Publication Cover
Ostrich
Journal of African Ornithology
Volume 94, 2023 - Issue 4: Avian Moult
58
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Primary moult in the annual cycle of adult African Oystercatchers Haematopus moquini

, &
Pages 258-265 | Received 16 Dec 2022, Accepted 11 Aug 2023, Published online: 20 Oct 2023

References

  • Ashmole N. 1962. The Black Noddy Anous tenuirostris on Ascension Island. Part 1. General biology. Ibis 103: 235–273.
  • Braby J, Underhill LG. 2007. Was poor breeding productivity of African black oystercatchers on Robben Island in 2004/05 caused by feral cats, kelp gulls, mole snakes or the Sumatra tsunami? Wader Study Group Bulletin 113: 66–70.
  • Brown M, Arendse B, Mels B, Lee AT. 2019. Bucking the trend: the African Black Oystercatcher as a recent conservation success story. Ostrich 90: 327–333. https://doi.org/10.2989/00306525.2019.1679904
  • Camphuysen CJ, Ens BJ, Heg D, Hulscher JB, van der Meer J, Smit CJ. 1996 Oystercatcher Haematopus ostralegus winter mortality in The Netherlands: the effect of severe weather and food supply. Ardea 84A: 469–492.
  • Clark JA. 2004. Ringing recoveries confirm higher wader mortality in severe winters. Ringing and Migration 22: 43–50. https://doi.org/10.1080/03078698.2004.9674309
  • Conklin JR, Battley PF. 2012. Carry-over effects and compensation: late arrival on non-breeding grounds affects wing moult but not plumage or schedules of departing Bar-tailed Godwits Limosa lapponica baueri. Journal of Avian Biology 43: 252–263. https://doi.org/10.1111/j.1600-048X.2012.05606.x
  • Dare PJ, Mercer AJ. 1974. The timing of wing-moult in the oystercatcher Haematopus ostralegus in Wales. Ibis 116: 211–214. https://doi.org/10.1111/j.1474-919X.1974.tb00239.x
  • Davidson NC. 1981. Survival of shorebirds (Charadrii) during severe weather: the role of nutritional reserves. In: NV Jones, WJ Wolff (eds), Feeding and survival strategies of estuarine organisms. New York: Plenum Press. pp 231–249. https://doi.org/10.1007/978-1-4613-3318-0_18
  • Dietz MW, Rogers KG, Gutiérrez JS, Piersma T. 2015. Body mass and latitude both correlate with primary moult duration in shorebirds. Ibis 157: 147–153. https://doi.org/10.1111/ibi.12185
  • Elson SJ, Singor MJC. 2008. The Hooded Plover breeding data from Western Australia. Stilt 53: 6–12.
  • Ens BJ, Underhill LG. 2014. Synthesis of oystercatcher conservation assessments: general lessons and recommendations. International Wader Studies 20: 5–22.
  • Erni B, Bonnevie BT, Oschadleus HD, Altwegg R, Underhill LG. 2013. moult: an R package to analyse moult in birds. Journal of Statistical Software 52: 1–23. https://doi.org/10.18637/jss.v052.i08
  • Ginn H, Melville DS. 1983. Moult in birds. Tring: British Trust for Ornithology.
  • Hansen BD, Minton CDT, Jessop R, Collins P. 2009. Biometrics, sexing criteria, age-structure and moult of Sooty Oystercatchers in south-eastern and north-western Australia. Emu 109: 25–33. https://doi.org/10.1071/MU07045
  • Hansen BD, Minton CDT, Harrison AE, Jessop R. 2014. Conservation assessment of the Sooty Oystercatcher Haematopus fuliginosus. International Wader Studies 20: 161–172.
  • Hedenström A, Sunada S. 1999. On the aerodynamics of moult gaps in birds. The Journal of Experimental Biology 202: 67–76. https://doi.org/10.1242/jeb.202.1.67
  • Hockey PAR. 2005. African Black Oystercatcher Haematopus moquini. In: Hockey PAR, Dean WRJ, Ryan PG (eds), Roberts birds of southern Africa (7th edn). Cape Town: Trustees of the John Voelcker Bird Book Fund. pp 389–391.
