biomed. Mater.29 , 225 – 234 ( 2014 ).
  • Haider M , CappelloJ , GhandehariH , LeongKW . In vitro chondrogenesis of mesenchymal stem cells in recombinant silk–elastinlike hydrogels . Pharm. Res.25 ( 3 ), 692 – 699 ( 2008 ).
  • Hwang W , KimBH , DanduR , CappelloJ , GhandehariH , SeogJ . Surface induced nanofiber growth by self-assembly of a silk-elastinlike protein polymer . Langmuir25 ( 21 ), 12682 – 12686 ( 2009 ).
  • Werkmeister JA , RamshawJAM . Recombinant protein scaffolds for tissue engineering . Biomed. Mater.7 ( 1 ), 012002 ( 2012 ).
  • Alfredo Uquillas J , KishoreV , AkkusO . Genipin crosslinking elevates the strength of electrochemically aligned collagen to the level of tendons . J. Mech. Behav. Biomed. Mater.15 C, 176 – 189 ( 2012 ).
  • Altman GH , DiazF , JakubaCet al. Silk-based biomaterials . Biomaterials24 ( 3 ), 401 – 416 ( 2003 ).
  • Wang X , HanC , HuXet al. Applications of knitted mesh fabrication techniques to scaffolds for tissue engineering and regenerative medicine . J. Mech. Behav. Biomed. Mater.4 ( 7 ), 922 – 932 ( 2011 ).
  • Chen X , QiYY , WangLLet al. Ligament regeneration using a knitted silk scaffold combined with collagen matrix . Biomaterials29 ( 27 ), 3683 – 3692 ( 2008 ).
  • Zou XH , ZhiYL , ChenXet al. Mesenchymal stem cell seeded knitted silk sling for the treatment of stress urinary incontinence . Biomaterials31 ( 18 ), 4872 – 4879 ( 2010 ).
  • Kew SJ , GwynneJH , EneaDet al. Regeneration and repair of tendon and ligament tissue using collagen fibre biomaterials . Acta Biomater.7 ( 9 ), 3237 – 3247 ( 2011 ).
  • Gentleman E , LayAN , DickersonDA , NaumanEA , LivesayGA , DeeKC . Mechanical characterization of collagen fibers and scaffolds for tissue engineering . Biomaterials24 ( 21 ), 3805 – 3813 ( 2003 ).
  • Eberli D , Freitas FilhoL , AtalaA , YooJJ . Composite scaffolds for the engineering of hollow organs and tissues . Methods47 , 109 – 115 ( 2009 ).
  • Gentleman E , LivesayGA , DeeKC , NaumanEA . Development of ligament-like structural organization and properties in cell-seeded collagen scaffolds in vitro . Ann. Biomed. Eng.34 ( 5 ), 726 – 736 ( 2006 ).
  • Caves JM , CuiW , WenJ , KumarV , HallerC , ChaikofEL . Elastin-like protein matrix reinforced with collagen microfibers for soft tissue repair . Biomaterials32 ( 23 ), 5371 – 5379 ( 2011 ).
  • Barnes CP , SellSA , BolandED , SimpsonDG , BowlinGL . Nanofiber technology: designing the next generation of tissue engineering scaffolds . Adv. Drug Deliv. Rev.59 ( 14 ), 1413 – 1433 ( 2007 ).
  • Meyer M , BaltzerH , SchwikalK . Collagen fibres by thermoplastic and wet spinning . Mater. Sci. Eng. C30 ( 8 ), 1266 – 1271 ( 2010 ).
  • Um IC , KiCS , KweonH , LeeKG , IhmDW , ParkYH . Wet spinning of silk polymer. II. Effect of drawing on the structural characteristics and properties of filament . Int. J. Biol. Macromol.34 ( 1–2 ), 107 – 119 ( 2004 ).
  • Wei W , ZhangY , ZhaoY , LuoJ , ShaoH , HuX . Bio-inspired capillary dry spinning of regenerated silk fibroin aqueous solution . Mater. Sci. Eng. C31 ( 7 ), 1602 – 1608 ( 2011 ).
  • Mandal BB , KunduSC . Biospinning by silkworms: silk fiber matrices for tissue engineering applications . Acta Biomater.6 ( 2 ), 360 – 371 ( 2010 ).
  • Bhattacharjee M , MiotS , GoreckaAet al. Oriented lamellar silk fibrous scaffolds to drive cartilage matrix orientation: towards annulus fibrosus tissue engineering . Acta Biomater.8 ( 9 ), 3313 – 3325 ( 2012 ).
  • Bürck J , HeisslerS , GeckleUet al. Effects of different post-spin stretching conditions on the mechanical properties of synthetic spider silk fibers . Langmuir29 , 1562 – 1572 ( 2013 ).
  • Yu Q , XuS , ZhangH , GuL , XuY , KoF . Structure–property relationship of regenerated spider silk protein nano/microfibrous scaffold fabricated by electrospinning . J. Biomed. Mater. Res. A. doi:10.1002/jbm.a.35051 ( 2013 ) (Epub ahead of print) .
  • Dhandayuthapani B , KrishnanUM , SethuramanS . Fabrication and characterization of chitosan–gelatin blend nanofibers for skin tissue engineering . J. Biomed. Mater. Res. B. Appl. Biomater.94 ( 1 ), 264 – 272 ( 2010 ).
  • Han J , LazaroviciP , PomerantzC , ChenX , WeiY , LelkesPI . Co-electrospun blends of PLGA, gelatin, and elastin as potential nonthrombogenic scaffolds for vascular tissue engineering . Biomacromolecules12 ( 2 ), 399 – 408 ( 2011 ).
  • Baker S , SigleyJ , CarlisleCRet al. The mechanical properties of dry, electrospun fibrinogen fibers . Mater. Sci. Eng. C. Mater. Biol. Appl.32 ( 2 ), 215 – 221 ( 2012 ).
  • McKenna KA , HindsMT , SaraoRCet al. Mechanical property characterization of electrospun recombinant human tropoelastin for vascular graft biomaterials . Acta Biomater.8 ( 1 ), 225 – 233 ( 2012 ).
  • Ner Y , StuartJA , WhitedG , SotzingGA . Electrospinning nanoribbons of a bioengineered silk-elastin-like protein (SELP) from water . Polymer50 ( 24 ), 5828 – 5836 ( 2009 ).
  • Rnjak-Kovacina J , WiseSG , LiZet al. Electrospun synthetic human elastin:collagen composite scaffolds for dermal tissue engineering . Acta Biomater.8 ( 10 ), 3714 – 3722 ( 2012 ).
  • Enea D , HensonF , KewSet al. Extruded collagen fibres for tissue engineering applications: effect of crosslinking method on mechanical and biological properties . J. Mater. Sci. Mater. Med.22 ( 6 ), 1569 – 1578 ( 2011 ).
  • Zeugolis DI , PaulRG , AttenburrowG . Extruded collagen–polyethylene glycol fibers for tissue engineering applications . J. Biomed. Mater. Res. B. Appl. Biomater.85 ( 2 ), 343 – 352 ( 2008 ).
  • Lai ES , AndersonCM , FullerGG . Designing a tubular matrix of oriented collagen fibrils for tissue engineering . Acta Biomater.7 , 2448 – 2456 ( 2011 ).
  • Kew SJ , GwynneJH , EneaDet al. Synthetic collagen fascicles for the regeneration of tendon tissue . Acta Biomater.8 ( 10 ), 3723 – 3731 ( 2012 ).
  • Kim UJ , ParkJ , KimHJ , WadaM , KaplanDL . Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin . Biomaterials26 ( 15 ), 2775 – 2785 ( 2005 ).
  • Bhumiratana S , GraysonWL , CastanedaAet al. Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds . Biomaterials32 ( 11 ), 2812 – 2820 ( 2011 ).