  • Hockey PAR, Douie C. 1995. Waders of southern Africa. Cape Town: Struik Winchester.
  • Hockey PAR, Leseberg A, Loewenthal D. 2003. Dispersal and migration of juvenile African Black Oystercatchers Haematopus moquini. Ibis 145: E114–E123. https://doi.org/10.1046/j.1474-919X.2003.00174.x
  • Hulscher JB. 1977. The progress of wing-moult of Oystercatchers Haematopus ostralegus at Drachten, Netherlands. Ibis 119: 507–512. https://doi.org/10.1111/j.1474-919X.1977.tb02057.x
  • Jackson CHW, Underhill LG. 2022. Primary moult strategies in adult migrant waders (Charadrii). Wader Study 129: 126–137. doi: 10.18194/ws.00278
  • Jenni L, Winkler R. 2020. The biology of moult in birds. London: Helm.
  • Keijl G. 2011. Sooty Shearwaters Puffinus griseus in the North Atlantic – moult studies using digital cameras. Marine Ornithology 39: 141–142.
  • Kemper J, Underhill LG, Crawford RJM, Roux JP. 2007. Revision of the conservation status of seabirds and seals in the Benguela Ecosystem. In: Kirkman SP (ed.), Final report of BCLME (Benguela Current Large Marine Ecosystem) project on Top Predators as Biological Indicators of Ecosystem Change in the BCLME. Cape Town: Avian Demography Unit. pp 325–342.
  • Loewenthal D. 2007. The population dynamics and conservation of the African Black Oystercatcher Haematopus moquini. PhD thesis, FitzPatrick Institute of African Ornithology, University of Cape Town, South Africa.
  • Newton I. 2009. Moult and plumage. Ringing and Migration 24: 220–226. https://doi.org/10.1080/03078698.2009.9674395
  • Parsons NJ. 2006. Quantifying abundance, breeding and behaviour of the African Black Oystercatcher Haematopus moquini. PhD thesis, University of Cape Town, South Africa.
  • Prater AJ. 1981. A review of the patterns of primary moult in Palaearctic waders. In: Cooper J (ed.), Proceedings of the symposium on birds of the sea and shore. Cape Town: African Seabird Group. pp 393–409.
  • Quintana I, Button R, Underhill LG. 2021. African Oystercatchers on Robben Island, South Africa: the 2019/2020 breeding season in its two decadal context. Wader Study 128: 209–219. https://doi.org/10.18194/ws.00245
  • R Core Team. 2020. R: a language and environment for statistical computing. Vienna,: R Foundation for Statistical Computing. Available at https://www.R-project.org.
  • Rao AS. 2005. Dispersal of young African Black Oystercatchers (Haematopus moquini): movement patterns, individual characteristics, habitat use and conservation implications. MSc thesis, Memorial University of Newfoundland, Canada.
  • Remisiewicz M. 2011. The flexibility of primary moult in relation to migration in Palaearctic waders – an overview. Wader Study Group Bulletin 118: 163–174.
  • Remisiewicz M, Tree AJ, Underhill LG, Gustowska A, Taylor PB. 2009. Extended primary moult as an adaptation of adult Wood Sandpipers Tringa glareola to their freshwater habitats in southern Africa. Ardea 97: 271–280. https://doi.org/10.5253/078.097.0302
  • Rogers KG, Rogers DL, Weston MA. 2014. Prolonged and flexible primary moult overlaps extensively with breeding in beach-nesting Hooded Plovers Thinornis rubricollis. Ibis 156: 840–849. doi: 10.1111/ibi.12184
  • Ryan PG, Visagie J. 2008. African Black Oystercatchers feeding in a terrestrial habitat. Ostrich 79: 243. https://doi.org/10.2989/OSTRICH.2008.79.2.18.592
  • Scott A. 2023. A contribution to understanding primary moult of birds. PhD thesis, University of Cape Town, South Africa.