  • Kurland NE , DeyT , WangC , KunduSC , YadavalliVK . Silk protein lithography as a route to fabricate sericin microarchitectures . Adv. Mater.26 ( 26 ), 4431 – 4437 ( 2014 ).
  • Bian W , BursacN . Engineered skeletal muscle tissue networks with controllable architecture . Biomaterials30 ( 7 ), 1401 – 1412 ( 2009 ).
  • Hu X , ParkSH , GilES , XiaXX , WeissAS , KaplanDL . The influence of elasticity and surface roughness on myogenic and osteogenic-differentiation of cells on silk–elastin biomaterials . Biomaterials32 ( 34 ), 8979 – 8989 ( 2011 ).
  • Tejeda-Montes E , SmithKH , PochMet al. Engineering membrane scaffolds with both physical and biomolecular signaling . Acta Biomater.8 ( 3 ), 998 – 1009 ( 2012 ).
  • Melchels FPW , DomingosMAN , KleinTJ , MaldaJ , BartoloPJ , HutmacherDW . Additive manufacturing of tissues and organs . Prog. Polym. Sci.37 ( 8 ), 1079 – 1104 ( 2012 ).
  • Taylor PM , SachlosE , DregerSA , ChesterAH , CzernuszkaJT , YacoubMH . Interaction of human valve interstitial cells with collagen matrices manufactured using rapid prototyping . Biomaterials27 ( 13 ), 2733 – 2737 ( 2006 ).
  • Sachlos E , ReisN , AinsleyC , DerbyB , CzernuszkaJT . Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication . Biomaterials24 ( 8 ), 1487 – 1497 ( 2003 ).
  • Chen CH , LiuJ , ChuaCK , ChouSM , ShyuV , ChenJP . Cartilage tissue engineering with silk fibroin scaffolds fabricated by indirect additive manufacturing technology . Materials7 ( 3 ), 2104 – 2119 ( 2014 ).
  • Gauvin R , ChenYC , LeeJWet al. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography . Biomaterials33 ( 15 ), 3824 – 3834 ( 2012 ).
  • Lee W , DebasitisJC , LeeVKet al. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication . Biomaterials30 ( 8 ), 1587 – 1595 ( 2009 ).
  • Isikli C , HasirciV , HasirciN . Development of porous chitosan – gelatin/ydroxyapatite composite scaffolds for hard tissue-engineering applications . J. Tissue Eng. Regen. Med.6 , 135 – 143 ( 2012 ).
  • Gomes S , LeonorIB , ManoJF , ReisRL , KaplanDL . Spider silk–bone sialoprotein fusion proteins for bone tissue engineering . Soft Matter7 ( 10 ), 4964 ( 2011 ).
  • Pataquiva-Mateus AY , WuHC , LucchesiC , FerrazMP , MonteiroFJ , SpectorM . Supplementation of collagen scaffolds with SPARC to facilitate mineralization . J. Biomed. Mater. Res. B. Appl. Biomater.100 ( 3 ), 862 – 870 ( 2012 ).
  • Xia Z , YuX , JiangX , BrodyHD , RoweDW , WeiM . Fabrication and characterization of biomimetic collagen-apatite scaffolds with tunable structures for bone tissue engineering . Acta Biomater.9 ( 7 ), 7308 – 7319 ( 2013 ).
  • Huey DJ , HuJC , AthanasiouKA . Unlike bone, cartilage regeneration remains elusive . Science338 ( 6109 ), 917 – 921 ( 2012 ).
  • Zhang L , SpectorM . Comparison of three types of chondrocytes in collagen scaffolds for cartilage tissue engineering . Biomed. Mater.4 ( 4 ), 045012 ( 2009 ).
  • Levett PA , MelchelsFPW , SchrobbackK , HutmacherDW , MaldaJ , KleinTJ . A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate . Acta Biomater.10 ( 1 ), 214 – 223 ( 2014 ).
  • Shin H , OlsenBD , KhademhosseiniA . The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules . Biomaterials33 ( 11 ), 3143 – 3152 ( 2012 ).
  • Talukdar S , NguyenQT , ChenAC , SahRL , KunduSC . Effect of initial cell seeding density on 3D-engineered silk fibroin scaffolds for articular cartilage tissue engineering . Biomaterials32 ( 34 ), 8927 – 8937 ( 2011 ).
  • Chao PHG , YodmuangS , WangX , SunL , KaplanDL , Vunjak-NovakovicG . Silk hydrogel for cartilage tissue engineering . J. Biomed. Mater. Res. B. Appl. Biomater.95 ( 1 ), 84 – 90 ( 2010 ).
  • Saha S , KunduB , KirkhamJ , WoodD , KunduSC , YangXB . Osteochondral tissue engineering in vivo: a comparative study using layered silk fibroin scaffolds from mulberry and nonmulberry silkworms . PLoS ONE8 ( 11 ), e80004 ( 2013 ).
  • Chen JL , YinZ , ShenWLet al. Efficacy of hESC-MSCs in knitted silk-collagen scaffold for tendon tissue engineering and their roles . Biomaterials31 ( 36 ), 9438 – 9451 ( 2010 ).
  • Mandal BB , ParkSH , GilES , KaplanDL . Multilayered silk scaffolds for meniscus tissue engineering . Biomaterials32 ( 2 ), 639 – 651 ( 2011 ).
  • Pallela R , VenkatesanJ , JanapalaVR , KimSK . Biophysicochemical evaluation of chitosan–hydroxyapatite–marine sponge collagen composite for bone tissue engineering . J. Biomed. Mater. Res. A.486 – 495 ( 2011 ).
  • Li C , VepariC , JinH , JooH , KaplanDL . Electrospun silk-BMP-2 scaffolds for bone tissue engineering . Biomaterials27 , 3115 – 3124 ( 2006 ).
  • Ko CS , HuangJP , HuangCW , ChuIM . Type II collagen–chondroitin sulfate–hyaluronan scaffold cross-linked by genipin for cartilage tissue engineering . J. Biosci. Bioeng.107 ( 2 ), 177 – 182 ( 2009 ).
  • Ni M , LuiPPY , RuiYFet al. Tendon-derived stem cells (TDSCs) promote tendon repair in a rat patellar tendon window defect model . J. Orthop. Res.30 ( 4 ), 613 – 619 ( 2012 ).
  • Sahoo S , TohSL , GohJCH . A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells . Biomaterials31 ( 11 ), 2990 – 2998 ( 2010 ).
  • Yan LP , OliveiraJM , OliveiraAL , CaridadeSG , ManoJF , ReisRL . Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications . Acta Biomater.8 ( 1 ), 289 – 301 ( 2012 ).
  • Balint E , GattCJ , DunnMG . Design and mechanical evaluation of a novel fiber-reinforced scaffold for meniscus replacement . J. Biomed. Mater. Res. A.100 ( 1 ), 195 – 202 ( 2012 ).
  • Hendriks FM , BrokkenD , OomensCWJ , BaderDL , BaaijensFPT . The relative contributions of different skin layers to the mechanical behavior of human skin in vivo using suction experiments . Med. Eng. Phys.28 ( 3 ), 259 – 266 ( 2006 ).
  • Rnjak-Kovacina J , WiseSG , LiZet al. Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering . Biomaterials32 ( 28 ), 6729 – 6736 ( 2011 ).
  • Silva SS , SantosTC , CerqueiraMTet al. The use of ionic liquids in the processing of chitosan/silk hydrogels for biomedical applications . Green Chem.14 ( 5 ), 1463 ( 2012 ).
  • Rahman MM , PervezS , NesaB , KhanMA . Preparation and characterization of porous scaffold composite films by blending chitosan and gelatin solutions for skin tissue engineering . Polym. Int.62 , 79 – 86 ( 2012 ).