  • Serra L. 2001. Duration of primary moult affects primary quality in Grey Plovers Pluvialis squatarola. Journal of Avian Biology 32: 377–380. https://doi.org/10.1111/j.0908-8857.2001.320415.x
  • Summers RW, Cooper J. 1977. The population, ecology and conservation of the Black Oystercatcher Haematopus moquini. Ostrich 48: 28–40. https://doi.org/10.1080/00306525.1977.9634076
  • Summers RW, Underhill LG, Clinning CF, Nicoll M. 1989. Populations, biometrics and moult of the Turnstone Arenaria interpres on the east Atlantic coastline, with special reference to the Siberian population. Ardea 77: 145–168.
  • Tjørve KMC, Underhill LG. 2008a. Breeding phenology of African Black Oystercatchers Haematopus moquini on Robben Island, South Africa. Ostrich 79: 141–146. https://doi.org/10.2989/ostrich.2008.79.2.3.577
  • Tjørve KMC, Underhill LG. 2008b. The influence of disturbance and predation on the breeding success of the African Black Oystercatcher, Haematopus moquini, on Robben Island, South Africa. Waterbirds 31: 83–96. https://doi.org/10.1675/1524-4695(2008)31[83:IODAPO]2.0.CO;2
  • Tjørve KMC, Underhill LG. 2009. Growth and its relationship to fledging success of African Black Oystercatcher Haematopus moquini chicks. Zoology: Analysis of Complex Systems 112: 27–37. https://doi.org/10.1016/j.zool.2008.04.004
  • Tjørve KMC, Underhill LG, Visser GH. 2007. Energetics of growth in semi-precocial shorebird chicks in a warm environment: the African Black Oystercatcher, Haematopus moquini. Zoology: Analysis of Complex Systems 110: 176–188. https://doi.org/10.1016/j.zool.2007.01.002
  • Underhill LG. 1979. The Western Cape Wader Study Group. Bokmakierie 31: 82–85.
  • Underhill LG. 2014. Assessment of the conservation status of African Black Oystercatcher Haematopus moquini. International Wader Studies 20: 97–108.
  • Underhill LG, Joubert A. 1995. Relative masses of primary feathers. Ringing and Migration 16: 109–116. https://doi.org/10.1080/03078698.1995.9674099
  • Underhill LG, Summers RW. 1993. Relative masses of primary feathers of waders. Wader Study Group Bulletin 71: 29–31.
  • Underhill LG, Zucchini W. 1988. A model for avian primary moult. Ibis 130: 358–372. https://doi.org/10.1111/j.1474-919X.1988.tb00993.x
  • van der Pol M, Atkinson P, Blew J, Crowe O, Delany S, Duriez O et al. 2014. A global assessment of the conservation status of the nominate subspecies of Eurasian Oystercatcher Haematopus ostralegus. International Wader Studies 20: 47–61.
  • Vieira BP, Furness RW, Nager RG. 2017. Using field photography to study avian moult. Ibis 159: 443–448. https://doi.org/10.1111/ibi.12445
  • Ward VL, Oschadleus HD, Underhill LG 2007. Primary moult of the Kelp Gull Larus dominicanus vetula in the Western Cape, South Africa. In: Kirkman SP (ed.), Final report of BCLME (Benguela Current Large Marine Ecosystem) project on Top Predators as Biological Indicators of Ecosystem Change in the BCLME. Cape Town: Avian Demography Unit. pp 201–204.
  • Wilson JR, Morrison RIG. 1981. Primary moult in Oystercatchers in Iceland. Ornis Scandinavica 12: 211–215. https://doi.org/10.2307/3676080
  • Yang Z, Lagassé BJ, Xiao H, Jackson MV, Chiang C, Melville DS et al. 2020. The southern Jiangsu coast is a critical moulting site for Spoon-billed Sandpiper Calidris pygmaea and Nordmann’s Greenshank Tringa guttifer. Bird Conservation International 30: 649–660. https://doi.org/10.1017/S0959270920000210

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.