  • Renò F , RizziM , CannasM . Gelatin-based anionic hydrogel as biocompatible substrate for human keratinocyte growth . J. Mater. Sci. Mater. Med.23 ( 2 ), 565 – 571 ( 2012 ).
  • Verma V , VermaP , RayP , RayAR . Preparation of scaffolds from human hair proteins for tissue-engineering applications . Biomed. Mater.3 ( 2 ), 025007 ( 2008 ).
  • Koria P , YagiH , KitagawaYet al. Self-assembling elastin-like peptides growth factor chimeric nanoparticles for the treatment of chronic wounds . Proc. Natl Acad. Sci. USA108 ( 3 ), 1034 – 1039 ( 2011 ).
  • Atala A , BauerSB , SokerS , YooJJ , RetikAB . Tissue-engineered autologous bladders for patients needing cystoplasty . Lancet367 ( 9518 ), 1241 – 1246 ( 2006 ).
  • Engelhardt EM , MicolLA , HouisSet al. A collagen-poly(lactic acid-co-∊-caprolactone) hybrid scaffold for bladder tissue regeneration . Biomaterials32 ( 16 ), 3969 – 3976 ( 2011 ).
  • Mauney JR , CannonGM , LovettMLet al. Evaluation of gel spun silk-based biomaterials in a murine model of bladder augmentation . Biomaterials32 ( 3 ), 808 – 818 ( 2011 ).
  • Miwa H , MatsudaT , IidaFet al. Development of a Hierarchically Structured Hybrid Vascular Graft Biomimicking Natural Arteries . ASAIO J.39 ( 3 ), 273 – 277 ( 1993 ).
  • De Moraes MA , PaternotteE , MantovaniD , BeppuMM . Mechanical and biological performances of new scaffolds made of collagen hydrogels and fibroin microfibers for vascular tissue engineering . Macromol. Biosci.12 ( 9 ), 1253 – 1264 ( 2012 ).
  • Seib FP , MaitzMF , HuX , WernerC , KaplanDL . Impact of processing parameters on the haemocompatibility of Bombyx mori silk films . Biomaterials33 ( 4 ), 1017 – 1023 ( 2012 ).
  • Swartz DD , RussellJA , AndreadisST . Engineering of fibrin-based functional and implantable small-diameter blood vessels . Am. J. Physiol. Heart Circ. Physiol.288 ( 3 ), 1451 – 1460 ( 2005 ).
  • Shah A , BrugnanoJ , SunS , VaseA , OrwinE . The development of a tissue-engineered cornea: biomaterials and culture methods . Pediatr. Res.63 ( 5 ), 535 – 544 ( 2008 ).
  • Tanaka Y , BabaK , DuncanTJet al. Transparent, tough collagen laminates prepared by oriented flow casting, multi-cyclic vitrification and chemical cross-linking . Biomaterials32 ( 13 ), 3358 – 3366 ( 2011 ).
  • Dravida S , GaddipatiS , GriffithMet al. A biomimetic scaffold for culturing limbal stem cells: a promising alternative for clinical transplantation . J. Tissue Eng. Regen. Med.2 ( 5 ), 263 – 271 ( 2008 ).
  • Nayak S , TalukdarS , KunduSC . Potential of 2D crosslinked sericin membranes with improved biostability for skin tissue engineering . Cell Tissue Res.347 ( 3 ), 783 – 794 ( 2012 ).
  • McManus M , BolandE , SellSet al. Electrospun nanofibre fibrinogen for urinary tract tissue reconstruction . Biomed. Mater.2 ( 4 ), 257 – 262 ( 2007 ).
  • Achilli M , MegheziS , MantovaniD . On the viscoelastic properties of collagen-gel-based lattices under cyclic loading: applications for vascular tissue engineering . Macromol. Mater. Eng.297 ( 7 ), 724 – 734 ( 2012 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.